forked from Tencent/HunyuanVideo
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathgradio_server.py
504 lines (426 loc) · 22.8 KB
/
gradio_server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
import os
import time
from pathlib import Path
from loguru import logger
from datetime import datetime
import gradio as gr
import random
import json
from hyvideo.utils.file_utils import save_videos_grid
from hyvideo.config import parse_args
from hyvideo.inference import HunyuanVideoSampler
from hyvideo.constants import NEGATIVE_PROMPT
from mmgp import offload, safetensors2, profile_type
args = parse_args()
lora_weight =args.lora_weight
lora_multiplier = [float(i) for i in args.lora_multiplier ]
force_profile_no = int(args.profile)
verbose_level = int(args.verbose)
quantizeTransformer = args.quantize_transformer
transformer_choices=["ckpts/hunyuan-video-t2v-720p/transformers/hunyuan_video_720_bf16.safetensors", "ckpts/hunyuan-video-t2v-720p/transformers/hunyuan_video_720_quanto_int8.safetensors", "ckpts/hunyuan-video-t2v-720p/transformers/fast_hunyuan_video_720_quanto_int8.safetensors"]
text_encoder_choices = ["ckpts/text_encoder/llava-llama-3-8b-v1_1_fp16.safetensors", "ckpts/text_encoder/llava-llama-3-8b-v1_1_quanto_int8.safetensors"]
server_config_filename = "gradio_config.json"
if not Path(server_config_filename).is_file():
server_config = {"attention_mode" : "sdpa",
"transformer_filename": transformer_choices[1],
"text_encoder_filename" : text_encoder_choices[1],
"compile" : "",
"profile" : profile_type.LowRAM_LowVRAM }
with open(server_config_filename, "w", encoding="utf-8") as writer:
writer.write(json.dumps(server_config))
else:
with open(server_config_filename, "r", encoding="utf-8") as reader:
text = reader.read()
server_config = json.loads(text)
transformer_filename = server_config["transformer_filename"]
text_encoder_filename = server_config["text_encoder_filename"]
attention_mode = server_config["attention_mode"]
profile = force_profile_no if force_profile_no >=0 else server_config["profile"]
compile = server_config.get("compile", "")
#transformer_filename = "ckpts/hunyuan-video-t2v-720p/transformers/hunyuan_video_720_bf16.safetensors"
#transformer_filename = "ckpts/hunyuan-video-t2v-720p/transformers/hunyuan_video_720_quanto_int8.safetensors"
#transformer_filename = "ckpts/hunyuan-video-t2v-720p/transformers/fast_hunyuan_video_720_quanto_int8.safetensors"
#text_encoder_filename = "ckpts/text_encoder/llava-llama-3-8b-v1_1_fp16.safetensors"
#text_encoder_filename = "ckpts/text_encoder/llava-llama-3-8b-v1_1_quanto_int8.safetensors"
#attention_mode="sage"
#attention_mode="flash"
#attention_mode = "sdpa"
def download_models(transformer_filename, text_encoder_filename):
def computeList(filename):
pos = filename.rfind("/")
filename = filename[pos+1:]
if not "quanto" in filename:
return [filename]
pos = filename.rfind(".")
return [filename, filename[:pos] +"_map.json"]
from huggingface_hub import hf_hub_download, snapshot_download
repoId = "DeepBeepMeep/HunyuanVideo"
sourceFolderList = ["text_encoder_2", "text_encoder", "hunyuan-video-t2v-720p/vae", "hunyuan-video-t2v-720p/transformers" ]
fileList = [ [], ["config.json", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json"] + computeList(text_encoder_filename) , [], computeList(transformer_filename) ]
targetRoot = "ckpts/"
for sourceFolder, files in zip(sourceFolderList,fileList ):
if len(files)==0:
if not Path(targetRoot + sourceFolder).exists():
snapshot_download(repo_id=repoId, allow_patterns=sourceFolder +"/*", local_dir= targetRoot)
else:
for onefile in files:
if not os.path.isfile(targetRoot + sourceFolder + "/" + onefile ):
hf_hub_download(repo_id=repoId, filename=onefile, local_dir = targetRoot, subfolder=sourceFolder)
download_models(transformer_filename, text_encoder_filename)
# models_root_path = Path(args.model_base)
# if not models_root_path.exists():
# raise ValueError(f"`models_root` not exists: {models_root_path}")
offload.default_verboseLevel = verbose_level
with open("./ckpts/hunyuan-video-t2v-720p/vae/config.json", "r", encoding="utf-8") as reader:
text = reader.read()
vae_config= json.loads(text)
# reduce time window used by the VAE for temporal splitting (former time windows is too large for 24 GB)
if vae_config["sample_tsize"] == 64:
vae_config["sample_tsize"] = 32
with open("./ckpts/hunyuan-video-t2v-720p/vae/config.json", "w", encoding="utf-8") as writer:
writer.write(json.dumps(vae_config))
args.flow_reverse = True
if profile == 5:
pinToMemory = False
partialPinning = False
else:
pinToMemory = True
import psutil
physical_memory= psutil.virtual_memory().total
partialPinning = physical_memory <= 2**30 * 32
hunyuan_video_sampler = HunyuanVideoSampler.from_pretrained(transformer_filename, text_encoder_filename, attention_mode = attention_mode, pinToMemory = pinToMemory, partialPinning = partialPinning, args=args, device="cpu")
pipe = hunyuan_video_sampler.pipeline
# lora_weight =["ckpts/arny_lora.safetensors"]
# lora_multi = [1.0]
if len(lora_weight) > 0:
offload.load_loras_into_model(pipe.transformer, lora_weight, lora_multiplier)
offload.profile(pipe, profile_no= profile, compile = compile, quantizeTransformer = quantizeTransformer)
def apply_changes(
transformer_choice,
text_encoder_choice,
attention_choice,
compile_choice,
profile_choice,
):
server_config = {"attention_mode" : attention_choice,
"transformer_filename": transformer_choices[transformer_choice],
"text_encoder_filename" : text_encoder_choices[text_encoder_choice],
"compile" : compile_choice,
"profile" : profile_choice }
with open(server_config_filename, "w", encoding="utf-8") as writer:
writer.write(json.dumps(server_config))
return "<h1>New Config file created. Please restart the Gradio Server</h1>"
from moviepy.editor import ImageSequenceClip
import numpy as np
def save_video(final_frames, output_path, fps=24):
assert final_frames.ndim == 4 and final_frames.shape[3] == 3, f"invalid shape: {final_frames} (need t h w c)"
if final_frames.dtype != np.uint8:
final_frames = (final_frames * 255).astype(np.uint8)
ImageSequenceClip(list(final_frames), fps=fps).write_videofile(output_path, verbose= False, logger = None)
def build_callback(state, pipe, progress, status, num_inference_steps):
def callback(step_idx, t, latents):
step_idx += 1
if state.get("abort", False):
pipe._interrupt = True
status_msg = status + " - Aborting"
elif step_idx == num_inference_steps:
status_msg = status + " - VAE Decoding"
else:
status_msg = status + " - Denoising"
progress( (step_idx , num_inference_steps) , status_msg , num_inference_steps)
return callback
def abort_generation(state):
if "in_progress" in state:
state["abort"] = True
return gr.Button(interactive= False)
else:
return gr.Button(interactive= True)
def refresh_gallery(state):
file_list = state["file_list"]
return file_list
def finalize_gallery(state):
if "in_progress" in state:
del state["in_progress"]
choice = state.get("selected",0)
return gr.Gallery(selected_index=choice), gr.Button(interactive= True)
def select_video(state , event_data: gr.EventData):
data= event_data._data
if data!=None:
state["selected"] = data.get("index",0)
return
def generate_video(
prompt,
resolution,
video_length,
seed,
num_inference_steps,
guidance_scale,
flow_shift,
embedded_guidance_scale,
repeat_generation,
tea_cache,
state,
progress=gr.Progress() #track_tqdm= True
):
seed = None if seed == -1 else seed
width, height = resolution.split("x")
width, height = int(width), int(height)
negative_prompt = "" # not applicable in the inference
if "abort" in state:
del state["abort"]
state["in_progress"] = True
state["selected"] = 0
# TeaCache
trans = hunyuan_video_sampler.pipeline.transformer.__class__
trans.enable_teacache = tea_cache > 0
if trans.enable_teacache:
trans.num_steps = num_inference_steps
trans.cnt = 0
trans.rel_l1_thresh = 0.15 # 0.1 for 1.6x speedup, 0.15 for 2.1x speedup
trans.accumulated_rel_l1_distance = 0
trans.previous_modulated_input = None
trans.previous_residual = None
import random
if seed == None or seed <0:
seed = random.randint(0, 999999999)
file_list = []
state["file_list"] = file_list
from einops import rearrange
save_path = os.path.join(os.getcwd(), "gradio_outputs")
os.makedirs(save_path, exist_ok=True)
prompts = prompt.replace("\r", "").split("\n")
video_no = 0
total_video = repeat_generation * len(prompts)
start_time = time.time()
for prompt in prompts:
for _ in range(repeat_generation):
video_no += 1
status = f"Video {video_no}/{total_video}"
progress(0, desc=status + " - Encoding Prompt" )
callback = build_callback(state, hunyuan_video_sampler.pipeline, progress, status, num_inference_steps)
outputs = hunyuan_video_sampler.predict(
prompt=prompt,
height=height,
width=width,
video_length=(video_length // 4)* 4 + 1 ,
seed=seed,
negative_prompt=negative_prompt,
infer_steps=num_inference_steps,
guidance_scale=guidance_scale,
num_videos_per_prompt=1,
flow_shift=flow_shift,
batch_size=1,
embedded_guidance_scale=embedded_guidance_scale,
callback = callback,
callback_steps = 1,
)
samples = outputs['samples']
if samples == None:
end_time = time.time()
yield f"Abortion Succesful. Total Generation Time: {end_time-start_time:.1f}s"
else:
idx = 0
# just in case one day we will have enough VRAM for batch geeneration ...
for i,sample in enumerate(samples):
# sample = samples[0]
video = rearrange(sample.cpu().numpy(), "c t h w -> t h w c")
time_flag = datetime.fromtimestamp(time.time()).strftime("%Y-%m-%d-%Hh%Mm%Ss")
file_name = f"{time_flag}_seed{outputs['seeds'][i]}_{outputs['prompts'][i][:100].replace('/','').strip()}.mp4".replace(':',' ').replace('\\',' ')
idx = 0
basis_video_path = os.path.join(os.getcwd(), "gradio_outputs", file_name)
video_path = basis_video_path
while True:
if not Path(video_path).is_file():
idx = 0
break
idx += 1
video_path = basis_video_path[:-4] + f"_{idx}" + ".mp4"
save_video(video, video_path )
print(f"New video saved to Path: "+video_path)
file_list.append(video_path)
if video_no < total_video:
yield status
else:
end_time = time.time()
yield f"Total Generation Time: {end_time-start_time:.1f}s"
seed += 1
def create_demo(model_path, save_path):
with gr.Blocks() as demo:
gr.Markdown("<div align=center><H1>HunyuanVideo<SUP>GP</SUP> by Tencent</H3></div>")
gr.Markdown("*GPU Poor version by **DeepBeepMeep**. Now this great video generator can run smoothly on a 24 GB rig.*")
gr.Markdown("Please be aware of these limits with profiles 2 and 4 if you have 24 GB of VRAM (RTX 3090 / RTX 4090):")
gr.Markdown("- max 192 frames for 848 x 480 ")
gr.Markdown("- max 86 frames for 1280 x 720")
gr.Markdown("In the worst case, one step should not take more than 2 minutes. If it the case you may be running out of RAM / VRAM. Try to generate fewer images / lower res / a less demanding profile.")
gr.Markdown("If you have a Linux / WSL system you may turn on compilation (see below) and will be able to generate an extra 30°% frames")
with gr.Accordion("Video Engine Configuration", open = False):
gr.Markdown("For the changes to be effective you will need to restart the gradio_server")
with gr.Column():
index = transformer_choices.index(transformer_filename)
index = 0 if index ==0 else index
transformer_choice = gr.Dropdown(
choices=[
("Hunyuan Video 16 bits - the default engine in its original glory, offers a slightly better image quality but slower and requires more RAM", 0),
("Hunyuan Video quantized to 8 bits (recommended) - the default engine but quantized", 1),
("Fast Hunyuan Video quantized to 8 bits - requires less than 10 steps but worse quality", 2),
],
value= index,
label="Transformer"
)
index = text_encoder_choices.index(text_encoder_filename)
index = 0 if index ==0 else index
gr.Markdown("Note that even if you choose a 16 bits Llava model below, depending on the profile it may be automatically quantized to 8 bits on the fly")
text_encoder_choice = gr.Dropdown(
choices=[
("Llava Llama 1.1 16 bits - unquantized text encoder, better quality uses more RAM", 0),
("Llava Llama 1.1 quantized to 8 bits - quantized text encoder, worse quality but uses less RAM", 1),
],
value= index,
label="Text Encoder"
)
attention_choice = gr.Dropdown(
choices=[
("Scale Dot Product Attention: default", "sdpa"),
("Flash: good quality - requires additional install (usually complex to set up on Windows without WSL)", "flash"),
("Sage: 30% faster but worse quality - requires additional install (usually complex to set up on Windows without WSL)", "sage"),
],
value= attention_mode,
label="Attention Type"
)
gr.Markdown("Beware: when restarting the server or changing a resolution or video duration, the first step of generation for a duration / resolution may last a few minutes due to recompilation")
compile_choice = gr.Dropdown(
choices=[
("ON: works only on Linux / WSL", "transformer"),
("OFF: no other choice if you have Windows without using WSL", "" ),
],
value= compile,
label="Compile Transformer (up to 50% faster and 30% more frames but requires Linux / WSL and Flash or Sage attention)"
)
profile_choice = gr.Dropdown(
choices=[
("HighRAM_HighVRAM, profile 1: at least 48 GB of RAM and 24 GB of VRAM, the fastest for shorter videos a RTX 3090 / RTX 4090", 1),
("HighRAM_LowVRAM, profile 2 (Recommended): at least 48 GB of RAM and 12 GB of VRAM, the most versatile profile with high RAM, better suited for RTX 3070/3080/4070/4080 or for RTX 3090 / RTX 4090 with large pictures batches or long videos", 2),
("LowRAM_HighVRAM, profile 3: at least 32 GB of RAM and 24 GB of VRAM, adapted for RTX 3090 / RTX 4090 with limited RAM for good speed short video",3),
("LowRAM_LowVRAM, profile 4 (Default): at least 32 GB of RAM and 12 GB of VRAM, if you have little VRAM or want to generate longer videos",4),
("VerylowRAM_LowVRAM, profile 5: (Fail safe): at least 16 GB of RAM and 10 GB of VRAM, if you don't have much it won't be fast but maybe it will work",5)
],
value= profile,
label="Profile"
)
msg = gr.Markdown()
apply_btn = gr.Button("Apply Changes")
apply_btn.click(
fn=apply_changes,
inputs=[
transformer_choice,
text_encoder_choice,
attention_choice,
compile_choice,
profile_choice,
],
outputs= msg
)
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt", value="A large orange octopus is seen resting on the bottom of the ocean floor, blending in with the sandy and rocky terrain. Its tentacles are spread out around its body, and its eyes are closed. The octopus is unaware of a king crab that is crawling towards it from behind a rock, its claws raised and ready to attack. The crab is brown and spiny, with long legs and antennae. The scene is captured from a wide angle, showing the vastness and depth of the ocean. The water is clear and blue, with rays of sunlight filtering through. The shot is sharp and crisp, with a high dynamic range. The octopus and the crab are in focus, while the background is slightly blurred, creating a depth of field effect.")
with gr.Row():
resolution = gr.Dropdown(
choices=[
# 720p
("1280x720 (16:9, 720p)", "1280x720"),
("720x1280 (9:16, 720p)", "720x1280"),
("1104x832 (4:3, 720p)", "1104x832"),
("832x1104 (3:4, 720p)", "832x1104"),
("960x960 (1:1, 720p)", "960x960"),
# 540p
("960x544 (16:9, 540p)", "960x544"),
("848x480 (16:9, 540p)", "848x480"),
("544x960 (9:16, 540p)", "544x960"),
("832x624 (4:3, 540p)", "832x624"),
("624x832 (3:4, 540p)", "624x832"),
("720x720 (1:1, 540p)", "720x720"),
],
value="848x480",
label="Resolution"
)
video_length = gr.Slider(5, 193, value=97, step=4, label="Number of frames (24 = 1s)")
# video_length = gr.Dropdown(
# label="Video Length",
# choices=[
# ("1.5s(41f)", 41),
# ("2s(65f)", 65),
# ("4s(97f)", 97),
# ("5s(129f)", 129),
# ],
# value=97,
# )
num_inference_steps = gr.Slider(1, 100, value=50, step=1, label="Number of Inference Steps")
show_advanced = gr.Checkbox(label="Show Advanced Options", value=False)
with gr.Row(visible=False) as advanced_row:
with gr.Column():
seed = gr.Number(value=-1, label="Seed (-1 for random)")
guidance_scale = gr.Slider(1.0, 20.0, value=1.0, step=0.5, label="Guidance Scale")
flow_shift = gr.Slider(0.0, 25.0, value=7.0, step=0.1, label="Flow Shift")
embedded_guidance_scale = gr.Slider(1.0, 20.0, value=6.0, step=0.5, label="Embedded Guidance Scale")
repeat_generation = gr.Slider(1, 25.0, value=1.0, step=1, label="Number of Generated Video per prompt multiple video per prompt")
tea_cache_setting = gr.Dropdown(
choices=[
("Disabled", 0),
("Fast (x1.6 speed up)", 0.1),
("Faster (x2.1 speed up)", 0.15),
],
value=0,
label="Tea Cache acceleration (the faster the acceleration the higher the degradation of the quality of the video)"
)
show_advanced.change(fn=lambda x: gr.Row(visible=x), inputs=[show_advanced], outputs=[advanced_row])
with gr.Column():
gen_status = gr.Text(label="Status", interactive= False)
output = gr.Gallery(
label="Generated videos", show_label=False, elem_id="gallery"
, columns=[3], rows=[1], object_fit="contain", height="auto", selected_index=0, interactive= False)
state = gr.State({})
generate_btn = gr.Button("Generate")
abort_btn = gr.Button("Abort")
gen_status.change(refresh_gallery, inputs = [state], outputs = output )
abort_btn.click(abort_generation,state,abort_btn )
output.select(select_video, state, None )
generate_btn.click(
fn=generate_video,
inputs=[
prompt,
resolution,
video_length,
seed,
num_inference_steps,
guidance_scale,
flow_shift,
embedded_guidance_scale,
repeat_generation,
tea_cache_setting,
state
],
outputs= [gen_status] #,state
).then(
finalize_gallery,
[state],
[output , abort_btn]
)
return demo
if __name__ == "__main__":
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
server_port = int(args.server_port)
if server_port == 0:
server_port = int(os.getenv("SERVER_PORT", "7860"))
server_name = args.server_name
server_name = "localhost"
if len(server_name) == 0:
server_name = os.getenv("SERVER_NAME", "0.0.0.0")
demo = create_demo(args.model_base, args.save_path)
if args.open_browser:
import webbrowser
if server_name.startswith("http"):
url = server_name
else:
url = "http://" + server_name
webbrowser.open(url + ":" + str(server_port), new = 0, autoraise = True)
demo.launch(server_name=server_name, server_port=server_port)