diff --git a/R/build.gradle b/R/build.gradle index 96c00db6d86..83f26e670e7 100644 --- a/R/build.gradle +++ b/R/build.gradle @@ -42,6 +42,7 @@ def buildRClient = Docker.registerDockerTask(project, 'rClient') { include 'rdeephaven/R/**' include 'rdeephaven/src/*.cpp' include 'rdeephaven/src/Makevars' + include 'rdeephaven/vignettes/*.Rmd' } } dockerfile { @@ -64,6 +65,7 @@ def buildRClient = Docker.registerDockerTask(project, 'rClient') { copyFile('rdeephaven/R/', "${prefix}/src/rdeephaven/R/") copyFile('rdeephaven/src/*.cpp', "${prefix}/src/rdeephaven/src/") copyFile('rdeephaven/src/Makevars', "${prefix}/src/rdeephaven/src/") + copyFile('rdeephaven/vignettes/*.Rmd', "${prefix}/src/rdeephaven/vignettes/") copyFile('r-build.sh', "${prefix}/bin/rdeephaven") runCommand("PREFIX=${prefix}; " + '''set -eux ; \ @@ -155,5 +157,43 @@ def rClientDoc = Docker.registerDockerTask(project, 'rClientDoc') { containerOutPath = "${prefix}/src/rdeephaven/man" } +def rClientSite = Docker.registerDockerTask(project, 'rClientSite') { + // Only tested on x86-64, and we only build dependencies for x86-64 + platform = 'linux/amd64' + copyIn { + from(layout.projectDirectory) { + include 'r-site.sh' + include 'rdeephaven/man/**' + } + } + copyOut { + into layout.projectDirectory.dir('rdeephaven/docs') + } + dockerfile { + from('deephaven/r-client-doc:local-build') + // We need the contents of 'man' to build the docsite + copyFile('rdeephaven/man/**', "${prefix}/src/rdeephaven/man/") + runCommand("mkdir -p ${prefix}/src/rdeephaven/docs") + runCommand('''echo "status = tryCatch(" \ + " {" \ + " install.packages('pkgdown', repos='http://cran.us.r-project.org'); " \ + " 0" \ + " }," \ + " error=function(e) 1," \ + " warning=function(w) 2" \ + ");" \ + "print(paste0('status=', status));" \ + "quit(save='no', status=status)" | \ + MAKE="make -j`getconf _NPROCESSORS_ONLN`" R --no-save --no-restore + ''') + // Keep this after the package installs above; + // it is likely it changes more frequently. + copyFile('r-site.sh', "${prefix}/bin/rdeephaven") + } + parentContainers = [ project.tasks.getByName('rClientDoc') ] + entrypoint = ["${prefix}/bin/rdeephaven/r-site.sh"] + containerOutPath = "${prefix}/src/rdeephaven/docs" +} + deephavenDocker.shouldLogIfTaskFails testRClient tasks.check.dependsOn(testRClient) diff --git a/R/r-build.sh b/R/r-build.sh index 910e3bb43f5..273f67e37ad 100755 --- a/R/r-build.sh +++ b/R/r-build.sh @@ -18,18 +18,14 @@ fi trap 'rm -f src/*.o src/*.so' 1 2 15 rm -f src/*.o src/*.so -MAKE="make -j${NCPUS}" R --no-save --no-restore <<EOF -status = tryCatch( - { - install.packages(".", repos=NULL, type="source") - 0 - }, - error=function(e) 1, - warning=function(w) 2 -) -print(paste0('status=', status)) -quit(save='no', status=status) -EOF +MAKE="make -j${NCPUS}" +cd .. && \ + rm -f rdeephaven_*.tar.gz && \ + R CMD build rdeephaven && \ + R CMD INSTALL --no-multiarch --with-keep.source rdeephaven_*.tar.gz && \ + rm -f rdeephaven_*.tar.gz && \ + cd rdeephaven || + exit 1 rm -f src/*.o src/*.so diff --git a/R/r-site.sh b/R/r-site.sh new file mode 100644 index 00000000000..26fef767c4e --- /dev/null +++ b/R/r-site.sh @@ -0,0 +1,25 @@ +#!/bin/bash + +set -euo pipefail + +if [ -z "${DH_PREFIX}" ]; then + echo "$0: Environment variable DH_PREFIX is not set, aborting." 1>&2 + exit 1 +fi + +source $DH_PREFIX/env.sh + +cd $DH_PREFIX/src/rdeephaven + +R --no-save --no-restore <<EOF +library('pkgdown') +status = tryCatch( + { + pkgdown::build_site() + 0 + }, + error=function(e) 1 +) +print(paste0('status=', status)) +quit(save='no', status=status) +EOF diff --git a/R/rdeephaven/.Rbuildignore b/R/rdeephaven/.Rbuildignore new file mode 100644 index 00000000000..3cd2a1f8301 --- /dev/null +++ b/R/rdeephaven/.Rbuildignore @@ -0,0 +1,5 @@ +^_pkgdown\.yml$ +^docs$ +^pkgdown$ +^doc$ +^Meta$ diff --git a/R/rdeephaven/.gitignore b/R/rdeephaven/.gitignore index ad4856e82ab..dd54a26f35b 100644 --- a/R/rdeephaven/.gitignore +++ b/R/rdeephaven/.gitignore @@ -5,3 +5,7 @@ lib/cpp-dependencies/src lib/cpp-dependencies/env.sh *.o *.so +docs +inst/doc +/doc/ +/Meta/ diff --git a/R/rdeephaven/DESCRIPTION b/R/rdeephaven/DESCRIPTION index b3bdc2cb3b4..bdb670b86da 100644 --- a/R/rdeephaven/DESCRIPTION +++ b/R/rdeephaven/DESCRIPTION @@ -16,6 +16,12 @@ License: Apache License (== 2.0) Depends: R (>= 3.5.3) Imports: Rcpp (>= 1.0.10), arrow (>= 12.0.0), R6 (>= 2.5.0), dplyr (>= 1.1.0), utils (>= 3.5.3) LinkingTo: Rcpp -Suggests: testthat (>= 3.0.0), lubridate (>= 1.9.0), zoo (>= 1.8-0) +Suggests: + testthat (>= 3.0.0), + lubridate (>= 1.9.0), + zoo (>= 1.8-0), + knitr, + rmarkdown Config/testthat/edition: 3 RoxygenNote: 7.2.3 +VignetteBuilder: knitr diff --git a/R/rdeephaven/R/agg_ops_wrapper.R b/R/rdeephaven/R/agg_ops_wrapper.R index 744fe57ac60..373e3292826 100644 --- a/R/rdeephaven/R/agg_ops_wrapper.R +++ b/R/rdeephaven/R/agg_ops_wrapper.R @@ -1,118 +1,11 @@ -# An AggOp represents an aggregation operator that can be passed to agg_by() or agg_all_by(). This is the return type -# of all of the agg functions. It is a wrapper around an Rcpp_INTERNAL_AggOp, which itself is a wrapper around a -# C++ AggregateWrapper, which is finally a wrapper around a C++ Aggregate. See rdeephaven/src/client.cpp for details. -# Note that AggOps should not be instantiated directly by user code, but rather by provided agg functions. - - -#' @name -#' AggBy -#' @title -#' Aggregations in Deephaven -#' @md -#' @usage NULL -#' @format NULL -#' @docType class -#' -#' @description -#' Table aggregations are a quintessential feature of Deephaven. You can apply as many aggregations as -#' needed to static tables _or_ streaming tables, and if the parent tables are streaming, the resulting aggregated -#' tables will update alongside their parent tables. It is also very easy to perform _grouped_ aggregations, which -#' allow you to aggregate tables on a per-group basis. -#' -#' @section -#' Apply aggregations to a table: -#' There are two methods for performing aggregations on a table, `agg_by()` and `agg_all_by()`. `agg_by()` allows you to -#' perform many aggregations on specified columns, while `agg_all_by()` allows you to perform a single aggregation to -#' every non-grouping column in the table. Both methods have an optional `by` parameter that is used to specify grouping columns. -#' Here are some details on each method: -#' -#' - `TableHandle$agg_by(aggs, by)`: Creates a new table containing grouping columns and grouped data. -#' The resulting grouped data is defined by the aggregation(s) specified. -#' - `TableHandle$agg_all_by(agg, by)`: Creates a new table containing grouping columns and grouped data. -#' The resulting grouped data is defined by the aggregation specified. This method applies the aggregation to all -#' non-grouping columns of the table, so it can only accept one aggregation at a time. -#' -#' The `agg_by()` and `agg_all_by()` methods themselves do not know anything about the columns on which you want to -#' perform aggregations. Rather, the desired columns are passed to individual `agg` functions, enabling you to apply -#' various kinds of aggregations to different columns or groups of columns as needed. -#' -#' @section -#' `agg` functions: -#' `agg` functions are used to perform aggregation calculations on grouped data by passing them to `agg_by()` or -#' `agg_all_by()`. These functions are _generators_, meaning they return _functions_ that the Deephaven engine knows -#' how to interpret. We call the functions that they return [`AggOp`][AggOp]s. These `AggOp`s are not R-level functions, -#' but Deephaven-specific data types that perform all of the intensive calculations. Here is a list of all `agg` functions -#' available in Deephaven: -#' -#' - [`agg_first()`][agg_first] -#' - [`agg_last()`][agg_last] -#' - [`agg_min()`][agg_min] -#' - [`agg_max()`][agg_max] -#' - [`agg_sum()`][agg_sum] -#' - [`agg_abs_sum()`][agg_abs_sum] -#' - [`agg_avg()`][agg_avg] -#' - [`agg_w_avg()`][agg_w_avg] -#' - [`agg_median()`][agg_median] -#' - [`agg_var()`][agg_var] -#' - [`agg_std()`][agg_std] -#' - [`agg_percentile()`][agg_percentile] -#' - [`agg_count()`][agg_count] -#' -#' For more details on each aggregation function, click on one of the methods above or see the reference documentation -#' by running `?agg_first`, `?agg_last`, etc. -#' -#' @examples -#' \dontrun{ -#' library(rdeephaven) -#' -#' # connecting to Deephaven server -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") -#' -#' # create data frame, push to server, retrieve TableHandle -#' df <- data.frame( -#' X = c("A", "B", "A", "C", "B", "A", "B", "B", "C"), -#' Y = c("M", "N", "O", "N", "P", "M", "O", "P", "M"), -#' Number1 = c(100, -44, 49, 11, -66, 50, 29, 18, -70), -#' Number2 = c(-55, 76, 20, 130, 230, -50, 73, 137, 214) -#' ) -#' th <- client$import_table(df) -#' -#' # get first and last elements of each column -#' th1 <- th$ -#' agg_by(agg_first(c("XFirst = X", "YFirst = Y", "Number1First = Number1", "Number2First = Number2")), -#' agg_last(c("XLast = X", "YLast = Y", "Number1Last = Number1", "Number2Last = Number2"))) -#' -#' # compute mean and standard deviation of Number1 and Number2, grouped by X -#' th2 <- th$ -#' agg_by( -#' c(agg_avg(c("Number1Avg = Number1", "Number2Avg = Number2")), -#' agg_std(c("Number1Std = Number1", "Number2Std = Number2"))), -#' by="X") -#' -#' # compute maximum of all non-grouping columns, grouped by X and Y -#' th3 <- th$ -#' agg_all_by(agg_max(), by=c("X", "Y")) -#' -#' # compute minimum and maximum of Number1 and Number2 respectively grouped by Y -#' th4 <- th$ -#' agg_by( -#' c(agg_min("Number1Min = Number1"), -#' agg_max("Number2Max = Number2")), -#' by="Y") -#' -#' client$close() -#' } -#' -NULL - - -#' Name AggOp +#' @name AggOp #' @title Deephaven AggOps #' @md #' @description -#' An `AggOp` is the return type of one of Deephaven's [`agg`][AggBy] functions. It is a function that performs the +#' An `AggOp` is the return type of one of Deephaven's `agg` functions. It is a function that performs the #' computation specified by the `agg` function. These are intended to be passed directly to `agg_by()` or `agg_all_by()`, -#' and should never be instantiated directly be user code. +#' and should never be instantiated directly be user code. For more information, see the +#' vignette on `agg` functions with `vignette("agg_by")`. #' #' If multiple tables have the same schema and the same aggregations need to be applied to each table, saving these #' objects directly in a variable may be useful to avoid having to re-create them each time: @@ -123,7 +16,7 @@ NULL #' result1 <- th1$agg_by(aggregations, by="Group") #' result2 <- th2$agg_by(aggregations, by="Group") #' ``` -#' In this example, `aggregations` would be a vector of two `AggOp`s that can be reused in multiple calls to `agg_by()`. +#' In this example, `aggregations` would be a vector of two AggOps that can be reused in multiple calls to `agg_by()`. #' #' @usage NULL #' @format NULL @@ -166,17 +59,20 @@ AggOp <- R6Class("AggOp", #' function called an [`AggOp`][AggOp] intended to be used in a call to `agg_by()` or `agg_all_by()`. This detail is #' typically hidden from the user. However, it is important to understand this detail for debugging purposes, #' as the output of an `agg` function can otherwise seem unexpected. +#' +#' For more information, see the vignette on `agg` functions by running +#' `vignette("agg_by")`. #' #' @param cols String or list of strings denoting the column(s) to aggregate. Can be renaming expressions, i.e. “new_col = col”. #' Default is to aggregate all non-grouping columns, which is only valid in the `agg_all_by()` operation. -#' @return `AggOp` to be used in a call to `agg_by()` or `agg_all_by()`. +#' @return [`AggOp`][AggOp] to be used in a call to `agg_by()` or `agg_all_by()`. #' #' @examples #' \dontrun{ #' library(rdeephaven) #' #' # connecting to Deephaven server -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +#' client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") #' #' # create data frame, push to server, retrieve TableHandle #' df <- data.frame( @@ -193,11 +89,11 @@ AggOp <- R6Class("AggOp", #' #' # get first elements of Y, Number1, and Number2 grouped by X #' th2 <- th$ -#' agg_by(agg_first(c("Y", "Number1", "Number2")), by="X") +#' agg_by(agg_first(c("Y", "Number1", "Number2")), by = "X") #' #' # get first elements of Number1 and Number2 grouped by X and Y #' th3 <- th -#' agg_by(agg_first(c("Number1", "Number2")), by=c("X", "Y")) +#' agg_by(agg_first(c("Number1", "Number2")), by = c("X", "Y")) #' #' client$close() #' } @@ -205,7 +101,7 @@ AggOp <- R6Class("AggOp", #' @export agg_first <- function(cols = character()) { verify_string("cols", cols, FALSE) - return(AggOp$new(INTERNAL_agg_first, "agg_first", cols=cols)) + return(AggOp$new(INTERNAL_agg_first, "agg_first", cols = cols)) } #' @name @@ -227,17 +123,20 @@ agg_first <- function(cols = character()) { #' function called an [`AggOp`][AggOp] intended to be used in a call to `agg_by()` or `agg_all_by()`. This detail is #' typically hidden from the user. However, it is important to understand this detail for debugging purposes, #' as the output of an `agg` function can otherwise seem unexpected. +#' +#' For more information, see the vignette on `agg` functions by running +#' `vignette("agg_by")`. #' #' @param cols String or list of strings denoting the column(s) to aggregate. Can be renaming expressions, i.e. “new_col = col”. #' Default is to aggregate all non-grouping columns, which is only valid in the `agg_all_by()` operation. -#' @return `AggOp` to be used in a call to `agg_by()` or `agg_all_by()`. +#' @return [`AggOp`][AggOp] to be used in a call to `agg_by()` or `agg_all_by()`. #' #' @examples #' \dontrun{ #' library(rdeephaven) #' #' # connecting to Deephaven server -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +#' client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") #' #' # create data frame, push to server, retrieve TableHandle #' df <- data.frame( @@ -254,11 +153,11 @@ agg_first <- function(cols = character()) { #' #' # get last elements of Y, Number1, and Number2 grouped by X #' th2 <- th$ -#' agg_by(agg_last(c("Y", "Number1", "Number2")), by="X") +#' agg_by(agg_last(c("Y", "Number1", "Number2")), by = "X") #' #' # get last elements of Number1 and Number2 grouped by X and Y #' th3 <- th$ -#' agg_by(agg_last(c("Number1", "Number2")), by=c("X", "Y")) +#' agg_by(agg_last(c("Number1", "Number2")), by = c("X", "Y")) #' #' client$close() #' } @@ -266,7 +165,7 @@ agg_first <- function(cols = character()) { #' @export agg_last <- function(cols = character()) { verify_string("cols", cols, FALSE) - return(AggOp$new(INTERNAL_agg_last, "agg_last", cols=cols)) + return(AggOp$new(INTERNAL_agg_last, "agg_last", cols = cols)) } #' @name @@ -288,17 +187,20 @@ agg_last <- function(cols = character()) { #' function called an [`AggOp`][AggOp] intended to be used in a call to `agg_by()` or `agg_all_by()`. This detail is #' typically hidden from the user. However, it is important to understand this detail for debugging purposes, #' as the output of an `agg` function can otherwise seem unexpected. +#' +#' For more information, see the vignette on `agg` functions by running +#' `vignette("agg_by")`. #' #' @param cols String or list of strings denoting the column(s) to aggregate. Can be renaming expressions, i.e. “new_col = col”. #' Default is to aggregate all non-grouping columns, which is only valid in the `agg_all_by()` operation. -#' @return `AggOp` to be used in a call to `agg_by()` or `agg_all_by()`. +#' @return [`AggOp`][AggOp] to be used in a call to `agg_by()` or `agg_all_by()`. #' #' @examples #' \dontrun{ #' library(rdeephaven) #' #' # connecting to Deephaven server -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +#' client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") #' #' # create data frame, push to server, retrieve TableHandle #' df <- data.frame( @@ -315,11 +217,11 @@ agg_last <- function(cols = character()) { #' #' # get minimum elements of Number1 and Number2 grouped by X #' th2 <- th$ -#' agg_by(agg_min(c("Number1", "Number2")), by="X") +#' agg_by(agg_min(c("Number1", "Number2")), by = "X") #' #' # get minimum elements of Number1 and Number2 grouped by X and Y #' th3 <- th$ -#' agg_by(agg_min(c("Number1", "Number2")), by=c("X", "Y")) +#' agg_by(agg_min(c("Number1", "Number2")), by = c("X", "Y")) #' #' client$close() #' } @@ -327,7 +229,7 @@ agg_last <- function(cols = character()) { #' @export agg_min <- function(cols = character()) { verify_string("cols", cols, FALSE) - return(AggOp$new(INTERNAL_agg_min, "agg_min", cols=cols)) + return(AggOp$new(INTERNAL_agg_min, "agg_min", cols = cols)) } #' @name @@ -349,17 +251,20 @@ agg_min <- function(cols = character()) { #' function called an [`AggOp`][AggOp] intended to be used in a call to `agg_by()` or `agg_all_by()`. This detail is #' typically hidden from the user. However, it is important to understand this detail for debugging purposes, #' as the output of an `agg` function can otherwise seem unexpected. +#' +#' For more information, see the vignette on `agg` functions by running +#' `vignette("agg_by")`. #' #' @param cols String or list of strings denoting the column(s) to aggregate. Can be renaming expressions, i.e. “new_col = col”. #' Default is to aggregate all non-grouping columns, which is only valid in the `agg_all_by()` operation. -#' @return `AggOp` to be used in a call to `agg_by()` or `agg_all_by()`. +#' @return [`AggOp`][AggOp] to be used in a call to `agg_by()` or `agg_all_by()`. #' #' @examples #' \dontrun{ #' library(rdeephaven) #' #' # connecting to Deephaven server -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +#' client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") #' #' # create data frame, push to server, retrieve TableHandle #' df <- data.frame( @@ -376,11 +281,11 @@ agg_min <- function(cols = character()) { #' #' # get maximum elements of Number1 and Number2 grouped by X #' th2 <- th$ -#' agg_by(agg_max(c("Number1", "Number2")), by="X") +#' agg_by(agg_max(c("Number1", "Number2")), by = "X") #' #' # get maximum elements of Number1 and Number2 grouped by X and Y #' th3 <- th$ -#' agg_by(agg_max(c("Number1", "Number2")), by=c("X", "Y")) +#' agg_by(agg_max(c("Number1", "Number2")), by = c("X", "Y")) #' #' client$close() #' } @@ -388,7 +293,7 @@ agg_min <- function(cols = character()) { #' @export agg_max <- function(cols = character()) { verify_string("cols", cols, FALSE) - return(AggOp$new(INTERNAL_agg_max, "agg_max", cols=cols)) + return(AggOp$new(INTERNAL_agg_max, "agg_max", cols = cols)) } #' @name @@ -411,16 +316,19 @@ agg_max <- function(cols = character()) { #' typically hidden from the user. However, it is important to understand this detail for debugging purposes, #' as the output of an `agg` function can otherwise seem unexpected. #' +#' For more information, see the vignette on `agg` functions by running +#' `vignette("agg_by")`. +#' #' @param cols String or list of strings denoting the column(s) to aggregate. Can be renaming expressions, i.e. “new_col = col”. #' Default is to aggregate all non-grouping columns, which is only valid in the `agg_all_by()` operation. -#' @return `AggOp` to be used in a call to `agg_by()` or `agg_all_by()`. +#' @return [`AggOp`][AggOp] to be used in a call to `agg_by()` or `agg_all_by()`. #' #' @examples #' \dontrun{ #' library(rdeephaven) #' #' # connecting to Deephaven server -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +#' client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") #' #' # create data frame, push to server, retrieve TableHandle #' df <- data.frame( @@ -437,11 +345,11 @@ agg_max <- function(cols = character()) { #' #' # compute sum of Number1 and Number2 grouped by X #' th2 <- th$ -#' agg_by(agg_sum(c("Number1", "Number2")), by="X") +#' agg_by(agg_sum(c("Number1", "Number2")), by = "X") #' #' # compute sum of Number1 and Number2 grouped by X and Y #' th3 <- th$ -#' agg_by(agg_sum(c("Number1", "Number2")), by=c("X", "Y")) +#' agg_by(agg_sum(c("Number1", "Number2")), by = c("X", "Y")) #' #' client$close() #' } @@ -449,7 +357,7 @@ agg_max <- function(cols = character()) { #' @export agg_sum <- function(cols = character()) { verify_string("cols", cols, FALSE) - return(AggOp$new(INTERNAL_agg_sum, "agg_sum", cols=cols)) + return(AggOp$new(INTERNAL_agg_sum, "agg_sum", cols = cols)) } #' @name @@ -471,17 +379,20 @@ agg_sum <- function(cols = character()) { #' function called an [`AggOp`][AggOp] intended to be used in a call to `agg_by()` or `agg_all_by()`. This detail is #' typically hidden from the user. However, it is important to understand this detail for debugging purposes, #' as the output of an `agg` function can otherwise seem unexpected. +#' +#' For more information, see the vignette on `agg` functions by running +#' `vignette("agg_by")`. #' #' @param cols String or list of strings denoting the column(s) to aggregate. Can be renaming expressions, i.e. “new_col = col”. #' Default is to aggregate all non-grouping columns, which is only valid in the `agg_all_by()` operation. -#' @return `AggOp` to be used in a call to `agg_by()` or `agg_all_by()`. +#' @return [`AggOp`][AggOp] to be used in a call to `agg_by()` or `agg_all_by()`. #' #' @examples #' \dontrun{ #' library(rdeephaven) #' #' # connecting to Deephaven server -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +#' client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") #' #' # create data frame, push to server, retrieve TableHandle #' df <- data.frame( @@ -498,11 +409,11 @@ agg_sum <- function(cols = character()) { #' #' # compute absolute sum of Number1 and Number2 grouped by X #' th2 <- th$ -#' agg_by(agg_abs_sum(c("Number1", "Number2")), by="X") +#' agg_by(agg_abs_sum(c("Number1", "Number2")), by = "X") #' #' # compute absolute sum of Number1 and Number2 grouped by X and Y #' th3 <- th$ -#' agg_by(agg_abs_sum(c("Number1", "Number2")), by=c("X", "Y")) +#' agg_by(agg_abs_sum(c("Number1", "Number2")), by = c("X", "Y")) #' #' client$close() #' } @@ -510,7 +421,7 @@ agg_sum <- function(cols = character()) { #' @export agg_abs_sum <- function(cols = character()) { verify_string("cols", cols, FALSE) - return(AggOp$new(INTERNAL_agg_abs_sum, "agg_abs_sum", cols=cols)) + return(AggOp$new(INTERNAL_agg_abs_sum, "agg_abs_sum", cols = cols)) } #' @name @@ -532,17 +443,20 @@ agg_abs_sum <- function(cols = character()) { #' function called an [`AggOp`][AggOp] intended to be used in a call to `agg_by()` or `agg_all_by()`. This detail is #' typically hidden from the user. However, it is important to understand this detail for debugging purposes, #' as the output of an `agg` function can otherwise seem unexpected. +#' +#' For more information, see the vignette on `agg` functions by running +#' `vignette("agg_by")`. #' #' @param cols String or list of strings denoting the column(s) to aggregate. Can be renaming expressions, i.e. “new_col = col”. #' Default is to aggregate all non-grouping columns, which is only valid in the `agg_all_by()` operation. -#' @return `AggOp` to be used in a call to `agg_by()` or `agg_all_by()`. +#' @return [`AggOp`][AggOp] to be used in a call to `agg_by()` or `agg_all_by()`. #' #' @examples #' \dontrun{ #' library(rdeephaven) #' #' # connecting to Deephaven server -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +#' client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") #' #' # create data frame, push to server, retrieve TableHandle #' df <- data.frame( @@ -559,11 +473,11 @@ agg_abs_sum <- function(cols = character()) { #' #' # compute average of Number1 and Number2 grouped by X #' th2 <- th$ -#' agg_by(agg_avg(c("Number1", "Number2")), by="X") +#' agg_by(agg_avg(c("Number1", "Number2")), by = "X") #' #' # compute average of Number1 and Number2 grouped by X and Y #' th3 <- th$ -#' agg_by(agg_avg(c("Number1", "Number2")), by=c("X", "Y")) +#' agg_by(agg_avg(c("Number1", "Number2")), by = c("X", "Y")) #' #' client$close() #' } @@ -571,7 +485,7 @@ agg_abs_sum <- function(cols = character()) { #' @export agg_avg <- function(cols = character()) { verify_string("cols", cols, FALSE) - return(AggOp$new(INTERNAL_agg_avg, "agg_avg", cols=cols)) + return(AggOp$new(INTERNAL_agg_avg, "agg_avg", cols = cols)) } #' @name @@ -593,18 +507,21 @@ agg_avg <- function(cols = character()) { #' function called an [`AggOp`][AggOp] intended to be used in a call to `agg_by()` or `agg_all_by()`. This detail is #' typically hidden from the user. However, it is important to understand this detail for debugging purposes, #' as the output of an `agg` function can otherwise seem unexpected. +#' +#' For more information, see the vignette on `agg` functions by running +#' `vignette("agg_by")`. #' #' @param wcol String denoting the column to use for weights. This must be a numeric column. #' @param cols String or list of strings denoting the column(s) to aggregate. Can be renaming expressions, i.e. “new_col = col”. #' Default is to aggregate all non-grouping columns, which is only valid in the `agg_all_by()` operation. -#' @return `AggOp` to be used in a call to `agg_by()` or `agg_all_by()`. +#' @return [`AggOp`][AggOp] to be used in a call to `agg_by()` or `agg_all_by()`. #' #' @examples #' \dontrun{ #' library(rdeephaven) #' #' # connecting to Deephaven server -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +#' client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") #' #' # create data frame, push to server, retrieve TableHandle #' df <- data.frame( @@ -617,15 +534,15 @@ agg_avg <- function(cols = character()) { #' #' # compute weighted average of Number1, weighted by Number2 #' th1 <- th$ -#' agg_by(agg_w_avg(wcol="Number2", cols="Number1")) +#' agg_by(agg_w_avg(wcol = "Number2", cols = "Number1")) #' #' # compute weighted average of Number1, weighted by Number2, grouped by X #' th2 <- th$ -#' agg_by(agg_w_avg(wcol="Number2", cols="Number1", by="X")) +#' agg_by(agg_w_avg(wcol = "Number2", cols = "Number1", by = "X")) #' #' # compute weighted average of Number1, weighted by Number2, grouped by X and Y #' th3 <- th$ -#' agg_by(agg_w_avg(wcol="Number2", cols="Number1", by=c("X", "Y"))) +#' agg_by(agg_w_avg(wcol = "Number2", cols = "Number1", by = c("X", "Y"))) #' #' client$close() #' } @@ -634,7 +551,7 @@ agg_avg <- function(cols = character()) { agg_w_avg <- function(wcol, cols = character()) { verify_string("wcol", wcol, TRUE) verify_string("cols", cols, FALSE) - return(AggOp$new(INTERNAL_agg_w_avg, "agg_w_avg", wcol=wcol, cols=cols)) + return(AggOp$new(INTERNAL_agg_w_avg, "agg_w_avg", wcol = wcol, cols = cols)) } #' @name @@ -656,17 +573,20 @@ agg_w_avg <- function(wcol, cols = character()) { #' function called an [`AggOp`][AggOp] intended to be used in a call to `agg_by()` or `agg_all_by()`. This detail is #' typically hidden from the user. However, it is important to understand this detail for debugging purposes, #' as the output of an `agg` function can otherwise seem unexpected. +#' +#' For more information, see the vignette on `agg` functions by running +#' `vignette("agg_by")`. #' #' @param cols String or list of strings denoting the column(s) to aggregate. Can be renaming expressions, i.e. “new_col = col”. #' Default is to aggregate all non-grouping columns, which is only valid in the `agg_all_by()` operation. -#' @return `AggOp` to be used in a call to `agg_by()` or `agg_all_by()`. +#' @return [`AggOp`][AggOp] to be used in a call to `agg_by()` or `agg_all_by()`. #' #' @examples #' \dontrun{ #' library(rdeephaven) #' #' # connecting to Deephaven server -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +#' client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") #' #' # create data frame, push to server, retrieve TableHandle #' df <- data.frame( @@ -683,11 +603,11 @@ agg_w_avg <- function(wcol, cols = character()) { #' #' # compute median of Number1 and Number2 grouped by X #' th2 <- th$ -#' agg_by(agg_median(c("Number1", "Number2")), by="X") +#' agg_by(agg_median(c("Number1", "Number2")), by = "X") #' #' # compute median of Number1 and Number2 grouped by X and Y #' th3 <- th$ -#' agg_by(agg_median(c("Number1", "Number2")), by=c("X", "Y")) +#' agg_by(agg_median(c("Number1", "Number2")), by = c("X", "Y")) #' #' client$close() #' } @@ -695,7 +615,7 @@ agg_w_avg <- function(wcol, cols = character()) { #' @export agg_median <- function(cols = character()) { verify_string("cols", cols, FALSE) - return(AggOp$new(INTERNAL_agg_median, "agg_median", cols=cols)) + return(AggOp$new(INTERNAL_agg_median, "agg_median", cols = cols)) } #' @name @@ -717,17 +637,20 @@ agg_median <- function(cols = character()) { #' function called an [`AggOp`][AggOp] intended to be used in a call to `agg_by()` or `agg_all_by()`. This detail is #' typically hidden from the user. However, it is important to understand this detail for debugging purposes, #' as the output of an `agg` function can otherwise seem unexpected. +#' +#' For more information, see the vignette on `agg` functions by running +#' `vignette("agg_by")`. #' #' @param cols String or list of strings denoting the column(s) to aggregate. Can be renaming expressions, i.e. “new_col = col”. #' Default is to aggregate all non-grouping columns, which is only valid in the `agg_all_by()` operation. -#' @return `AggOp` to be used in a call to `agg_by()` or `agg_all_by()`. +#' @return [`AggOp`][AggOp] to be used in a call to `agg_by()` or `agg_all_by()`. #' #' @examples #' \dontrun{ #' library(rdeephaven) #' #' # connecting to Deephaven server -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +#' client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") #' #' # create data frame, push to server, retrieve TableHandle #' df <- data.frame( @@ -744,11 +667,11 @@ agg_median <- function(cols = character()) { #' #' # compute variance of Number1 and Number2 grouped by X #' th2 <- th$ -#' agg_by(agg_var(c("Number1", "Number2")), by="X") +#' agg_by(agg_var(c("Number1", "Number2")), by = "X") #' #' # compute variance of Number1 and Number2 grouped by X and Y #' th3 <- th$ -#' agg_by(agg_var(c("Number1", "Number2")), by=c("X", "Y")) +#' agg_by(agg_var(c("Number1", "Number2")), by = c("X", "Y")) #' #' client$close() #' } @@ -756,7 +679,7 @@ agg_median <- function(cols = character()) { #' @export agg_var <- function(cols = character()) { verify_string("cols", cols, FALSE) - return(AggOp$new(INTERNAL_agg_var, "agg_var", cols=cols)) + return(AggOp$new(INTERNAL_agg_var, "agg_var", cols = cols)) } #' @name @@ -778,17 +701,20 @@ agg_var <- function(cols = character()) { #' function called an [`AggOp`][AggOp] intended to be used in a call to `agg_by()` or `agg_all_by()`. This detail is #' typically hidden from the user. However, it is important to understand this detail for debugging purposes, #' as the output of an `agg` function can otherwise seem unexpected. +#' +#' For more information, see the vignette on `agg` functions by running +#' `vignette("agg_by")`. #' #' @param cols String or list of strings denoting the column(s) to aggregate. Can be renaming expressions, i.e. “new_col = col”. #' Default is to aggregate all non-grouping columns, which is only valid in the `agg_all_by()` operation. -#' @return `AggOp` to be used in a call to `agg_by()` or `agg_all_by()`. +#' @return [`AggOp`][AggOp] to be used in a call to `agg_by()` or `agg_all_by()`. #' #' @examples #' \dontrun{ #' library(rdeephaven) #' #' # connecting to Deephaven server -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +#' client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") #' #' # create data frame, push to server, retrieve TableHandle #' df <- data.frame( @@ -805,11 +731,11 @@ agg_var <- function(cols = character()) { #' #' # compute standard deviation of Number1 and Number2 grouped by X #' th2 <- th$ -#' agg_by(agg_std(c("Number1", "Number2")), by="X") +#' agg_by(agg_std(c("Number1", "Number2")), by = "X") #' #' # compute standard deviation of Number1 and Number2 grouped by X and Y #' th3 <- th$ -#' agg_by(agg_std(c("Number1", "Number2")), by=c("X", "Y")) +#' agg_by(agg_std(c("Number1", "Number2")), by = c("X", "Y")) #' #' client$close() #' } @@ -817,7 +743,7 @@ agg_var <- function(cols = character()) { #' @export agg_std <- function(cols = character()) { verify_string("cols", cols, FALSE) - return(AggOp$new(INTERNAL_agg_std, "agg_std", cols=cols)) + return(AggOp$new(INTERNAL_agg_std, "agg_std", cols = cols)) } #' @name @@ -839,18 +765,21 @@ agg_std <- function(cols = character()) { #' function called an [`AggOp`][AggOp] intended to be used in a call to `agg_by()` or `agg_all_by()`. This detail is #' typically hidden from the user. However, it is important to understand this detail for debugging purposes, #' as the output of an `agg` function can otherwise seem unexpected. +#' +#' For more information, see the vignette on `agg` functions by running +#' `vignette("agg_by")`. #' #' @param percentile Numeric scalar between 0 and 1 denoting the percentile to compute. #' @param cols String or list of strings denoting the column(s) to aggregate. Can be renaming expressions, i.e. “new_col = col”. #' Default is to aggregate all non-grouping columns, which is only valid in the `agg_all_by()` operation. -#' @return `AggOp` to be used in a call to `agg_by()` or `agg_all_by()`. +#' @return [`AggOp`][AggOp] to be used in a call to `agg_by()` or `agg_all_by()`. #' #' @examples #' \dontrun{ #' library(rdeephaven) #' #' # connecting to Deephaven server -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +#' client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") #' #' # create data frame, push to server, retrieve TableHandle #' df <- data.frame( @@ -863,15 +792,15 @@ agg_std <- function(cols = character()) { #' #' # compute 20th percentile of Number1 and Number2 #' th1 <- th$ -#' agg_by(agg_percentile(percentile=0.2, cols=c("Number1", "Number2"))) +#' agg_by(agg_percentile(percentile = 0.2, cols = c("Number1", "Number2"))) #' #' # compute 50th percentile of Number1 and Number2 grouped by X #' th2 <- th$ -#' agg_by(agg_percentile(percentile=0.5, cols=c("Number1", "Number2")), by="X") +#' agg_by(agg_percentile(percentile = 0.5, cols = c("Number1", "Number2")), by = "X") #' #' # compute 75th percentile of Number1 and Number2 grouped by X and Y #' th3 <- th$ -#' agg_by(agg_percentile(percentile=0.75, cols=c("Number1", "Number2")), by=c("X", "Y")) +#' agg_by(agg_percentile(percentile = 0.75, cols = c("Number1", "Number2")), by = c("X", "Y")) #' #' client$close() #' } @@ -880,7 +809,7 @@ agg_std <- function(cols = character()) { agg_percentile <- function(percentile, cols = character()) { verify_in_unit_interval("percentile", percentile, TRUE) verify_string("cols", cols, FALSE) - return(AggOp$new(INTERNAL_agg_percentile, "agg_percentile", percentile=percentile, cols=cols)) + return(AggOp$new(INTERNAL_agg_percentile, "agg_percentile", percentile = percentile, cols = cols)) } #' @name @@ -902,18 +831,21 @@ agg_percentile <- function(percentile, cols = character()) { #' function called an [`AggOp`][AggOp] intended to be used in a call to `agg_by()` or `agg_all_by()`. This detail is #' typically hidden from the user. However, it is important to understand this detail for debugging purposes, #' as the output of an `agg` function can otherwise seem unexpected. +#' +#' For more information, see the vignette on `agg` functions by running +#' `vignette("agg_by")`. #' #' Note that this operation is not supported in `agg_all_by()`. #' #' @param col String denoting the name of the new column to hold the counts of each aggregation group. -#' @return `AggOp` to be used in a call to `agg_by()`. +#' @return [`AggOp`][AggOp] to be used in a call to `agg_by()`. #' #' @examples #' \dontrun{ #' library(rdeephaven) #' #' # connecting to Deephaven server -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +#' client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") #' #' # create data frame, push to server, retrieve TableHandle #' df <- data.frame( @@ -926,11 +858,11 @@ agg_percentile <- function(percentile, cols = character()) { #' #' # count number of elements in each group when grouped by X, name resulting column "count" #' th1 <- th$ -#' agg_by(agg_count("count"), by="X") +#' agg_by(agg_count("count"), by = "X") #' #' # count number of elements in each group when grouped by X and Y, name resulting column "CountingCol" #' th2 <- th$ -#' agg_by(agg_count("CountingCol"), by=c("X", "Y")) +#' agg_by(agg_count("CountingCol"), by = c("X", "Y")) #' #' client$close() #' } @@ -938,5 +870,5 @@ agg_percentile <- function(percentile, cols = character()) { #' @export agg_count <- function(col) { verify_string("col", col, TRUE) - return(AggOp$new(INTERNAL_agg_count, "agg_count", col=col)) -} \ No newline at end of file + return(AggOp$new(INTERNAL_agg_count, "agg_count", col = col)) +} diff --git a/R/rdeephaven/R/client_wrapper.R b/R/rdeephaven/R/client_wrapper.R index 3d91ce9bc7a..538bede0b92 100644 --- a/R/rdeephaven/R/client_wrapper.R +++ b/R/rdeephaven/R/client_wrapper.R @@ -13,7 +13,7 @@ #' library(rdeephaven) #' #' # connecting to Deephaven server -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +#' client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") #' #' # create a data frame and push it to the server, retrieve a reference to it as a TableHandle #' df <- data.frame( @@ -66,25 +66,26 @@ Client <- R6Class("Client", args <- list(...) if (length(args) == 1) { first_arg <- args[[1]] - first_arg_class = first_class(first_arg) + first_arg_class <- first_class(first_arg) if (first_arg_class != "character" && first_arg_class != "list") { if (first_arg_class != "externalptr") { stop(paste0( "Client initialize first argument must be ", - "either a string or an Rcpp::XPtr object.")) + "either a string or an Rcpp::XPtr object." + )) } return(self$initialize_for_xptr(first_arg)) } } return(do.call(self$initialize_for_target, args)) }, - + #' @description #' Initializes a Client object using a pointer to an existing client connection. #' @param xptr External pointer to an existing client connection. initialize_for_xptr = function(xptr) { verify_type("xptr", xptr, TRUE, "externalptr", "an XPtr") - self$.internal_rcpp_object = new(INTERNAL_Client, xptr) + self$.internal_rcpp_object <- new(INTERNAL_Client, xptr) }, #' @description @@ -112,18 +113,17 @@ Client <- R6Class("Client", #' grpc channel creation. Defaults to an empty list, which implies not using any channel options. #' @param extra_headers List of name-value pairs for additional headers and values #' to add to server requests. Defaults to an empty list, which implies not using any extra headers. - initialize_for_target = function( - target, - auth_type = "anonymous", - username = "", - password = "", - auth_token = "", - session_type = "python", - use_tls = FALSE, - tls_root_certs = "", - int_options = list(), - string_options = list(), - extra_headers = list()) { + initialize_for_target = function(target, + auth_type = "anonymous", + username = "", + password = "", + auth_token = "", + session_type = "python", + use_tls = FALSE, + tls_root_certs = "", + int_options = list(), + string_options = list(), + extra_headers = list()) { options <- new(INTERNAL_ClientOptions) verify_string("target", target, TRUE) diff --git a/R/rdeephaven/R/exports.R b/R/rdeephaven/R/exports.R index 2fbe0011cb2..81792ad68c5 100644 --- a/R/rdeephaven/R/exports.R +++ b/R/rdeephaven/R/exports.R @@ -1,107 +1 @@ -#' @import Rcpp -#' @useDynLib rdeephaven, .registration = TRUE -#' @importFrom Rcpp evalCpp -#' -#' @importFrom arrow arrow_table as_arrow_table as_record_batch_reader -#' @importFrom R6 R6Class -#' @importFrom dplyr as_tibble as_data_frame -#' @importFrom utils head tail - -#' @name -#' rdeephaven -#' @title -#' The Deephaven Community R Client -#' @md -#' @usage NULL -#' @format NULL -#' -#' @description -#' The Deephaven Community R Client provides an R interface to Deephaven's powerful real-time data engine, [_Deephaven Core_](https://deephaven.io/community/). -#' To use this package, you must have a Deephaven server running and be able to connect to it. For more information on -#' how to set up a Deephaven server, see the documentation [here](https://deephaven.io/core/docs/tutorials/quickstart/). -#' -#' @section -#' Building blocks of the Deephaven R Client: -#' There are two primary R classes that make up the Deephaven R Client, the [`Client`][Client] class and the -#' [`TableHandle`][TableHandle] class. The `Client` class is used to establish a connection to the Deephaven server with -#' its constructor `Client$new()`, and to send server requests, such as running a script via `run_script()`, or pushing -#' local data to the server via `import_table()`. Basic usage of the `Client` class may look something like this: -#' ```r -#' library(rdeephaven) -#' -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") -#' ``` -#' Many of these server requests end up creating or modifying tables that live on the server. To keep track of these -#' tables, the R client retrieves references to them, and wraps these references in `TableHandle` objects. These -#' TableHandles have a host of methods that mirror server-side table operations, such as `head()`, `tail()`, `update()`, -#' and so on. So, you can typically use TableHandles _as if_ they are tables themselves, and all of the corresponding -#' methods that you call on them will be executed on the server. Here is a simple example of pushing data to the server, -#' retrieving a TableHandle to the resulting table, and applying some basic table operations to the table: -#' ```r -#' df1 <- data.frame(x=1:10, y=11:20) -#' th1 <- client$import_table(df1) -#' -#' th2 <- th1$ -#' update("z = x + y")$ -#' where("z % 4 == 0") -#' ``` -#' TableHandles also support common functional methods for converting server-side Deephaven tables to R objects stored in -#' local memory such as `as.data.frame()`, `as_tibble()`, and `as_arrow_table()`. Here's an example of converting the -#' table created above to an R data frame and verifying that other functional methods work as expected: -#' ```r -#' df2 <- as.data.frame(th2) -#' -#' print(nrow(th2) == nrow(df2)) -#' print(ncol(th2) == ncol(df2)) -#' print(dim(th2) == dim(df2)) -#' print(all(as.data.frame(head(th2, 2)) == head(df2, 2))) -#' print(all(as.data.frame(tail(th2, 2)) == tail(df2, 2))) -#' ``` -#' For more information on these classes and all of their methods, see the reference documentation for [`Client`][Client] -#' and [`TableHandle`][TableHandle] by clicking on their class names, or by running `?Client` or `?TableHandle`. -#' -#' @section -#' Real-time data analysis: -#' Since TableHandles are references to tables living on the Deephaven server, they may refer to streaming tables, or -#' tables that are receiving new data periodically (typically once per second). Here's a simple example of creating a -#' table that adds a new row every second: -#' ```r -#' th3 <- client$time_table("PT1s")$ -#' update(c("X = ii", "Y = sin(X)")) -#' ``` -#' R objects like data frames or Dplyr tibbles do not have this streaming property - they are always static objects -#' stored in memory. However, a TableHandle referring to a streaming table may be converted to a data frame or tibble at -#' any time, and the resulting object will be a snapshot of the table at the time of conversion. This means that you can -#' use the Deephaven R Client to perform real-time data analysis on streaming data! Here, we make a simple plot of the -#' ticking table, and call it three times to demonstrate the dynamic nature of the table: -#' ```r -#' plot(as.data.frame(th3)$X, as.data.frame(th3)$Y, type="l") -#' Sys.sleep(5) -#' plot(as.data.frame(th3)$X, as.data.frame(th3)$Y, type="l") -#' Sys.sleep(5) -#' plot(as.data.frame(th3)$X, as.data.frame(th3)$Y, type="l") -#' ``` -#' There are performance and memory considerations when pulling data from the server, so it is best to use the provided -#' TableHandle methods to perform as much of your analysis as possible on the server, and to only pull the data when -#' something _must_ be done in R, like plotting or writing to a local file. -#' -#' @section -#' Powerful table operations: -#' Much of the power of Deephaven's suite of table operations is achieved through the use of the [`update_by()`][UpdateBy] -#' and [`agg_by()`][AggBy] methods. These table methods are important enough to warrant their own documentation pages, accessible -#' by clicking on their names, or by running `?UpdateBy` or `?AggBy`. These methods come with their own suites of functions, -#' prefixed with `agg_` and `uby_` respectively, that are discoverable from their documentation pages. Running `ls("package:rdeephaven")` -#' will reveal that most of the functions included in this package are for these methods, so it is important to get acquainted -#' with them. -#' -#' @section -#' Getting help: -#' While we've done our best to provide good documentation for this package, you may find you need more help than what -#' this documentation has to offer. Please visit the official Deephaven Community Core [documentation](https://deephaven.io/core/docs/tutorials/quickstart/) -#' to learn more about Deephaven and to find comprehensive examples. Additionally, feel free to reach out to us on -#' the Deephaven [Community Slack channel](https://deephaven.io/slack) with any questions. -#' We hope you find real-time data analysis in R to be as easy as possible. -#' -NULL - loadModule("DeephavenInternalModule", TRUE) diff --git a/R/rdeephaven/R/operation_control.R b/R/rdeephaven/R/operation_control.R index 083085acc78..f376a79a1ca 100644 --- a/R/rdeephaven/R/operation_control.R +++ b/R/rdeephaven/R/operation_control.R @@ -94,8 +94,7 @@ OperationControl <- R6Class("OperationControl", #' print("hello!") #' #' @export -op_control <- function(on_null="skip", on_nan="skip", big_value_context="decimal128") { - +op_control <- function(on_null = "skip", on_nan = "skip", big_value_context = "decimal128") { if (!(on_null %in% c("poison", "reset", "skip", "throw"))) { stop(paste0("'on_null' must be one of 'poison', 'reset', 'skip', or 'throw'. Got '", on_null, "'.")) } diff --git a/R/rdeephaven/R/table_handle_wrapper.R b/R/rdeephaven/R/table_handle_wrapper.R index cb474579049..7be2a601b90 100644 --- a/R/rdeephaven/R/table_handle_wrapper.R +++ b/R/rdeephaven/R/table_handle_wrapper.R @@ -56,12 +56,12 @@ #' library(rdeephaven) #' #' # connecting to Deephaven server -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +#' client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") #' #' # create a data frame, push it to the server, and retrieve a TableHandle referencing the new table #' df <- data.frame( #' timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:50], -#' boolCol = sample(c(TRUE,FALSE), 50, TRUE), +#' boolCol = sample(c(TRUE, FALSE), 50, TRUE), #' col1 = sample(1000, size = 50, replace = TRUE), #' col2 = sample(1000, size = 50, replace = TRUE), #' col3 = 1:50 diff --git a/R/rdeephaven/R/update_by_ops_wrapper.R b/R/rdeephaven/R/update_by_ops_wrapper.R index 2ca32ef7411..a27af272b62 100644 --- a/R/rdeephaven/R/update_by_ops_wrapper.R +++ b/R/rdeephaven/R/update_by_ops_wrapper.R @@ -3,126 +3,14 @@ # C++ UpdateByOpWrapper, which is finally a wrapper around a C++ UpdateByOperation. See rdeephaven/src/client.cpp for details. # Note that UpdateByOps should not be instantiated directly by user code, but rather by provided uby functions. - -#' @name -#' UpdateBy -#' @title -#' Deephaven's UpdateBy Operations -#' @md -#' @usage NULL -#' @format NULL -#' @docType class -#' -#' @description -#' Deephaven's `update_by()` table method and suite of `uby` functions enable cumulative and moving calculations -#' on static _and_ streaming tables. Complex operations like cumulative minima and maxima, exponential moving averages, -#' and rolling standard deviations are all possible and effortless to execute. As always in Deephaven, -#' the results of these calculations will continue to update as their parent tables are updated. Additionally, it's easy -#' to group data by one or more columns, enabling complex group-wise calculations with a single line of code. -#' -#' @section -#' Applying UpdateBy operations to a table: -#' The table method `update_by()` is the entry point for UpdateBy operations. It takes two arguments: the first is an -#' [`UpdateByOp`][UpdateByOp] or a list of `UpdateByOp`s denoting the calculations to perform on specific columns of the -#' table. Then, it takes a column name or a list of column names that define the groups on which to perform the calculations. -#' If you don't want grouped calculations, omit this argument. -#' -#' The `update_by()` method itself does not know anything about the columns on which you want to perform calculations. -#' Rather, the desired columns are passed to individual `uby` functions, enabling a massive amount of flexibility. -#' -#' @section -#' `uby` functions: -#' `uby` functions are the workers that actually execute the complex UpdateBy calculations. These functions are -#' _generators_, meaning they return _functions_ that the Deephaven engine knows how to interpret. We call the functions -#' that they return [`UpdateByOp`][UpdateByOp]s. These `UpdateByOp`s are not R-level functions, but Deephaven-specific -#' data types that perform all of the intensive calculations. Here is a list of all `uby` functions available in Deephaven: -#' -#' - [`uby_cum_min()`][uby_cum_min] -#' - [`uby_cum_max()`][uby_cum_max] -#' - [`uby_cum_sum()`][uby_cum_sum] -#' - [`uby_cum_prod()`][uby_cum_prod] -#' - [`uby_forward_fill()`][uby_forward_fill] -#' - [`uby_delta()`][uby_delta] -#' - [`uby_emmin_tick()`][uby_emmin_tick] -#' - [`uby_emmin_time()`][uby_emmin_time] -#' - [`uby_emmax_tick()`][uby_emmax_tick] -#' - [`uby_emmax_time()`][uby_emmax_time] -#' - [`uby_ems_tick()`][uby_ems_tick] -#' - [`uby_ems_time()`][uby_ems_time] -#' - [`uby_ema_tick()`][uby_ema_tick] -#' - [`uby_ema_time()`][uby_ema_time] -#' - [`uby_emstd_tick()`][uby_emstd_tick] -#' - [`uby_emstd_time()`][uby_emstd_time] -#' - [`uby_rolling_count_tick()`][uby_rolling_count_tick] -#' - [`uby_rolling_count_time()`][uby_rolling_count_time] -#' - [`uby_rolling_group_tick()`][uby_rolling_group_tick] -#' - [`uby_rolling_group_time()`][uby_rolling_group_time] -#' - [`uby_rolling_min_tick()`][uby_rolling_min_tick] -#' - [`uby_rolling_min_time()`][uby_rolling_min_time] -#' - [`uby_rolling_max_tick()`][uby_rolling_max_tick] -#' - [`uby_rolling_max_time()`][uby_rolling_max_time] -#' - [`uby_rolling_sum_tick()`][uby_rolling_sum_tick] -#' - [`uby_rolling_sum_time()`][uby_rolling_sum_time] -#' - [`uby_rolling_prod_tick()`][uby_rolling_prod_tick] -#' - [`uby_rolling_prod_time()`][uby_rolling_prod_time] -#' - [`uby_rolling_avg_tick()`][uby_rolling_avg_tick] -#' - [`uby_rolling_avg_time()`][uby_rolling_avg_time] -#' - [`uby_rolling_wavg_tick()`][uby_rolling_wavg_tick] -#' - [`uby_rolling_wavg_time()`][uby_rolling_wavg_time] -#' - [`uby_rolling_std_tick()`][uby_rolling_std_tick] -#' - [`uby_rolling_std_time()`][uby_rolling_std_time] -#' -#' For more details on each aggregation function, click on one of the methods above or see the reference documentation -#' by running `?uby_cum_min`, `?uby_delta`, etc. -#' -#' @examples -#' \dontrun{ -#' library(rdeephaven) -#' -#' # connecting to Deephaven server -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") -#' -#' # create data frame, push to server, retrieve TableHandle -#' df <- data.frame( -#' timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], -#' boolCol = sample(c(TRUE,FALSE), 500, TRUE), -#' col1 = sample(10000, size = 500, replace = TRUE), -#' col2 = sample(10000, size = 500, replace = TRUE), -#' col3 = 1:500 -#' ) -#' th <- client$import_table(df) -#' -#' # compute 10-row exponential weighted moving average of col1 and col2, grouped by boolCol -#' th1 <- th$ -#' update_by(uby_ema_tick(decay_ticks=10, cols=c("col1Ema = col1", "col2Ema = col2")), by="boolCol") -#' -#' # compute rolling 10-second weighted average and standard deviation of col1 and col2, weighted by col3 -#' th2 <- th$ -#' update_by( -#' c(uby_rolling_wavg_time(ts_col="timeCol", wcol="col3", cols=c("col1WAvg = col1", "col2WAvg = col2"), rev_time="PT10s"), -#' uby_rolling_std_time(ts_col="timeCol", cols=c("col1Std = col1", "col2Std = col2"), rev_time="PT10s"))) -#' -#' # compute cumulative minimum and maximum of col1 and col2 respectively, and the rolling 20-row sum of col3, grouped by boolCol -#' th3 <- th$ -#' update_by( -#' c(uby_cum_min(cols="col1"), -#' uby_cum_max(cols="col2"), -#' uby_rolling_sum_tick(cols="col3", rev_ticks=20)), -#' by="boolCol") -#' -#' client$close() -#' } -#' -NULL - - #' @name UpdateByOp #' @title Deephaven UpdateByOps #' @md #' @description #' An `UpdateByOp` is the return type of one of Deephaven's [`uby`][UpdateBy] functions. It is a function that performs #' the computation specified by the `uby` function. These are intended to be passed directly to `update_by()`, -#' and should never be instantiated directly be user code. +#' and should never be instantiated directly be user code. For more information, see the vignette on +#' `uby` functions with `vignette("update_by")`. #' #' If multiple tables have the same schema and the same UpdateBy operations need to be applied to each table, saving #' these objects directly in a variable may be useful to avoid having to re-create them each time: @@ -172,6 +60,9 @@ UpdateByOp <- R6Class("UpdateByOp", #' function called an [`UpdateByOp`][UpdateByOp] intended to be used in a call to `update_by()`. This detail is typically #' hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of #' a `uby` function can otherwise seem unexpected. +#' +#' For more information, see the vignette on `uby` functions by running +#' `vignette("update_by")`. #' #' @param cols String or list of strings denoting the column(s) to operate on. Can be renaming expressions, i.e. “new_col = col”. #' Default is to compute the cumulative sum for all non-grouping columns. @@ -182,12 +73,12 @@ UpdateByOp <- R6Class("UpdateByOp", #' library(rdeephaven) #' #' # connecting to Deephaven server -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +#' client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") #' #' # create data frame, push to server, retrieve TableHandle #' df <- data.frame( #' timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], -#' boolCol = sample(c(TRUE,FALSE), 500, TRUE), +#' boolCol = sample(c(TRUE, FALSE), 500, TRUE), #' col1 = sample(10000, size = 500, replace = TRUE), #' col2 = sample(10000, size = 500, replace = TRUE), #' col3 = 1:500 @@ -200,12 +91,12 @@ UpdateByOp <- R6Class("UpdateByOp", #' #' # compute cumulative sum of col1 and col2, grouped by boolCol #' th2 <- th$ -#' update_by(uby_cum_sum(c("col1CumSum = col1", "col2CumSum = col2")), by="boolCol") +#' update_by(uby_cum_sum(c("col1CumSum = col1", "col2CumSum = col2")), by = "boolCol") #' #' # compute cumulative sum of col1 and col2, grouped by boolCol and parity of col3 #' th3 <- th$ #' update("col3Parity = col3 % 2")$ -#' update_by(uby_cum_sum(c("col1CumSum = col1", "col2CumSum = col2")), by=c("boolCol", "col3Parity")) +#' update_by(uby_cum_sum(c("col1CumSum = col1", "col2CumSum = col2")), by = c("boolCol", "col3Parity")) #' #' client$close() #' } @@ -235,6 +126,9 @@ uby_cum_sum <- function(cols = character()) { #' function called an [`UpdateByOp`][UpdateByOp] intended to be used in a call to `update_by()`. This detail is typically #' hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of #' a `uby` function can otherwise seem unexpected. +#' +#' For more information, see the vignette on `uby` functions by running +#' `vignette("update_by")`. #' #' @param cols String or list of strings denoting the column(s) to operate on. Can be renaming expressions, i.e. “new_col = col”. #' Default is to compute the cumulative product for all non-grouping columns. @@ -245,12 +139,12 @@ uby_cum_sum <- function(cols = character()) { #' library(rdeephaven) #' #' # connecting to Deephaven server -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +#' client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") #' #' # create data frame, push to server, retrieve TableHandle #' df <- data.frame( #' timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], -#' boolCol = sample(c(TRUE,FALSE), 500, TRUE), +#' boolCol = sample(c(TRUE, FALSE), 500, TRUE), #' col1 = sample(10000, size = 500, replace = TRUE), #' col2 = sample(10000, size = 500, replace = TRUE), #' col3 = 1:500 @@ -263,12 +157,12 @@ uby_cum_sum <- function(cols = character()) { #' #' # compute cumulative product of col1 and col2, grouped by boolCol #' th2 <- th$ -#' update_by(uby_cum_prod(c("col1CumProd = col1", "col2CumProd = col2")), by="boolCol") +#' update_by(uby_cum_prod(c("col1CumProd = col1", "col2CumProd = col2")), by = "boolCol") #' #' # compute cumulative product of col1 and col2, grouped by boolCol and parity of col3 #' th3 <- th$ #' update("col3Parity = col3 % 2")$ -#' update_by(uby_cum_prod(c("col1CumProd = col1", "col2CumProd = col2")), by=c("boolCol", "col3Parity")) +#' update_by(uby_cum_prod(c("col1CumProd = col1", "col2CumProd = col2")), by = c("boolCol", "col3Parity")) #' #' client$close() #' } @@ -298,6 +192,9 @@ uby_cum_prod <- function(cols = character()) { #' function called an [`UpdateByOp`][UpdateByOp] intended to be used in a call to `update_by()`. This detail is typically #' hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of #' a `uby` function can otherwise seem unexpected. +#' +#' For more information, see the vignette on `uby` functions by running +#' `vignette("update_by")`. #' #' @param cols String or list of strings denoting the column(s) to operate on. Can be renaming expressions, i.e. “new_col = col”. #' Default is to compute the cumulative minimum for all non-grouping columns. @@ -308,12 +205,12 @@ uby_cum_prod <- function(cols = character()) { #' library(rdeephaven) #' #' # connecting to Deephaven server -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +#' client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") #' #' # create data frame, push to server, retrieve TableHandle #' df <- data.frame( #' timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], -#' boolCol = sample(c(TRUE,FALSE), 500, TRUE), +#' boolCol = sample(c(TRUE, FALSE), 500, TRUE), #' col1 = sample(10000, size = 500, replace = TRUE), #' col2 = sample(10000, size = 500, replace = TRUE), #' col3 = 1:500 @@ -326,12 +223,12 @@ uby_cum_prod <- function(cols = character()) { #' #' # compute cumulative minimum of col1 and col2, grouped by boolCol #' th2 <- th$ -#' update_by(uby_cum_min(c("col1CumMin = col1", "col2CumMin = col2")), by="boolCol") +#' update_by(uby_cum_min(c("col1CumMin = col1", "col2CumMin = col2")), by = "boolCol") #' #' # compute cumulative minimum of col1 and col2, grouped by boolCol and parity of col3 #' th3 <- th$ #' update("col3Parity = col3 % 2")$ -#' update_by(uby_cum_min(c("col1CumMin = col1", "col2CumMin = col2")), by=c("boolCol", "col3Parity")) +#' update_by(uby_cum_min(c("col1CumMin = col1", "col2CumMin = col2")), by = c("boolCol", "col3Parity")) #' #' client$close() #' } @@ -361,6 +258,9 @@ uby_cum_min <- function(cols = character()) { #' function called an [`UpdateByOp`][UpdateByOp] intended to be used in a call to `update_by()`. This detail is typically #' hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of #' a `uby` function can otherwise seem unexpected. +#' +#' For more information, see the vignette on `uby` functions by running +#' `vignette("update_by")`. #' #' @param cols String or list of strings denoting the column(s) to operate on. Can be renaming expressions, i.e. “new_col = col”. #' Default is to compute the cumulative maximum for all non-grouping columns. @@ -371,12 +271,12 @@ uby_cum_min <- function(cols = character()) { #' library(rdeephaven) #' #' # connecting to Deephaven server -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +#' client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") #' #' # create data frame, push to server, retrieve TableHandle #' df <- data.frame( #' timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], -#' boolCol = sample(c(TRUE,FALSE), 500, TRUE), +#' boolCol = sample(c(TRUE, FALSE), 500, TRUE), #' col1 = sample(10000, size = 500, replace = TRUE), #' col2 = sample(10000, size = 500, replace = TRUE), #' col3 = 1:500 @@ -389,12 +289,12 @@ uby_cum_min <- function(cols = character()) { #' #' # compute cumulative maximum of col1 and col2, grouped by boolCol #' th2 <- th$ -#' update_by(uby_cum_max(c("col1CumMax = col1", "col2CumMax = col2")), by="boolCol") +#' update_by(uby_cum_max(c("col1CumMax = col1", "col2CumMax = col2")), by = "boolCol") #' #' # compute cumulative maximum of col1 and col2, grouped by boolCol and parity of col3 #' th3 <- th$ #' update("col3Parity = col3 % 2")$ -#' update_by(uby_cum_max(c("col1CumMax = col1", "col2CumMax = col2")), by=c("boolCol", "col3Parity")) +#' update_by(uby_cum_max(c("col1CumMax = col1", "col2CumMax = col2")), by = c("boolCol", "col3Parity")) #' #' client$close() #' } @@ -425,6 +325,9 @@ uby_cum_max <- function(cols = character()) { #' function called an [`UpdateByOp`][UpdateByOp] intended to be used in a call to `update_by()`. This detail is typically #' hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of #' a `uby` function can otherwise seem unexpected. +#' +#' For more information, see the vignette on `uby` functions by running +#' `vignette("update_by")`. #' #' @param cols String or list of strings denoting the column(s) to operate on. Can be renaming expressions, i.e. “new_col = col”. #' Default is to perform a forward fill on all non-grouping columns. @@ -435,12 +338,12 @@ uby_cum_max <- function(cols = character()) { #' library(rdeephaven) #' #' # connecting to Deephaven server -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +#' client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") #' #' # create data frame, push to server, retrieve TableHandle #' df <- data.frame( #' timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], -#' boolCol = sample(c(TRUE,FALSE), 500, TRUE), +#' boolCol = sample(c(TRUE, FALSE), 500, TRUE), #' col1 = replace(sample(10000, size = 500, replace = TRUE), sample(500, 100), NA), #' col2 = replace(sample(10000, size = 500, replace = TRUE), sample(500, 100), NA), #' col3 = replace(1:500, sample(500, 100), NA) @@ -453,13 +356,13 @@ uby_cum_max <- function(cols = character()) { #' #' # forward fill col1 and col2, grouped by boolCol #' th2 <- th$ -#' update_by(uby_forward_fill(c("col1", "col2")), by="boolCol") +#' update_by(uby_forward_fill(c("col1", "col2")), by = "boolCol") #' #' # forward fill col3, compute parity of col3, and forward fill col1 and col2, grouped by boolCol and parity of col3 #' th3 <- th$ #' update_by(uby_forward_fill("col3"))$ #' update("col3Parity = col3 % 2")$ -#' update_by(uby_forward_fill(c("col1", "col2")), by=c("boolCol", "col3Parity")) +#' update_by(uby_forward_fill(c("col1", "col2")), by = c("boolCol", "col3Parity")) #' #' client$close() #' } @@ -497,6 +400,9 @@ uby_forward_fill <- function(cols = character()) { #' function called an [`UpdateByOp`][UpdateByOp] intended to be used in a call to `update_by()`. This detail is typically #' hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of #' a `uby` function can otherwise seem unexpected. +#' +#' For more information, see the vignette on `uby` functions by running +#' `vignette("update_by")`. #' #' @param cols String or list of strings denoting the column(s) to operate on. Can be renaming expressions, i.e. “new_col = col”. #' Default is to apply the delta operation to all non-grouping columns. @@ -508,12 +414,12 @@ uby_forward_fill <- function(cols = character()) { #' library(rdeephaven) #' #' # connecting to Deephaven server -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +#' client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") #' #' # create data frame, push to server, retrieve TableHandle #' df <- data.frame( #' timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], -#' boolCol = sample(c(TRUE,FALSE), 500, TRUE), +#' boolCol = sample(c(TRUE, FALSE), 500, TRUE), #' col1 = sample(10000, size = 500, replace = TRUE), #' col2 = sample(10000, size = 500, replace = TRUE), #' col3 = 1:500 @@ -526,12 +432,12 @@ uby_forward_fill <- function(cols = character()) { #' #' # compute consecutive differences of col1 and col2, grouped by boolCol #' th2 <- th$ -#' update_by(uby_delta(c("col1Delta = col1", "col2Delta = col2")), by="boolCol") +#' update_by(uby_delta(c("col1Delta = col1", "col2Delta = col2")), by = "boolCol") #' #' # compute consecutive differences of col1 and col2, grouped by boolCol and parity of col3 #' th3 <- th$ #' update("col3Parity = col3 % 2")$ -#' update_by(uby_delta(c("col1Delta = col1", "col2Delta = col2")), by=c("boolCol", "col3Parity")) +#' update_by(uby_delta(c("col1Delta = col1", "col2Delta = col2")), by = c("boolCol", "col3Parity")) #' #' client$close() #' } @@ -575,6 +481,9 @@ uby_delta <- function(cols = character(), delta_control = "null_dominates") { #' function called an [`UpdateByOp`][UpdateByOp] intended to be used in a call to `update_by()`. This detail is typically #' hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of #' a `uby` function can otherwise seem unexpected. +#' +#' For more information, see the vignette on `uby` functions by running +#' `vignette("update_by")`. #' #' @param decay_ticks Numeric scalar denoting the decay rate in ticks. #' @param cols String or list of strings denoting the column(s) to operate on. Can be renaming expressions, i.e. “new_col = col”. @@ -587,12 +496,12 @@ uby_delta <- function(cols = character(), delta_control = "null_dominates") { #' library(rdeephaven) #' #' # connecting to Deephaven server -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +#' client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") #' #' # create data frame, push to server, retrieve TableHandle #' df <- data.frame( #' timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], -#' boolCol = sample(c(TRUE,FALSE), 500, TRUE), +#' boolCol = sample(c(TRUE, FALSE), 500, TRUE), #' col1 = sample(10000, size = 500, replace = TRUE), #' col2 = sample(10000, size = 500, replace = TRUE), #' col3 = 1:500 @@ -601,16 +510,16 @@ uby_delta <- function(cols = character(), delta_control = "null_dominates") { #' #' # compute 10-row exponential moving average of col1 and col2 #' th1 <- th$ -#' update_by(uby_ema_tick(decay_ticks=10, cols=c("col1Ema = col1", "col2Ema = col2"))) +#' update_by(uby_ema_tick(decay_ticks = 10, cols = c("col1Ema = col1", "col2Ema = col2"))) #' #' # compute 5-row exponential moving average of col1 and col2, grouped by boolCol #' th2 <- th$ -#' update_by(uby_ema_tick(decay_ticks=5, cols=c("col1Ema = col1", "col2Ema = col2")), by="boolCol") +#' update_by(uby_ema_tick(decay_ticks = 5, cols = c("col1Ema = col1", "col2Ema = col2")), by = "boolCol") #' #' # compute 20-row exponential moving average of col1 and col2, grouped by boolCol and parity of col3 #' th3 <- th$ #' update("col3Parity = col3 % 2")$ -#' update_by(uby_ema_tick(decay_ticks=20, cols=c("col1Ema = col1", "col2Ema = col2")), by=c("boolCol", "col3Parity")) +#' update_by(uby_ema_tick(decay_ticks = 20, cols = c("col1Ema = col1", "col2Ema = col2")), by = c("boolCol", "col3Parity")) #' #' client$close() #' } @@ -654,6 +563,9 @@ uby_ema_tick <- function(decay_ticks, cols = character(), operation_control = op #' function called an [`UpdateByOp`][UpdateByOp] intended to be used in a call to `update_by()`. This detail is typically #' hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of #' a `uby` function can otherwise seem unexpected. +#' +#' For more information, see the vignette on `uby` functions by running +#' `vignette("update_by")`. #' #' @param ts_col String denoting the column to use as the timestamp. #' @param decay_time ISO-8601-formatted duration string specifying the decay rate. @@ -667,12 +579,12 @@ uby_ema_tick <- function(decay_ticks, cols = character(), operation_control = op #' library(rdeephaven) #' #' # connecting to Deephaven server -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +#' client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") #' #' # create data frame, push to server, retrieve TableHandle #' df <- data.frame( #' timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], -#' boolCol = sample(c(TRUE,FALSE), 500, TRUE), +#' boolCol = sample(c(TRUE, FALSE), 500, TRUE), #' col1 = sample(10000, size = 500, replace = TRUE), #' col2 = sample(10000, size = 500, replace = TRUE), #' col3 = 1:500 @@ -681,16 +593,16 @@ uby_ema_tick <- function(decay_ticks, cols = character(), operation_control = op #' #' # compute 10-second exponential moving average of col1 and col2 #' th1 <- th$ -#' update_by(uby_ema_time(ts_col="timeCol", decay_time="PT10s", cols=c("col1Ema = col1", "col2Ema = col2"))) +#' update_by(uby_ema_time(ts_col = "timeCol", decay_time = "PT10s", cols = c("col1Ema = col1", "col2Ema = col2"))) #' #' # compute 5-second exponential moving average of col1 and col2, grouped by boolCol #' th2 <- th$ -#' update_by(uby_ema_time(ts_col="timeCol", decay_time="PT5s", cols=c("col1Ema = col1", "col2Ema = col2")), by="boolCol") +#' update_by(uby_ema_time(ts_col = "timeCol", decay_time = "PT5s", cols = c("col1Ema = col1", "col2Ema = col2")), by = "boolCol") #' #' # compute 20-second exponential moving average of col1 and col2, grouped by boolCol and parity of col3 #' th3 <- th$ #' update("col3Parity = col3 % 2")$ -#' update_by(uby_ema_time(ts_col="timeCol", decay_time="PT20s", cols=c("col1Ema = col1", "col2Ema = col2")), by=c("boolCol", "col3Parity")) +#' update_by(uby_ema_time(ts_col = "timeCol", decay_time = "PT20s", cols = c("col1Ema = col1", "col2Ema = col2")), by = c("boolCol", "col3Parity")) #' #' client$close() #' } @@ -734,6 +646,9 @@ uby_ema_time <- function(ts_col, decay_time, cols = character(), operation_contr #' function called an [`UpdateByOp`][UpdateByOp] intended to be used in a call to `update_by()`. This detail is typically #' hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of #' a `uby` function can otherwise seem unexpected. +#' +#' For more information, see the vignette on `uby` functions by running +#' `vignette("update_by")`. #' #' @param decay_ticks Numeric scalar denoting the decay rate in ticks. #' @param cols String or list of strings denoting the column(s) to operate on. Can be renaming expressions, i.e. “new_col = col”. @@ -746,12 +661,12 @@ uby_ema_time <- function(ts_col, decay_time, cols = character(), operation_contr #' library(rdeephaven) #' #' # connecting to Deephaven server -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +#' client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") #' #' # create data frame, push to server, retrieve TableHandle #' df <- data.frame( #' timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], -#' boolCol = sample(c(TRUE,FALSE), 500, TRUE), +#' boolCol = sample(c(TRUE, FALSE), 500, TRUE), #' col1 = sample(10000, size = 500, replace = TRUE), #' col2 = sample(10000, size = 500, replace = TRUE), #' col3 = 1:500 @@ -760,16 +675,16 @@ uby_ema_time <- function(ts_col, decay_time, cols = character(), operation_contr #' #' # compute 10-row exponential moving sum of col1 and col2 #' th1 <- th$ -#' update_by(uby_ems_tick(decay_ticks=10, cols=c("col1Ems = col1", "col2Ems = col2"))) +#' update_by(uby_ems_tick(decay_ticks = 10, cols = c("col1Ems = col1", "col2Ems = col2"))) #' #' # compute 5-row exponential moving sum of col1 and col2, grouped by boolCol #' th2 <- th$ -#' update_by(uby_ems_tick(decay_ticks=5, cols=c("col1Ems = col1", "col2Ems = col2")), by="boolCol") +#' update_by(uby_ems_tick(decay_ticks = 5, cols = c("col1Ems = col1", "col2Ems = col2")), by = "boolCol") #' #' # compute 20-row exponential moving sum of col1 and col2, grouped by boolCol and parity of col3 #' th3 <- th$ #' update("col3Parity = col3 % 2")$ -#' update_by(uby_ems_tick(decay_ticks=20, cols=c("col1Ems = col1", "col2Ems = col2")), by=c("boolCol", "col3Parity")) +#' update_by(uby_ems_tick(decay_ticks = 20, cols = c("col1Ems = col1", "col2Ems = col2")), by = c("boolCol", "col3Parity")) #' #' client$close() #' } @@ -813,6 +728,9 @@ uby_ems_tick <- function(decay_ticks, cols = character(), operation_control = op #' function called an [`UpdateByOp`][UpdateByOp] intended to be used in a call to `update_by()`. This detail is typically #' hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of #' a `uby` function can otherwise seem unexpected. +#' +#' For more information, see the vignette on `uby` functions by running +#' `vignette("update_by")`. #' #' @param decay_time ISO-8601-formatted duration string specifying the decay rate. #' @param cols String or list of strings denoting the column(s) to operate on. Can be renaming expressions, i.e. “new_col = col”. @@ -825,12 +743,12 @@ uby_ems_tick <- function(decay_ticks, cols = character(), operation_control = op #' library(rdeephaven) #' #' # connecting to Deephaven server -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +#' client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") #' #' # create data frame, push to server, retrieve TableHandle #' df <- data.frame( #' timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], -#' boolCol = sample(c(TRUE,FALSE), 500, TRUE), +#' boolCol = sample(c(TRUE, FALSE), 500, TRUE), #' col1 = sample(10000, size = 500, replace = TRUE), #' col2 = sample(10000, size = 500, replace = TRUE), #' col3 = 1:500 @@ -839,16 +757,16 @@ uby_ems_tick <- function(decay_ticks, cols = character(), operation_control = op #' #' # compute 10-second exponential moving sum of col1 and col2 #' th1 <- th$ -#' update_by(uby_ems_time(ts_col="timeCol", decay_time="PT10s", cols=c("col1Ems = col1", "col2Ems = col2"))) +#' update_by(uby_ems_time(ts_col = "timeCol", decay_time = "PT10s", cols = c("col1Ems = col1", "col2Ems = col2"))) #' #' # compute 5-second exponential moving sum of col1 and col2, grouped by boolCol #' th2 <- th$ -#' update_by(uby_ems_time(ts_col="timeCol", decay_time="PT5s", cols=c("col1Ems = col1", "col2Ems = col2")), by="boolCol") +#' update_by(uby_ems_time(ts_col = "timeCol", decay_time = "PT5s", cols = c("col1Ems = col1", "col2Ems = col2")), by = "boolCol") #' #' # compute 20-second exponential moving sum of col1 and col2, grouped by boolCol and parity of col3 #' th3 <- th$ #' update("col3Parity = col3 % 2")$ -#' update_by(uby_ems_time(ts_col="timeCol", decay_time="PT20s", cols=c("col1Ems = col1", "col2Ems = col2")), by=c("boolCol", "col3Parity")) +#' update_by(uby_ems_time(ts_col = "timeCol", decay_time = "PT20s", cols = c("col1Ems = col1", "col2Ems = col2")), by = c("boolCol", "col3Parity")) #' #' client$close() #' } @@ -892,6 +810,9 @@ uby_ems_time <- function(ts_col, decay_time, cols = character(), operation_contr #' function called an [`UpdateByOp`][UpdateByOp] intended to be used in a call to `update_by()`. This detail is typically #' hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of #' a `uby` function can otherwise seem unexpected. +#' +#' For more information, see the vignette on `uby` functions by running +#' `vignette("update_by")`. #' #' @param decay_ticks Numeric scalar denoting the decay rate in ticks. #' @param cols String or list of strings denoting the column(s) to operate on. Can be renaming expressions, i.e. “new_col = col”. @@ -904,12 +825,12 @@ uby_ems_time <- function(ts_col, decay_time, cols = character(), operation_contr #' library(rdeephaven) #' #' # connecting to Deephaven server -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +#' client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") #' #' # create data frame, push to server, retrieve TableHandle #' df <- data.frame( #' timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], -#' boolCol = sample(c(TRUE,FALSE), 500, TRUE), +#' boolCol = sample(c(TRUE, FALSE), 500, TRUE), #' col1 = sample(10000, size = 500, replace = TRUE), #' col2 = sample(10000, size = 500, replace = TRUE), #' col3 = 1:500 @@ -918,16 +839,16 @@ uby_ems_time <- function(ts_col, decay_time, cols = character(), operation_contr #' #' # compute 10-row exponential moving minimum of col1 and col2 #' th1 <- th$ -#' update_by(uby_emmin_tick(decay_ticks=10, cols=c("col1Emmin = col1", "col2Emmin = col2"))) +#' update_by(uby_emmin_tick(decay_ticks = 10, cols = c("col1Emmin = col1", "col2Emmin = col2"))) #' #' # compute 5-row exponential moving minimum of col1 and col2, grouped by boolCol #' th2 <- th$ -#' update_by(uby_emmin_tick(decay_ticks=5, cols=c("col1Emmin = col1", "col2Emmin = col2")), by="boolCol") +#' update_by(uby_emmin_tick(decay_ticks = 5, cols = c("col1Emmin = col1", "col2Emmin = col2")), by = "boolCol") #' #' # compute 20-row exponential moving minimum of col1 and col2, grouped by boolCol and parity of col3 #' th3 <- th$ #' update("col3Parity = col3 % 2")$ -#' update_by(uby_emmin_tick(decay_ticks=20, cols=c("col1Emmin = col1", "col2Emmin = col2")), by=c("boolCol", "col3Parity")) +#' update_by(uby_emmin_tick(decay_ticks = 20, cols = c("col1Emmin = col1", "col2Emmin = col2")), by = c("boolCol", "col3Parity")) #' #' client$close() #' } @@ -971,6 +892,9 @@ uby_emmin_tick <- function(decay_ticks, cols = character(), operation_control = #' function called an [`UpdateByOp`][UpdateByOp] intended to be used in a call to `update_by()`. This detail is typically #' hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of #' a `uby` function can otherwise seem unexpected. +#' +#' For more information, see the vignette on `uby` functions by running +#' `vignette("update_by")`. #' #' @param decay_time ISO-8601-formatted duration string specifying the decay rate. #' @param cols String or list of strings denoting the column(s) to operate on. Can be renaming expressions, i.e. “new_col = col”. @@ -983,12 +907,12 @@ uby_emmin_tick <- function(decay_ticks, cols = character(), operation_control = #' library(rdeephaven) #' #' # connecting to Deephaven server -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +#' client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") #' #' # create data frame, push to server, retrieve TableHandle #' df <- data.frame( #' timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], -#' boolCol = sample(c(TRUE,FALSE), 500, TRUE), +#' boolCol = sample(c(TRUE, FALSE), 500, TRUE), #' col1 = sample(10000, size = 500, replace = TRUE), #' col2 = sample(10000, size = 500, replace = TRUE), #' col3 = 1:500 @@ -997,16 +921,16 @@ uby_emmin_tick <- function(decay_ticks, cols = character(), operation_control = #' #' # compute 10-second exponential moving minimum of col1 and col2 #' th1 <- th$ -#' update_by(uby_emmin_time(ts_col="timeCol", decay_time="PT10s", cols=c("col1Emmin = col1", "col2Emmin = col2"))) +#' update_by(uby_emmin_time(ts_col = "timeCol", decay_time = "PT10s", cols = c("col1Emmin = col1", "col2Emmin = col2"))) #' #' # compute 5-second exponential moving minimum of col1 and col2, grouped by boolCol #' th2 <- th$ -#' update_by(uby_emmin_time(ts_col="timeCol", decay_time="PT5s", cols=c("col1Emmin = col1", "col2Emmin = col2")), by="boolCol") +#' update_by(uby_emmin_time(ts_col = "timeCol", decay_time = "PT5s", cols = c("col1Emmin = col1", "col2Emmin = col2")), by = "boolCol") #' #' # compute 20-second exponential moving minimum of col1 and col2, grouped by boolCol and parity of col3 #' th3 <- th$ #' update("col3Parity = col3 % 2")$ -#' update_by(uby_emmin_time(ts_col="timeCol", decay_time="PT20s", cols=c("col1Emmin = col1", "col2Emmin = col2")), by=c("boolCol", "col3Parity")) +#' update_by(uby_emmin_time(ts_col = "timeCol", decay_time = "PT20s", cols = c("col1Emmin = col1", "col2Emmin = col2")), by = c("boolCol", "col3Parity")) #' #' client$close() #' } @@ -1050,6 +974,9 @@ uby_emmin_time <- function(ts_col, decay_time, cols = character(), operation_con #' function called an [`UpdateByOp`][UpdateByOp] intended to be used in a call to `update_by()`. This detail is typically #' hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of #' a `uby` function can otherwise seem unexpected. +#' +#' For more information, see the vignette on `uby` functions by running +#' `vignette("update_by")`. #' #' @param decay_ticks Numeric scalar denoting the decay rate in ticks. #' @param cols String or list of strings denoting the column(s) to operate on. Can be renaming expressions, i.e. “new_col = col”. @@ -1062,12 +989,12 @@ uby_emmin_time <- function(ts_col, decay_time, cols = character(), operation_con #' library(rdeephaven) #' #' # connecting to Deephaven server -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +#' client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") #' #' # create data frame, push to server, retrieve TableHandle #' df <- data.frame( #' timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], -#' boolCol = sample(c(TRUE,FALSE), 500, TRUE), +#' boolCol = sample(c(TRUE, FALSE), 500, TRUE), #' col1 = sample(10000, size = 500, replace = TRUE), #' col2 = sample(10000, size = 500, replace = TRUE), #' col3 = 1:500 @@ -1076,16 +1003,16 @@ uby_emmin_time <- function(ts_col, decay_time, cols = character(), operation_con #' #' # compute 10-row exponential moving maximum of col1 and col2 #' th1 <- th$ -#' update_by(uby_emmax_tick(decay_ticks=10, cols=c("col1Emmax = col1", "col2Emmax = col2"))) +#' update_by(uby_emmax_tick(decay_ticks = 10, cols = c("col1Emmax = col1", "col2Emmax = col2"))) #' #' # compute 5-row exponential moving maximum of col1 and col2, grouped by boolCol #' th2 <- th$ -#' update_by(uby_emmax_tick(decay_ticks=5, cols=c("col1Emmax = col1", "col2Emmax = col2")), by="boolCol") +#' update_by(uby_emmax_tick(decay_ticks = 5, cols = c("col1Emmax = col1", "col2Emmax = col2")), by = "boolCol") #' #' # compute 20-row exponential moving maximum of col1 and col2, grouped by boolCol and parity of col3 #' th3 <- th$ #' update("col3Parity = col3 % 2")$ -#' update_by(uby_emmax_tick(decay_ticks=20, cols=c("col1Emmax = col1", "col2Emmax = col2")), by=c("boolCol", "col3Parity")) +#' update_by(uby_emmax_tick(decay_ticks = 20, cols = c("col1Emmax = col1", "col2Emmax = col2")), by = c("boolCol", "col3Parity")) #' #' client$close() #' } @@ -1129,6 +1056,9 @@ uby_emmax_tick <- function(decay_ticks, cols = character(), operation_control = #' function called an [`UpdateByOp`][UpdateByOp] intended to be used in a call to `update_by()`. This detail is typically #' hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of #' a `uby` function can otherwise seem unexpected. +#' +#' For more information, see the vignette on `uby` functions by running +#' `vignette("update_by")`. #' #' @param decay_time ISO-8601-formatted duration string specifying the decay rate. #' @param cols String or list of strings denoting the column(s) to operate on. Can be renaming expressions, i.e. “new_col = col”. @@ -1141,12 +1071,12 @@ uby_emmax_tick <- function(decay_ticks, cols = character(), operation_control = #' library(rdeephaven) #' #' # connecting to Deephaven server -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +#' client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") #' #' # create data frame, push to server, retrieve TableHandle #' df <- data.frame( #' timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], -#' boolCol = sample(c(TRUE,FALSE), 500, TRUE), +#' boolCol = sample(c(TRUE, FALSE), 500, TRUE), #' col1 = sample(10000, size = 500, replace = TRUE), #' col2 = sample(10000, size = 500, replace = TRUE), #' col3 = 1:500 @@ -1155,16 +1085,16 @@ uby_emmax_tick <- function(decay_ticks, cols = character(), operation_control = #' #' # compute 10-second exponential moving maximum of col1 and col2 #' th1 <- th$ -#' update_by(uby_emmax_time(ts_col="timeCol", decay_time="PT10s", cols=c("col1Emmax = col1", "col2Emmax = col2"))) +#' update_by(uby_emmax_time(ts_col = "timeCol", decay_time = "PT10s", cols = c("col1Emmax = col1", "col2Emmax = col2"))) #' #' # compute 5-second exponential moving maximum of col1 and col2, grouped by boolCol #' th2 <- th$ -#' update_by(uby_emmax_time(ts_col="timeCol", decay_time="PT5s", cols=c("col1Emmax = col1", "col2Emmax = col2")), by="boolCol") +#' update_by(uby_emmax_time(ts_col = "timeCol", decay_time = "PT5s", cols = c("col1Emmax = col1", "col2Emmax = col2")), by = "boolCol") #' #' # compute 20-second exponential moving maximum of col1 and col2, grouped by boolCol and parity of col3 #' th3 <- th$ #' update("col3Parity = col3 % 2")$ -#' update_by(uby_emmax_time(ts_col="timeCol", decay_time="PT20s", cols=c("col1Emmax = col1", "col2Emmax = col2")), by=c("boolCol", "col3Parity")) +#' update_by(uby_emmax_time(ts_col = "timeCol", decay_time = "PT20s", cols = c("col1Emmax = col1", "col2Emmax = col2")), by = c("boolCol", "col3Parity")) #' #' client$close() #' } @@ -1213,6 +1143,9 @@ uby_emmax_time <- function(ts_col, decay_time, cols = character(), operation_con #' function called an [`UpdateByOp`][UpdateByOp] intended to be used in a call to `update_by()`. This detail is typically #' hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of #' a `uby` function can otherwise seem unexpected. +#' +#' For more information, see the vignette on `uby` functions by running +#' `vignette("update_by")`. #' #' @param decay_ticks Numeric scalar denoting the decay rate in ticks. #' @param cols String or list of strings denoting the column(s) to operate on. Can be renaming expressions, i.e. “new_col = col”. @@ -1225,12 +1158,12 @@ uby_emmax_time <- function(ts_col, decay_time, cols = character(), operation_con #' library(rdeephaven) #' #' # connecting to Deephaven server -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +#' client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") #' #' # create data frame, push to server, retrieve TableHandle #' df <- data.frame( #' timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], -#' boolCol = sample(c(TRUE,FALSE), 500, TRUE), +#' boolCol = sample(c(TRUE, FALSE), 500, TRUE), #' col1 = sample(10000, size = 500, replace = TRUE), #' col2 = sample(10000, size = 500, replace = TRUE), #' col3 = 1:500 @@ -1239,16 +1172,16 @@ uby_emmax_time <- function(ts_col, decay_time, cols = character(), operation_con #' #' # compute 10-row exponential moving standard deviation of col1 and col2 #' th1 <- th$ -#' update_by(uby_emstd_tick(decay_ticks=10, cols=c("col1Emstd = col1", "col2Emstd = col2"))) +#' update_by(uby_emstd_tick(decay_ticks = 10, cols = c("col1Emstd = col1", "col2Emstd = col2"))) #' #' # compute 5-row exponential moving standard deviation of col1 and col2, grouped by boolCol #' th2 <- th$ -#' update_by(uby_emstd_tick(decay_ticks=5, cols=c("col1Emstd = col1", "col2Emstd = col2")), by="boolCol") +#' update_by(uby_emstd_tick(decay_ticks = 5, cols = c("col1Emstd = col1", "col2Emstd = col2")), by = "boolCol") #' #' # compute 20-row exponential moving standard deviation of col1 and col2, grouped by boolCol and parity of col3 #' th3 <- th$ #' update("col3Parity = col3 % 2")$ -#' update_by(uby_emstd_tick(decay_ticks=20, cols=c("col1Emstd = col1", "col2Emstd = col2")), by=c("boolCol", "col3Parity")) +#' update_by(uby_emstd_tick(decay_ticks = 20, cols = c("col1Emstd = col1", "col2Emstd = col2")), by = c("boolCol", "col3Parity")) #' #' client$close() #' } @@ -1297,6 +1230,9 @@ uby_emstd_tick <- function(decay_ticks, cols = character(), operation_control = #' function called an [`UpdateByOp`][UpdateByOp] intended to be used in a call to `update_by()`. This detail is typically #' hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of #' a `uby` function can otherwise seem unexpected. +#' +#' For more information, see the vignette on `uby` functions by running +#' `vignette("update_by")`. #' #' @param decay_time ISO-8601-formatted duration string specifying the decay rate. #' @param cols String or list of strings denoting the column(s) to operate on. Can be renaming expressions, i.e. “new_col = col”. @@ -1309,12 +1245,12 @@ uby_emstd_tick <- function(decay_ticks, cols = character(), operation_control = #' library(rdeephaven) #' #' # connecting to Deephaven server -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +#' client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") #' #' # create data frame, push to server, retrieve TableHandle #' df <- data.frame( #' timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], -#' boolCol = sample(c(TRUE,FALSE), 500, TRUE), +#' boolCol = sample(c(TRUE, FALSE), 500, TRUE), #' col1 = sample(10000, size = 500, replace = TRUE), #' col2 = sample(10000, size = 500, replace = TRUE), #' col3 = 1:500 @@ -1323,16 +1259,16 @@ uby_emstd_tick <- function(decay_ticks, cols = character(), operation_control = #' #' # compute 10-second exponential moving standard deviation of col1 and col2 #' th1 <- th$ -#' update_by(uby_emstd_time(ts_col="timeCol", decay_time="PT10s", cols=c("col1Emstd = col1", "col2Emstd = col2"))) +#' update_by(uby_emstd_time(ts_col = "timeCol", decay_time = "PT10s", cols = c("col1Emstd = col1", "col2Emstd = col2"))) #' #' # compute 5-second exponential moving standard deviation of col1 and col2, grouped by boolCol #' th2 <- th$ -#' update_by(uby_emstd_time(ts_col="timeCol", decay_time="PT5s", cols=c("col1Emstd = col1", "col2Emstd = col2")), by="boolCol") +#' update_by(uby_emstd_time(ts_col = "timeCol", decay_time = "PT5s", cols = c("col1Emstd = col1", "col2Emstd = col2")), by = "boolCol") #' #' # compute 20-second exponential moving standard deviation of col1 and col2, grouped by boolCol and parity of col3 #' th3 <- th$ #' update("col3Parity = col3 % 2")$ -#' update_by(uby_emstd_time(ts_col="timeCol", decay_time="PT20s", cols=c("col1Emstd = col1", "col2Emstd = col2")), by=c("boolCol", "col3Parity")) +#' update_by(uby_emstd_time(ts_col = "timeCol", decay_time = "PT20s", cols = c("col1Emstd = col1", "col2Emstd = col2")), by = c("boolCol", "col3Parity")) #' #' client$close() #' } @@ -1380,6 +1316,9 @@ uby_emstd_time <- function(ts_col, decay_time, cols = character(), operation_con #' function called an [`UpdateByOp`][UpdateByOp] intended to be used in a call to `update_by()`. This detail is typically #' hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of #' a `uby` function can otherwise seem unexpected. +#' +#' For more information, see the vignette on `uby` functions by running +#' `vignette("update_by")`. #' #' @param cols String or list of strings denoting the column(s) to operate on. Can be renaming expressions, i.e. “new_col = col”. #' Default is to compute the rolling sum for all non-grouping columns. @@ -1392,12 +1331,12 @@ uby_emstd_time <- function(ts_col, decay_time, cols = character(), operation_con #' library(rdeephaven) #' #' # connecting to Deephaven server -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +#' client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") #' #' # create data frame, push to server, retrieve TableHandle #' df <- data.frame( #' timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], -#' boolCol = sample(c(TRUE,FALSE), 500, TRUE), +#' boolCol = sample(c(TRUE, FALSE), 500, TRUE), #' col1 = sample(10000, size = 500, replace = TRUE), #' col2 = sample(10000, size = 500, replace = TRUE), #' col3 = 1:500 @@ -1406,16 +1345,16 @@ uby_emstd_time <- function(ts_col, decay_time, cols = character(), operation_con #' #' # compute rolling sum of col1 and col2, using the previous 5 rows and current row #' th1 <- th$ -#' update_by(uby_rolling_sum_tick(cols=c("col1RollSum = col1", "col2RollSum = col2"), rev_ticks=6)) +#' update_by(uby_rolling_sum_tick(cols = c("col1RollSum = col1", "col2RollSum = col2"), rev_ticks = 6)) #' #' # compute rolling sum of col1 and col2, grouped by boolCol, using previous 5 rows, current row, and following 5 rows #' th2 <- th$ -#' update_by(uby_rolling_sum_tick(cols=c("col1RollSum = col1", "col2RollSum = col2"), rev_ticks=6, fwd_ticks=5)), by="boolCol") +#' update_by(uby_rolling_sum_tick(cols = c("col1RollSum = col1", "col2RollSum = col2"), rev_ticks = 6, fwd_ticks = 5), by = "boolCol") #' #' # compute rolling sum of col1 and col2, grouped by boolCol and parity of col3, using current row and following 10 rows #' th3 <- th$ #' update("col3Parity = col3 % 2")$ -#' update_by(uby_rolling_sum_tick(cols=c("col1RollSum = col1", "col2RollSum = col2"), rev_ticks=1, fwd_ticks=10)), by=c("boolCol", "col3Parity")) +#' update_by(uby_rolling_sum_tick(cols = c("col1RollSum = col1", "col2RollSum = col2"), rev_ticks = 1, fwd_ticks = 10), by = c("boolCol", "col3Parity")) #' #' client$close() #' } @@ -1459,6 +1398,9 @@ uby_rolling_sum_tick <- function(cols, rev_ticks, fwd_ticks = 0) { #' function called an [`UpdateByOp`][UpdateByOp] intended to be used in a call to `update_by()`. This detail is typically #' hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of #' a `uby` function can otherwise seem unexpected. +#' +#' For more information, see the vignette on `uby` functions by running +#' `vignette("update_by")`. #' #' @param ts_col String denoting the column to use as the timestamp. #' @param cols String or list of strings denoting the column(s) to operate on. Can be renaming expressions, i.e. “new_col = col”. @@ -1472,12 +1414,12 @@ uby_rolling_sum_tick <- function(cols, rev_ticks, fwd_ticks = 0) { #' library(rdeephaven) #' #' # connecting to Deephaven server -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +#' client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") #' #' # create data frame, push to server, retrieve TableHandle #' df <- data.frame( #' timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], -#' boolCol = sample(c(TRUE,FALSE), 500, TRUE), +#' boolCol = sample(c(TRUE, FALSE), 500, TRUE), #' col1 = sample(10000, size = 500, replace = TRUE), #' col2 = sample(10000, size = 500, replace = TRUE), #' col3 = 1:500 @@ -1486,16 +1428,16 @@ uby_rolling_sum_tick <- function(cols, rev_ticks, fwd_ticks = 0) { #' #' # compute rolling sum of col1 and col2, using the previous 5 seconds #' th1 <- th$ -#' update_by(uby_rolling_sum_time(ts_col="timeCol", cols=c("col1RollSum = col1", "col2RollSum = col2"), rev_time="PT5s")) +#' update_by(uby_rolling_sum_time(ts_col = "timeCol", cols = c("col1RollSum = col1", "col2RollSum = col2"), rev_time = "PT5s")) #' #' # compute rolling sum of col1 and col2, grouped by boolCol, using previous 5 seconds, and following 5 seconds #' th2 <- th$ -#' update_by(uby_rolling_sum_time(ts_col="timeCol", cols=c("col1RollSum = col1", "col2RollSum = col2"), rev_time="PT5s", fwd_ticks="PT5s")), by="boolCol") +#' update_by(uby_rolling_sum_time(ts_col = "timeCol", cols = c("col1RollSum = col1", "col2RollSum = col2"), rev_time = "PT5s", fwd_ticks = "PT5s"), by = "boolCol") #' #' # compute rolling sum of col1 and col2, grouped by boolCol and parity of col3, using following 10 seconds #' th3 <- th$ #' update("col3Parity = col3 % 2")$ -#' update_by(uby_rolling_sum_time(ts_col="timeCol", cols=c("col1RollSum = col1", "col2RollSum = col2"), rev_time="PT0s", fwd_time="PT10s")), by=c("boolCol", "col3Parity")) +#' update_by(uby_rolling_sum_time(ts_col = "timeCol", cols = c("col1RollSum = col1", "col2RollSum = col2"), rev_time = "PT0s", fwd_time = "PT10s"), by = c("boolCol", "col3Parity")) #' #' client$close() #' } @@ -1543,6 +1485,9 @@ uby_rolling_sum_time <- function(ts_col, cols, rev_time, fwd_time = "PT0s") { #' function called an [`UpdateByOp`][UpdateByOp] intended to be used in a call to `update_by()`. This detail is typically #' hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of #' a `uby` function can otherwise seem unexpected. +#' +#' For more information, see the vignette on `uby` functions by running +#' `vignette("update_by")`. #' #' @param cols String or list of strings denoting the column(s) to operate on. Can be renaming expressions, i.e. “new_col = col”. #' Default is to compute the rolling group for all non-grouping columns. @@ -1555,12 +1500,12 @@ uby_rolling_sum_time <- function(ts_col, cols, rev_time, fwd_time = "PT0s") { #' library(rdeephaven) #' #' # connecting to Deephaven server -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +#' client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") #' #' # create data frame, push to server, retrieve TableHandle #' df <- data.frame( #' timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], -#' boolCol = sample(c(TRUE,FALSE), 500, TRUE), +#' boolCol = sample(c(TRUE, FALSE), 500, TRUE), #' col1 = sample(10000, size = 500, replace = TRUE), #' col2 = sample(10000, size = 500, replace = TRUE), #' col3 = 1:500 @@ -1569,12 +1514,12 @@ uby_rolling_sum_time <- function(ts_col, cols, rev_time, fwd_time = "PT0s") { #' #' # compute rolling group of col1 and col2, grouped by boolCol, using previous 5 rows, current row, and following 5 rows #' th1 <- th$ -#' update_by(uby_rolling_group_tick(cols=c("col1RollGroup = col1", "col2RollGroup = col2"), rev_ticks=6, fwd_ticks=5)), by="boolCol") +#' update_by(uby_rolling_group_tick(cols = c("col1RollGroup = col1", "col2RollGroup = col2"), rev_ticks = 6, fwd_ticks = 5), by = "boolCol") #' #' # compute rolling group of col1 and col2, grouped by boolCol and parity of col3, using current row and following 10 rows #' th2 <- th$ #' update("col3Parity = col3 % 2")$ -#' update_by(uby_rolling_group_tick(cols=c("col1RollGroup = col1", "col2RollGroup = col2"), rev_ticks=1, fwd_ticks=10)), by=c("boolCol", "col3Parity")) +#' update_by(uby_rolling_group_tick(cols = c("col1RollGroup = col1", "col2RollGroup = col2"), rev_ticks = 1, fwd_ticks = 10), by = c("boolCol", "col3Parity")) #' #' client$close() #' } @@ -1618,6 +1563,9 @@ uby_rolling_group_tick <- function(cols, rev_ticks, fwd_ticks = 0) { #' function called an [`UpdateByOp`][UpdateByOp] intended to be used in a call to `update_by()`. This detail is typically #' hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of #' a `uby` function can otherwise seem unexpected. +#' +#' For more information, see the vignette on `uby` functions by running +#' `vignette("update_by")`. #' #' @param ts_col String denoting the column to use as the timestamp. #' @param cols String or list of strings denoting the column(s) to operate on. Can be renaming expressions, i.e. “new_col = col”. @@ -1631,12 +1579,12 @@ uby_rolling_group_tick <- function(cols, rev_ticks, fwd_ticks = 0) { #' library(rdeephaven) #' #' # connecting to Deephaven server -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +#' client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") #' #' # create data frame, push to server, retrieve TableHandle #' df <- data.frame( #' timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], -#' boolCol = sample(c(TRUE,FALSE), 500, TRUE), +#' boolCol = sample(c(TRUE, FALSE), 500, TRUE), #' col1 = sample(10000, size = 500, replace = TRUE), #' col2 = sample(10000, size = 500, replace = TRUE), #' col3 = 1:500 @@ -1645,12 +1593,12 @@ uby_rolling_group_tick <- function(cols, rev_ticks, fwd_ticks = 0) { #' #' # compute rolling group of col1 and col2, grouped by boolCol, using previous 5 seconds, and following 5 seconds #' th1 <- th$ -#' update_by(uby_rolling_group_time(ts_col="timeCol", cols=c("col1RollGroup = col1", "col2RollGroup = col2"), rev_time="PT5s", fwd_ticks="PT5s")), by="boolCol") +#' update_by(uby_rolling_group_time(ts_col = "timeCol", cols = c("col1RollGroup = col1", "col2RollGroup = col2"), rev_time = "PT5s", fwd_ticks = "PT5s"), by = "boolCol") #' #' # compute rolling group of col1 and col2, grouped by boolCol and parity of col3, using following 10 seconds #' th2 <- th$ #' update("col3Parity = col3 % 2")$ -#' update_by(uby_rolling_group_time(ts_col="timeCol", cols=c("col1RollGroup = col1", "col2RollGroup = col2"), rev_time="PT0s", fwd_time="PT10s")), by=c("boolCol", "col3Parity")) +#' update_by(uby_rolling_group_time(ts_col = "timeCol", cols = c("col1RollGroup = col1", "col2RollGroup = col2"), rev_time = "PT0s", fwd_time = "PT10s"), by = c("boolCol", "col3Parity")) #' #' client$close() #' } @@ -1698,6 +1646,9 @@ uby_rolling_group_time <- function(ts_col, cols, rev_time, fwd_time = "PT0s") { #' function called an [`UpdateByOp`][UpdateByOp] intended to be used in a call to `update_by()`. This detail is typically #' hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of #' a `uby` function can otherwise seem unexpected. +#' +#' For more information, see the vignette on `uby` functions by running +#' `vignette("update_by")`. #' #' @param cols String or list of strings denoting the column(s) to operate on. Can be renaming expressions, i.e. “new_col = col”. #' Default is to compute the rolling average for all non-grouping columns. @@ -1710,12 +1661,12 @@ uby_rolling_group_time <- function(ts_col, cols, rev_time, fwd_time = "PT0s") { #' library(rdeephaven) #' #' # connecting to Deephaven server -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +#' client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") #' #' # create data frame, push to server, retrieve TableHandle #' df <- data.frame( #' timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], -#' boolCol = sample(c(TRUE,FALSE), 500, TRUE), +#' boolCol = sample(c(TRUE, FALSE), 500, TRUE), #' col1 = sample(10000, size = 500, replace = TRUE), #' col2 = sample(10000, size = 500, replace = TRUE), #' col3 = 1:500 @@ -1724,16 +1675,16 @@ uby_rolling_group_time <- function(ts_col, cols, rev_time, fwd_time = "PT0s") { #' #' # compute rolling average of col1 and col2, using the previous 5 rows and current row #' th1 <- th$ -#' update_by(uby_rolling_avg_tick(cols=c("col1RollAvg = col1", "col2RollAvg = col2"), rev_ticks=6)) +#' update_by(uby_rolling_avg_tick(cols = c("col1RollAvg = col1", "col2RollAvg = col2"), rev_ticks = 6)) #' #' # compute rolling average of col1 and col2, grouped by boolCol, using previous 5 rows, current row, and following 5 rows #' th2 <- th$ -#' update_by(uby_rolling_avg_tick(cols=c("col1RollAvg = col1", "col2RollAvg = col2"), rev_ticks=6, fwd_ticks=5)), by="boolCol") +#' update_by(uby_rolling_avg_tick(cols = c("col1RollAvg = col1", "col2RollAvg = col2"), rev_ticks = 6, fwd_ticks = 5), by = "boolCol") #' #' # compute rolling average of col1 and col2, grouped by boolCol and parity of col3, using current row and following 10 rows #' th3 <- th$ #' update("col3Parity = col3 % 2")$ -#' update_by(uby_rolling_avg_tick(cols=c("col1RollAvg = col1", "col2RollAvg = col2"), rev_ticks=1, fwd_ticks=10)), by=c("boolCol", "col3Parity")) +#' update_by(uby_rolling_avg_tick(cols = c("col1RollAvg = col1", "col2RollAvg = col2"), rev_ticks = 1, fwd_ticks = 10), by = c("boolCol", "col3Parity")) #' #' client$close() #' } @@ -1777,6 +1728,9 @@ uby_rolling_avg_tick <- function(cols, rev_ticks, fwd_ticks = 0) { #' function called an [`UpdateByOp`][UpdateByOp] intended to be used in a call to `update_by()`. This detail is typically #' hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of #' a `uby` function can otherwise seem unexpected. +#' +#' For more information, see the vignette on `uby` functions by running +#' `vignette("update_by")`. #' #' @param ts_col String denoting the column to use as the timestamp. #' @param cols String or list of strings denoting the column(s) to operate on. Can be renaming expressions, i.e. “new_col = col”. @@ -1790,12 +1744,12 @@ uby_rolling_avg_tick <- function(cols, rev_ticks, fwd_ticks = 0) { #' library(rdeephaven) #' #' # connecting to Deephaven server -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +#' client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") #' #' # create data frame, push to server, retrieve TableHandle #' df <- data.frame( #' timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], -#' boolCol = sample(c(TRUE,FALSE), 500, TRUE), +#' boolCol = sample(c(TRUE, FALSE), 500, TRUE), #' col1 = sample(10000, size = 500, replace = TRUE), #' col2 = sample(10000, size = 500, replace = TRUE), #' col3 = 1:500 @@ -1804,16 +1758,16 @@ uby_rolling_avg_tick <- function(cols, rev_ticks, fwd_ticks = 0) { #' #' # compute rolling average of col1 and col2, using the previous 5 seconds #' th1 <- th$ -#' update_by(uby_rolling_avg_time(ts_col="timeCol", cols=c("col1RollAvg = col1", "col2RollAvg = col2"), rev_time="PT5s")) +#' update_by(uby_rolling_avg_time(ts_col = "timeCol", cols = c("col1RollAvg = col1", "col2RollAvg = col2"), rev_time = "PT5s")) #' #' # compute rolling average of col1 and col2, grouped by boolCol, using previous 5 seconds, and following 5 seconds #' th2 <- th$ -#' update_by(uby_rolling_avg_time(ts_col="timeCol", cols=c("col1RollAvg = col1", "col2RollAvg = col2"), rev_time="PT5s", fwd_ticks="PT5s")), by="boolCol") +#' update_by(uby_rolling_avg_time(ts_col = "timeCol", cols = c("col1RollAvg = col1", "col2RollAvg = col2"), rev_time = "PT5s", fwd_ticks = "PT5s"), by = "boolCol") #' #' # compute rolling average of col1 and col2, grouped by boolCol and parity of col3, using following 10 seconds #' th3 <- th$ #' update("col3Parity = col3 % 2")$ -#' update_by(uby_rolling_avg_time(ts_col="timeCol", cols=c("col1RollAvg = col1", "col2RollAvg = col2"), rev_time="PT0s", fwd_time="PT10s")), by=c("boolCol", "col3Parity")) +#' update_by(uby_rolling_avg_time(ts_col = "timeCol", cols = c("col1RollAvg = col1", "col2RollAvg = col2"), rev_time = "PT0s", fwd_time = "PT10s"), by = c("boolCol", "col3Parity")) #' #' client$close() #' } @@ -1861,6 +1815,9 @@ uby_rolling_avg_time <- function(ts_col, cols, rev_time, fwd_time = "PT0s") { #' function called an [`UpdateByOp`][UpdateByOp] intended to be used in a call to `update_by()`. This detail is typically #' hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of #' a `uby` function can otherwise seem unexpected. +#' +#' For more information, see the vignette on `uby` functions by running +#' `vignette("update_by")`. #' #' @param cols String or list of strings denoting the column(s) to operate on. Can be renaming expressions, i.e. “new_col = col”. #' Default is to compute the rolling minimum for all non-grouping columns. @@ -1873,12 +1830,12 @@ uby_rolling_avg_time <- function(ts_col, cols, rev_time, fwd_time = "PT0s") { #' library(rdeephaven) #' #' # connecting to Deephaven server -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +#' client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") #' #' # create data frame, push to server, retrieve TableHandle #' df <- data.frame( #' timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], -#' boolCol = sample(c(TRUE,FALSE), 500, TRUE), +#' boolCol = sample(c(TRUE, FALSE), 500, TRUE), #' col1 = sample(10000, size = 500, replace = TRUE), #' col2 = sample(10000, size = 500, replace = TRUE), #' col3 = 1:500 @@ -1887,16 +1844,16 @@ uby_rolling_avg_time <- function(ts_col, cols, rev_time, fwd_time = "PT0s") { #' #' # compute rolling minimum of col1 and col2, using the previous 5 rows and current row #' th1 <- th$ -#' update_by(uby_rolling_min_tick(cols=c("col1RollMin = col1", "col2RollMin = col2"), rev_ticks=6)) +#' update_by(uby_rolling_min_tick(cols = c("col1RollMin = col1", "col2RollMin = col2"), rev_ticks = 6)) #' #' # compute rolling minimum of col1 and col2, grouped by boolCol, using previous 5 rows, current row, and following 5 rows #' th2 <- th$ -#' update_by(uby_rolling_min_tick(cols=c("col1RollMin = col1", "col2RollMin = col2"), rev_ticks=6, fwd_ticks=5)), by="boolCol") +#' update_by(uby_rolling_min_tick(cols = c("col1RollMin = col1", "col2RollMin = col2"), rev_ticks = 6, fwd_ticks = 5), by = "boolCol") #' #' # compute rolling minimum of col1 and col2, grouped by boolCol and parity of col3, using current row and following 10 rows #' th3 <- th$ #' update("col3Parity = col3 % 2")$ -#' update_by(uby_rolling_min_tick(cols=c("col1RollMin = col1", "col2RollMin = col2"), rev_ticks=1, fwd_ticks=10)), by=c("boolCol", "col3Parity")) +#' update_by(uby_rolling_min_tick(cols = c("col1RollMin = col1", "col2RollMin = col2"), rev_ticks = 1, fwd_ticks = 10), by = c("boolCol", "col3Parity")) #' #' client$close() #' } @@ -1940,6 +1897,9 @@ uby_rolling_min_tick <- function(cols, rev_ticks, fwd_ticks = 0) { #' function called an [`UpdateByOp`][UpdateByOp] intended to be used in a call to `update_by()`. This detail is typically #' hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of #' a `uby` function can otherwise seem unexpected. +#' +#' For more information, see the vignette on `uby` functions by running +#' `vignette("update_by")`. #' #' @param ts_col String denoting the column to use as the timestamp. #' @param cols String or list of strings denoting the column(s) to operate on. Can be renaming expressions, i.e. “new_col = col”. @@ -1953,12 +1913,12 @@ uby_rolling_min_tick <- function(cols, rev_ticks, fwd_ticks = 0) { #' library(rdeephaven) #' #' # connecting to Deephaven server -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +#' client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") #' #' # create data frame, push to server, retrieve TableHandle #' df <- data.frame( #' timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], -#' boolCol = sample(c(TRUE,FALSE), 500, TRUE), +#' boolCol = sample(c(TRUE, FALSE), 500, TRUE), #' col1 = sample(10000, size = 500, replace = TRUE), #' col2 = sample(10000, size = 500, replace = TRUE), #' col3 = 1:500 @@ -1967,16 +1927,16 @@ uby_rolling_min_tick <- function(cols, rev_ticks, fwd_ticks = 0) { #' #' # compute rolling minimum of col1 and col2, using the previous 5 seconds #' th1 <- th$ -#' update_by(uby_rolling_min_time(ts_col="timeCol", cols=c("col1RollMin = col1", "col2RollMin = col2"), rev_time="PT5s")) +#' update_by(uby_rolling_min_time(ts_col = "timeCol", cols = c("col1RollMin = col1", "col2RollMin = col2"), rev_time = "PT5s")) #' #' # compute rolling minimum of col1 and col2, grouped by boolCol, using previous 5 seconds, and following 5 seconds #' th2 <- th$ -#' update_by(uby_rolling_min_time(ts_col="timeCol", cols=c("col1RollMin = col1", "col2RollMin = col2"), rev_time="PT5s", fwd_ticks="PT5s")), by="boolCol") +#' update_by(uby_rolling_min_time(ts_col = "timeCol", cols = c("col1RollMin = col1", "col2RollMin = col2"), rev_time = "PT5s", fwd_ticks = "PT5s"), by = "boolCol") #' #' # compute rolling minimum of col1 and col2, grouped by boolCol and parity of col3, using following 10 seconds #' th3 <- th$ #' update("col3Parity = col3 % 2")$ -#' update_by(uby_rolling_min_time(ts_col="timeCol", cols=c("col1RollMin = col1", "col2RollMin = col2"), rev_time="PT0s", fwd_time="PT10s")), by=c("boolCol", "col3Parity")) +#' update_by(uby_rolling_min_time(ts_col = "timeCol", cols = c("col1RollMin = col1", "col2RollMin = col2"), rev_time = "PT0s", fwd_time = "PT10s"), by = c("boolCol", "col3Parity")) #' #' client$close() #' } @@ -2024,6 +1984,9 @@ uby_rolling_min_time <- function(ts_col, cols, rev_time, fwd_time = "PT0s") { #' function called an [`UpdateByOp`][UpdateByOp] intended to be used in a call to `update_by()`. This detail is typically #' hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of #' a `uby` function can otherwise seem unexpected. +#' +#' For more information, see the vignette on `uby` functions by running +#' `vignette("update_by")`. #' #' @param cols String or list of strings denoting the column(s) to operate on. Can be renaming expressions, i.e. “new_col = col”. #' Default is to compute the rolling maximum for all non-grouping columns. @@ -2036,12 +1999,12 @@ uby_rolling_min_time <- function(ts_col, cols, rev_time, fwd_time = "PT0s") { #' library(rdeephaven) #' #' # connecting to Deephaven server -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +#' client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") #' #' # create data frame, push to server, retrieve TableHandle #' df <- data.frame( #' timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], -#' boolCol = sample(c(TRUE,FALSE), 500, TRUE), +#' boolCol = sample(c(TRUE, FALSE), 500, TRUE), #' col1 = sample(10000, size = 500, replace = TRUE), #' col2 = sample(10000, size = 500, replace = TRUE), #' col3 = 1:500 @@ -2050,16 +2013,16 @@ uby_rolling_min_time <- function(ts_col, cols, rev_time, fwd_time = "PT0s") { #' #' # compute rolling maximum of col1 and col2, using the previous 5 rows and current row #' th1 <- th$ -#' update_by(uby_rolling_max_tick(cols=c("col1RollMax = col1", "col2RollMax = col2"), rev_ticks=6)) +#' update_by(uby_rolling_max_tick(cols = c("col1RollMax = col1", "col2RollMax = col2"), rev_ticks = 6)) #' #' # compute rolling maximum of col1 and col2, grouped by boolCol, using previous 5 rows, current row, and following 5 rows #' th2 <- th$ -#' update_by(uby_rolling_max_tick(cols=c("col1RollMax = col1", "col2RollMax = col2"), rev_ticks=6, fwd_ticks=5)), by="boolCol") +#' update_by(uby_rolling_max_tick(cols = c("col1RollMax = col1", "col2RollMax = col2"), rev_ticks = 6, fwd_ticks = 5), by = "boolCol") #' #' # compute rolling maximum of col1 and col2, grouped by boolCol and parity of col3, using current row and following 10 rows #' th3 <- th$ #' update("col3Parity = col3 % 2")$ -#' update_by(uby_rolling_max_tick(cols=c("col1RollMax = col1", "col2RollMax = col2"), rev_ticks=1, fwd_ticks=10)), by=c("boolCol", "col3Parity")) +#' update_by(uby_rolling_max_tick(cols = c("col1RollMax = col1", "col2RollMax = col2"), rev_ticks = 1, fwd_ticks = 10), by = c("boolCol", "col3Parity")) #' #' client$close() #' } @@ -2103,6 +2066,9 @@ uby_rolling_max_tick <- function(cols, rev_ticks, fwd_ticks = 0) { #' function called an [`UpdateByOp`][UpdateByOp] intended to be used in a call to `update_by()`. This detail is typically #' hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of #' a `uby` function can otherwise seem unexpected. +#' +#' For more information, see the vignette on `uby` functions by running +#' `vignette("update_by")`. #' #' @param ts_col String denoting the column to use as the timestamp. #' @param cols String or list of strings denoting the column(s) to operate on. Can be renaming expressions, i.e. “new_col = col”. @@ -2116,12 +2082,12 @@ uby_rolling_max_tick <- function(cols, rev_ticks, fwd_ticks = 0) { #' library(rdeephaven) #' #' # connecting to Deephaven server -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +#' client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") #' #' # create data frame, push to server, retrieve TableHandle #' df <- data.frame( #' timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], -#' boolCol = sample(c(TRUE,FALSE), 500, TRUE), +#' boolCol = sample(c(TRUE, FALSE), 500, TRUE), #' col1 = sample(10000, size = 500, replace = TRUE), #' col2 = sample(10000, size = 500, replace = TRUE), #' col3 = 1:500 @@ -2130,16 +2096,16 @@ uby_rolling_max_tick <- function(cols, rev_ticks, fwd_ticks = 0) { #' #' # compute rolling maximum of col1 and col2, using the previous 5 seconds #' th1 <- th$ -#' update_by(uby_rolling_max_time(ts_col="timeCol", cols=c("col1RollMax = col1", "col2RollMax = col2"), rev_time="PT5s")) +#' update_by(uby_rolling_max_time(ts_col = "timeCol", cols = c("col1RollMax = col1", "col2RollMax = col2"), rev_time = "PT5s")) #' #' # compute rolling maximum of col1 and col2, grouped by boolCol, using previous 5 seconds, and following 5 seconds #' th2 <- th$ -#' update_by(uby_rolling_max_time(ts_col="timeCol", cols=c("col1RollMax = col1", "col2RollMax = col2"), rev_time="PT5s", fwd_ticks="PT5s")), by="boolCol") +#' update_by(uby_rolling_max_time(ts_col = "timeCol", cols = c("col1RollMax = col1", "col2RollMax = col2"), rev_time = "PT5s", fwd_ticks = "PT5s"), by = "boolCol") #' #' # compute rolling maximum of col1 and col2, grouped by boolCol and parity of col3, using following 10 seconds #' th3 <- th$ #' update("col3Parity = col3 % 2")$ -#' update_by(uby_rolling_max_time(ts_col="timeCol", cols=c("col1RollMax = col1", "col2RollMax = col2"), rev_time="PT0s", fwd_time="PT10s")), by=c("boolCol", "col3Parity")) +#' update_by(uby_rolling_max_time(ts_col = "timeCol", cols = c("col1RollMax = col1", "col2RollMax = col2"), rev_time = "PT0s", fwd_time = "PT10s"), by = c("boolCol", "col3Parity")) #' #' client$close() #' } @@ -2187,6 +2153,9 @@ uby_rolling_max_time <- function(ts_col, cols, rev_time, fwd_time = "PT0s") { #' function called an [`UpdateByOp`][UpdateByOp] intended to be used in a call to `update_by()`. This detail is typically #' hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of #' a `uby` function can otherwise seem unexpected. +#' +#' For more information, see the vignette on `uby` functions by running +#' `vignette("update_by")`. #' #' @param cols String or list of strings denoting the column(s) to operate on. Can be renaming expressions, i.e. “new_col = col”. #' Default is to compute the rolling product for all non-grouping columns. @@ -2199,12 +2168,12 @@ uby_rolling_max_time <- function(ts_col, cols, rev_time, fwd_time = "PT0s") { #' library(rdeephaven) #' #' # connecting to Deephaven server -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +#' client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") #' #' # create data frame, push to server, retrieve TableHandle #' df <- data.frame( #' timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], -#' boolCol = sample(c(TRUE,FALSE), 500, TRUE), +#' boolCol = sample(c(TRUE, FALSE), 500, TRUE), #' col1 = sample(10000, size = 500, replace = TRUE), #' col2 = sample(10000, size = 500, replace = TRUE), #' col3 = 1:500 @@ -2213,16 +2182,16 @@ uby_rolling_max_time <- function(ts_col, cols, rev_time, fwd_time = "PT0s") { #' #' # compute rolling product of col1 and col2, using the previous 5 rows and current row #' th1 <- th$ -#' update_by(uby_rolling_prod_tick(cols=c("col1RollProd = col1", "col2RollProd = col2"), rev_ticks=6)) +#' update_by(uby_rolling_prod_tick(cols = c("col1RollProd = col1", "col2RollProd = col2"), rev_ticks = 6)) #' #' # compute rolling product of col1 and col2, grouped by boolCol, using previous 5 rows, current row, and following 5 rows #' th2 <- th$ -#' update_by(uby_rolling_prod_tick(cols=c("col1RollProd = col1", "col2RollProd = col2"), rev_ticks=6, fwd_ticks=5)), by="boolCol") +#' update_by(uby_rolling_prod_tick(cols = c("col1RollProd = col1", "col2RollProd = col2"), rev_ticks = 6, fwd_ticks = 5), by = "boolCol") #' #' # compute rolling product of col1 and col2, grouped by boolCol and parity of col3, using current row and following 10 rows #' th3 <- th$ #' update("col3Parity = col3 % 2")$ -#' update_by(uby_rolling_prod_tick(cols=c("col1RollProd = col1", "col2RollProd = col2"), rev_ticks=1, fwd_ticks=10)), by=c("boolCol", "col3Parity")) +#' update_by(uby_rolling_prod_tick(cols = c("col1RollProd = col1", "col2RollProd = col2"), rev_ticks = 1, fwd_ticks = 10), by = c("boolCol", "col3Parity")) #' #' client$close() #' } @@ -2266,6 +2235,9 @@ uby_rolling_prod_tick <- function(cols, rev_ticks, fwd_ticks = 0) { #' function called an [`UpdateByOp`][UpdateByOp] intended to be used in a call to `update_by()`. This detail is typically #' hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of #' a `uby` function can otherwise seem unexpected. +#' +#' For more information, see the vignette on `uby` functions by running +#' `vignette("update_by")`. #' #' @param ts_col String denoting the column to use as the timestamp. #' @param cols String or list of strings denoting the column(s) to operate on. Can be renaming expressions, i.e. “new_col = col”. @@ -2279,12 +2251,12 @@ uby_rolling_prod_tick <- function(cols, rev_ticks, fwd_ticks = 0) { #' library(rdeephaven) #' #' # connecting to Deephaven server -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +#' client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") #' #' # create data frame, push to server, retrieve TableHandle #' df <- data.frame( #' timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], -#' boolCol = sample(c(TRUE,FALSE), 500, TRUE), +#' boolCol = sample(c(TRUE, FALSE), 500, TRUE), #' col1 = sample(10000, size = 500, replace = TRUE), #' col2 = sample(10000, size = 500, replace = TRUE), #' col3 = 1:500 @@ -2293,16 +2265,16 @@ uby_rolling_prod_tick <- function(cols, rev_ticks, fwd_ticks = 0) { #' #' # compute rolling product of col1 and col2, using the previous 5 seconds #' th1 <- th$ -#' update_by(uby_rolling_prod_time(ts_col="timeCol", cols=c("col1RollProd = col1", "col2RollProd = col2"), rev_time="PT5s")) +#' update_by(uby_rolling_prod_time(ts_col = "timeCol", cols = c("col1RollProd = col1", "col2RollProd = col2"), rev_time = "PT5s")) #' #' # compute rolling product of col1 and col2, grouped by boolCol, using previous 5 seconds, and following 5 seconds #' th2 <- th$ -#' update_by(uby_rolling_prod_time(ts_col="timeCol", cols=c("col1RollProd = col1", "col2RollProd = col2"), rev_time="PT5s", fwd_ticks="PT5s")), by="boolCol") +#' update_by(uby_rolling_prod_time(ts_col = "timeCol", cols = c("col1RollProd = col1", "col2RollProd = col2"), rev_time = "PT5s", fwd_ticks = "PT5s"), by = "boolCol") #' #' # compute rolling product of col1 and col2, grouped by boolCol and parity of col3, using following 10 seconds #' th3 <- th$ #' update("col3Parity = col3 % 2")$ -#' update_by(uby_rolling_prod_time(ts_col="timeCol", cols=c("col1RollProd = col1", "col2RollProd = col2"), rev_time="PT0s", fwd_time="PT10s")), by=c("boolCol", "col3Parity")) +#' update_by(uby_rolling_prod_time(ts_col = "timeCol", cols = c("col1RollProd = col1", "col2RollProd = col2"), rev_time = "PT0s", fwd_time = "PT10s"), by = c("boolCol", "col3Parity")) #' #' client$close() #' } @@ -2350,6 +2322,9 @@ uby_rolling_prod_time <- function(ts_col, cols, rev_time, fwd_time = "PT0s") { #' function called an [`UpdateByOp`][UpdateByOp] intended to be used in a call to `update_by()`. This detail is typically #' hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of #' a `uby` function can otherwise seem unexpected. +#' +#' For more information, see the vignette on `uby` functions by running +#' `vignette("update_by")`. #' #' @param cols String or list of strings denoting the column(s) to operate on. Can be renaming expressions, i.e. “new_col = col”. #' Default is to compute the rolling count for all non-grouping columns. @@ -2362,12 +2337,12 @@ uby_rolling_prod_time <- function(ts_col, cols, rev_time, fwd_time = "PT0s") { #' library(rdeephaven) #' #' # connecting to Deephaven server -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +#' client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") #' #' # create data frame, push to server, retrieve TableHandle #' df <- data.frame( #' timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], -#' boolCol = sample(c(TRUE,FALSE), 500, TRUE), +#' boolCol = sample(c(TRUE, FALSE), 500, TRUE), #' col1 = sample(10000, size = 500, replace = TRUE), #' col2 = sample(10000, size = 500, replace = TRUE), #' col3 = 1:500 @@ -2376,16 +2351,16 @@ uby_rolling_prod_time <- function(ts_col, cols, rev_time, fwd_time = "PT0s") { #' #' # compute rolling count of col1 and col2, using the previous 5 rows and current row #' th1 <- th$ -#' update_by(uby_rolling_count_tick(cols=c("col1RollCount = col1", "col2RollCount = col2"), rev_ticks=6)) +#' update_by(uby_rolling_count_tick(cols = c("col1RollCount = col1", "col2RollCount = col2"), rev_ticks = 6)) #' #' # compute rolling count of col1 and col2, grouped by boolCol, using previous 5 rows, current row, and following 5 rows #' th2 <- th$ -#' update_by(uby_rolling_count_tick(cols=c("col1RollCount = col1", "col2RollCount = col2"), rev_ticks=6, fwd_ticks=5), by="boolCol") +#' update_by(uby_rolling_count_tick(cols = c("col1RollCount = col1", "col2RollCount = col2"), rev_ticks = 6, fwd_ticks = 5), by = "boolCol") #' #' # compute rolling count of col1 and col2, grouped by boolCol and parity of col3, using current row and following 10 rows #' th3 <- th$ #' update("col3Parity = col3 % 2")$ -#' update_by(uby_rolling_count_tick(cols=c("col1RollCount = col1", "col2RollCount = col2"), rev_ticks=1, fwd_ticks=10), by=c("boolCol", "col3Parity")) +#' update_by(uby_rolling_count_tick(cols = c("col1RollCount = col1", "col2RollCount = col2"), rev_ticks = 1, fwd_ticks = 10), by = c("boolCol", "col3Parity")) #' #' client$close() #' } @@ -2429,6 +2404,9 @@ uby_rolling_count_tick <- function(cols, rev_ticks, fwd_ticks = 0) { #' function called an [`UpdateByOp`][UpdateByOp] intended to be used in a call to `update_by()`. This detail is typically #' hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of #' a `uby` function can otherwise seem unexpected. +#' +#' For more information, see the vignette on `uby` functions by running +#' `vignette("update_by")`. #' #' @param ts_col String denoting the column to use as the timestamp. #' @param cols String or list of strings denoting the column(s) to operate on. Can be renaming expressions, i.e. “new_col = col”. @@ -2442,12 +2420,12 @@ uby_rolling_count_tick <- function(cols, rev_ticks, fwd_ticks = 0) { #' library(rdeephaven) #' #' # connecting to Deephaven server -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +#' client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") #' #' # create data frame, push to server, retrieve TableHandle #' df <- data.frame( #' timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], -#' boolCol = sample(c(TRUE,FALSE), 500, TRUE), +#' boolCol = sample(c(TRUE, FALSE), 500, TRUE), #' col1 = sample(10000, size = 500, replace = TRUE), #' col2 = sample(10000, size = 500, replace = TRUE), #' col3 = 1:500 @@ -2456,16 +2434,16 @@ uby_rolling_count_tick <- function(cols, rev_ticks, fwd_ticks = 0) { #' #' # compute rolling count of col1 and col2, using the previous 5 seconds #' th1 <- th$ -#' update_by(uby_rolling_count_time(ts_col="timeCol", cols=c("col1RollCount = col1", "col2RollCount = col2"), rev_time="PT5s")) +#' update_by(uby_rolling_count_time(ts_col = "timeCol", cols = c("col1RollCount = col1", "col2RollCount = col2"), rev_time = "PT5s")) #' #' # compute rolling count of col1 and col2, grouped by boolCol, using previous 5 seconds, and following 5 seconds #' th2 <- th$ -#' update_by(uby_rolling_count_time(ts_col="timeCol", cols=c("col1RollCount = col1", "col2RollCount = col2"), rev_time="PT5s", fwd_ticks="PT5s"), by="boolCol") +#' update_by(uby_rolling_count_time(ts_col = "timeCol", cols = c("col1RollCount = col1", "col2RollCount = col2"), rev_time = "PT5s", fwd_ticks = "PT5s"), by = "boolCol") #' #' # compute rolling count of col1 and col2, grouped by boolCol and parity of col3, using following 10 seconds #' th3 <- th$ #' update("col3Parity = col3 % 2")$ -#' update_by(uby_rolling_count_time(ts_col="timeCol", cols=c("col1RollCount = col1", "col2RollCount = col2"), rev_time="PT0s", fwd_time="PT10s"), by=c("boolCol", "col3Parity")) +#' update_by(uby_rolling_count_time(ts_col = "timeCol", cols = c("col1RollCount = col1", "col2RollCount = col2"), rev_time = "PT0s", fwd_time = "PT10s"), by = c("boolCol", "col3Parity")) #' #' client$close() #' } @@ -2513,6 +2491,9 @@ uby_rolling_count_time <- function(ts_col, cols, rev_time, fwd_time = "PT0s") { #' function called an [`UpdateByOp`][UpdateByOp] intended to be used in a call to `update_by()`. This detail is typically #' hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of #' a `uby` function can otherwise seem unexpected. +#' +#' For more information, see the vignette on `uby` functions by running +#' `vignette("update_by")`. #' #' @param cols String or list of strings denoting the column(s) to operate on. Can be renaming expressions, i.e. “new_col = col”. #' Default is to compute the rolling standard deviation for all non-grouping columns. @@ -2525,12 +2506,12 @@ uby_rolling_count_time <- function(ts_col, cols, rev_time, fwd_time = "PT0s") { #' library(rdeephaven) #' #' # connecting to Deephaven server -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +#' client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") #' #' # create data frame, push to server, retrieve TableHandle #' df <- data.frame( #' timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], -#' boolCol = sample(c(TRUE,FALSE), 500, TRUE), +#' boolCol = sample(c(TRUE, FALSE), 500, TRUE), #' col1 = sample(10000, size = 500, replace = TRUE), #' col2 = sample(10000, size = 500, replace = TRUE), #' col3 = 1:500 @@ -2539,16 +2520,16 @@ uby_rolling_count_time <- function(ts_col, cols, rev_time, fwd_time = "PT0s") { #' #' # compute rolling standard deviation of col1 and col2, using the previous 5 rows and current row #' th1 <- th$ -#' update_by(uby_rolling_std_tick(cols=c("col1RollStd = col1", "col2RollStd = col2"), rev_ticks=6)) +#' update_by(uby_rolling_std_tick(cols = c("col1RollStd = col1", "col2RollStd = col2"), rev_ticks = 6)) #' #' # compute rolling standard deviation of col1 and col2, grouped by boolCol, using previous 5 rows, current row, and following 5 rows #' th2 <- th$ -#' update_by(uby_rolling_std_tick(cols=c("col1RollStd = col1", "col2RollStd = col2"), rev_ticks=6, fwd_ticks=5), by="boolCol") +#' update_by(uby_rolling_std_tick(cols = c("col1RollStd = col1", "col2RollStd = col2"), rev_ticks = 6, fwd_ticks = 5), by = "boolCol") #' #' # compute rolling standard deviation of col1 and col2, grouped by boolCol and parity of col3, using current row and following 10 rows #' th3 <- th$ #' update("col3Parity = col3 % 2")$ -#' update_by(uby_rolling_std_tick(cols=c("col1RollStd = col1", "col2RollStd = col2"), rev_ticks=1, fwd_ticks=10), by=c("boolCol", "col3Parity")) +#' update_by(uby_rolling_std_tick(cols = c("col1RollStd = col1", "col2RollStd = col2"), rev_ticks = 1, fwd_ticks = 10), by = c("boolCol", "col3Parity")) #' #' client$close() #' } @@ -2592,6 +2573,9 @@ uby_rolling_std_tick <- function(cols, rev_ticks, fwd_ticks = 0) { #' function called an [`UpdateByOp`][UpdateByOp] intended to be used in a call to `update_by()`. This detail is typically #' hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of #' a `uby` function can otherwise seem unexpected. +#' +#' For more information, see the vignette on `uby` functions by running +#' `vignette("update_by")`. #' #' @param ts_col String denoting the column to use as the timestamp. #' @param cols String or list of strings denoting the column(s) to operate on. Can be renaming expressions, i.e. “new_col = col”. @@ -2605,12 +2589,12 @@ uby_rolling_std_tick <- function(cols, rev_ticks, fwd_ticks = 0) { #' library(rdeephaven) #' #' # connecting to Deephaven server -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +#' client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") #' #' # create data frame, push to server, retrieve TableHandle #' df <- data.frame( #' timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], -#' boolCol = sample(c(TRUE,FALSE), 500, TRUE), +#' boolCol = sample(c(TRUE, FALSE), 500, TRUE), #' col1 = sample(10000, size = 500, replace = TRUE), #' col2 = sample(10000, size = 500, replace = TRUE), #' col3 = 1:500 @@ -2619,16 +2603,16 @@ uby_rolling_std_tick <- function(cols, rev_ticks, fwd_ticks = 0) { #' #' # compute rolling standard deviation of col1 and col2, using the previous 5 seconds #' th1 <- th$ -#' update_by(uby_rolling_std_time(ts_col="timeCol", cols=c("col1RollStd = col1", "col2RollStd = col2"), rev_time="PT5s")) +#' update_by(uby_rolling_std_time(ts_col = "timeCol", cols = c("col1RollStd = col1", "col2RollStd = col2"), rev_time = "PT5s")) #' #' # compute rolling standard deviation of col1 and col2, grouped by boolCol, using previous 5 seconds, and following 5 seconds #' th2 <- th$ -#' update_by(uby_rolling_std_time(ts_col="timeCol", cols=c("col1RollStd = col1", "col2RollStd = col2"), rev_time="PT5s", fwd_ticks="PT5s"), by="boolCol") +#' update_by(uby_rolling_std_time(ts_col = "timeCol", cols = c("col1RollStd = col1", "col2RollStd = col2"), rev_time = "PT5s", fwd_ticks = "PT5s"), by = "boolCol") #' #' # compute rolling standard deviation of col1 and col2, grouped by boolCol and parity of col3, using following 10 seconds #' th3 <- th$ #' update("col3Parity = col3 % 2")$ -#' update_by(uby_rolling_std_time(ts_col="timeCol", cols=c("col1RollStd = col1", "col2RollStd = col2"), rev_time="PT0s", fwd_time="PT10s"), by=c("boolCol", "col3Parity")) +#' update_by(uby_rolling_std_time(ts_col = "timeCol", cols = c("col1RollStd = col1", "col2RollStd = col2"), rev_time = "PT0s", fwd_time = "PT10s"), by = c("boolCol", "col3Parity")) #' #' client$close() #' } @@ -2676,6 +2660,9 @@ uby_rolling_std_time <- function(ts_col, cols, rev_time, fwd_time = "PT0s") { #' function called an [`UpdateByOp`][UpdateByOp] intended to be used in a call to `update_by()`. This detail is typically #' hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of #' a `uby` function can otherwise seem unexpected. +#' +#' For more information, see the vignette on `uby` functions by running +#' `vignette("update_by")`. #' #' @param wcol String denoting the column to use for weights. This must be a numeric column. #' @param cols String or list of strings denoting the column(s) to operate on. Can be renaming expressions, i.e. “new_col = col”. @@ -2689,12 +2676,12 @@ uby_rolling_std_time <- function(ts_col, cols, rev_time, fwd_time = "PT0s") { #' library(rdeephaven) #' #' # connecting to Deephaven server -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +#' client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") #' #' # create data frame, push to server, retrieve TableHandle #' df <- data.frame( #' timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], -#' boolCol = sample(c(TRUE,FALSE), 500, TRUE), +#' boolCol = sample(c(TRUE, FALSE), 500, TRUE), #' col1 = sample(10000, size = 500, replace = TRUE), #' col2 = sample(10000, size = 500, replace = TRUE), #' col3 = 1:500 @@ -2703,16 +2690,16 @@ uby_rolling_std_time <- function(ts_col, cols, rev_time, fwd_time = "PT0s") { #' #' # compute rolling weighted average of col1 and col2, weighted by col3, using the previous 5 rows and current row #' th1 <- th$ -#' update_by(uby_rolling_wavg_tick(wcol="col3", cols=c("col1RollWAvg = col1", "col2RollWAvg = col2"), rev_ticks=6)) +#' update_by(uby_rolling_wavg_tick(wcol = "col3", cols = c("col1RollWAvg = col1", "col2RollWAvg = col2"), rev_ticks = 6)) #' #' # compute rolling weighted average of col1 and col2, weighted by col3, grouped by boolCol, using previous 5 rows, current row, and following 5 rows #' th2 <- th$ -#' update_by(uby_rolling_wavg_tick(wcol="col3", cols=c("col1RollWAvg = col1", "col2RollWAvg = col2"), rev_ticks=6, fwd_ticks=5), by="boolCol") +#' update_by(uby_rolling_wavg_tick(wcol = "col3", cols = c("col1RollWAvg = col1", "col2RollWAvg = col2"), rev_ticks = 6, fwd_ticks = 5), by = "boolCol") #' #' # compute rolling weighted average of col1 and col2, weighted by col3, grouped by boolCol and parity of col3, using current row and following 10 rows #' th3 <- th$ #' update("col3Parity = col3 % 2")$ -#' update_by(uby_rolling_wavg_tick(wcol="col3", cols=c("col1RollWAvg = col1", "col2RollWAvg = col2"), rev_ticks=1, fwd_ticks=10), by=c("boolCol", "col3Parity")) +#' update_by(uby_rolling_wavg_tick(wcol = "col3", cols = c("col1RollWAvg = col1", "col2RollWAvg = col2"), rev_ticks = 1, fwd_ticks = 10), by = c("boolCol", "col3Parity")) #' #' client$close() #' } @@ -2757,6 +2744,9 @@ uby_rolling_wavg_tick <- function(wcol, cols, rev_ticks, fwd_ticks = 0) { #' function called an [`UpdateByOp`][UpdateByOp] intended to be used in a call to `update_by()`. This detail is typically #' hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of #' a `uby` function can otherwise seem unexpected. +#' +#' For more information, see the vignette on `uby` functions by running +#' `vignette("update_by")`. #' #' @param ts_col String denoting the column to use as the timestamp. #' @param wcol String denoting the column to use for weights. This must be a numeric column. @@ -2771,12 +2761,12 @@ uby_rolling_wavg_tick <- function(wcol, cols, rev_ticks, fwd_ticks = 0) { #' library(rdeephaven) #' #' # connecting to Deephaven server -#' client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +#' client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") #' #' # create data frame, push to server, retrieve TableHandle #' df <- data.frame( #' timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], -#' boolCol = sample(c(TRUE,FALSE), 500, TRUE), +#' boolCol = sample(c(TRUE, FALSE), 500, TRUE), #' col1 = sample(10000, size = 500, replace = TRUE), #' col2 = sample(10000, size = 500, replace = TRUE), #' col3 = 1:500 @@ -2785,16 +2775,16 @@ uby_rolling_wavg_tick <- function(wcol, cols, rev_ticks, fwd_ticks = 0) { #' #' # compute rolling weighted average of col1 and col2, weighted by col3, using the previous 5 seconds #' th1 <- th$ -#' update_by(uby_rolling_wavg_time(ts_col="timeCol", wcol="col3", cols=c("col1RollWAvg = col1", "col2RollWAvg = col2"), rev_time="PT5s")) +#' update_by(uby_rolling_wavg_time(ts_col = "timeCol", wcol = "col3", cols = c("col1RollWAvg = col1", "col2RollWAvg = col2"), rev_time = "PT5s")) #' #' # compute rolling weighted average of col1 and col2, weighted by col3, grouped by boolCol, using previous 5 seconds, and following 5 seconds #' th2 <- th$ -#' update_by(uby_rolling_wavg_time(ts_col="timeCol", wcol="col3", cols=c("col1RollWAvg = col1", "col2RollWAvg = col2"), rev_time="PT5s", fwd_ticks="PT5s"), by="boolCol") +#' update_by(uby_rolling_wavg_time(ts_col = "timeCol", wcol = "col3", cols = c("col1RollWAvg = col1", "col2RollWAvg = col2"), rev_time = "PT5s", fwd_ticks = "PT5s"), by = "boolCol") #' #' # compute rolling weighted average of col1 and col2, weighted by col3, grouped by boolCol and parity of col3, using following 10 seconds #' th3 <- th$ #' update("col3Parity = col3 % 2")$ -#' update_by(uby_rolling_wavg_time(ts_col="timeCol", wcol="col3", cols=c("col1RollWAvg = col1", "col2RollWAvg = col2"), rev_time="PT0s", fwd_time="PT10s"), by=c("boolCol", "col3Parity")) +#' update_by(uby_rolling_wavg_time(ts_col = "timeCol", wcol = "col3", cols = c("col1RollWAvg = col1", "col2RollWAvg = col2"), rev_time = "PT0s", fwd_time = "PT10s"), by = c("boolCol", "col3Parity")) #' #' client$close() #' } diff --git a/R/rdeephaven/R/utility_functions.R b/R/rdeephaven/R/utility_functions.R index 579fd85b964..54226772ee3 100644 --- a/R/rdeephaven/R/utility_functions.R +++ b/R/rdeephaven/R/utility_functions.R @@ -3,29 +3,28 @@ first_class <- function(arg) { } vector_wrong_element_type_or_value <- function(arg_name, candidate, type_message, descriptor_message) { - stripped_type_message = sub(".*? ", "", type_message) + stripped_type_message <- sub(".*? ", "", type_message) return(paste0("'", arg_name, "' must be ", type_message, ", or a vector of ", stripped_type_message, "s", descriptor_message, ". Got a vector with at least one element that is not ", type_message, descriptor_message, ".")) } vector_wrong_type <- function(arg_name, candidate, type_message, descriptor_message) { - stripped_type_message = sub(".*? ", "", type_message) + stripped_type_message <- sub(".*? ", "", type_message) return(paste0("'", arg_name, "' must be ", type_message, " or a vector of ", stripped_type_message, "s", descriptor_message, ". Got an object of class ", first_class(candidate), ".")) } vector_needed_scalar <- function(arg_name, candidate, type_message, descriptor_message) { - stripped_type_message = sub(".*? ", "", type_message) + stripped_type_message <- sub(".*? ", "", type_message) return(paste0("'", arg_name, "' must be a single ", stripped_type_message, descriptor_message, ". Got a vector of length ", length(candidate), ".")) } scalar_wrong_type <- function(arg_name, candidate, type_message, descriptor_message) { - stripped_type_message = sub(".*? ", "", type_message) + stripped_type_message <- sub(".*? ", "", type_message) return(paste0("'", arg_name, "' must be a single ", stripped_type_message, descriptor_message, ". Got an object of class ", first_class(candidate), ".")) } scalar_wrong_value <- function(arg_name, candidate, type_message, descriptor_message) { - stripped_type_message = sub(".*? ", "", type_message) + stripped_type_message <- sub(".*? ", "", type_message) return(paste0("'", arg_name, "' must be a single ", stripped_type_message, descriptor_message, ". Got '", arg_name, "' = ", candidate, ".")) } # if required_type is a list, this will not behave correctly because of R's type coercion rules verify_type <- function(arg_name, candidate, is_scalar, required_type, type_message, descriptor_message = "") { - if (!is_scalar && (first_class(candidate) == "list")) { if (any(lapply(candidate, first_class) != required_type)) { stop(vector_wrong_element_type_or_value(arg_name, candidate, type_message, descriptor_message)) @@ -49,7 +48,6 @@ verify_type <- function(arg_name, candidate, is_scalar, required_type, type_mess # does not attempt to verify that candidate is numeric, intended to be used after `verify_type()` verify_int <- function(arg_name, candidate, is_scalar, type_message, descriptor_message = "") { - if (is_scalar && (length(c(candidate)) != 1)) { stop(vector_needed_scalar(arg_name, candidate, type_message, descriptor_message)) } else if (candidate != as.integer(candidate)) { @@ -63,12 +61,10 @@ verify_int <- function(arg_name, candidate, is_scalar, type_message, descriptor_ # does not attempt to verify that candidate is numeric, intended to be used after `verify_type()` verify_in_range <- function(arg_name, candidate, is_scalar, type_message, descriptor_message, lb, ub, lb_open, ub_open) { - if (is_scalar && (length(c(candidate)) != 1)) { - stripped_type_message = sub(".*? ", "", type_message) + stripped_type_message <- sub(".*? ", "", type_message) stop(paste0("Every element of '", arg_name, "' must be ", stripped_type_message, range_message, ". Got at least one element that is not ", stripped_type_message, range_message, ".")) - } - else if (((!is.null(lb)) && ((any(candidate <= lb) && (lb_open)) || (any(candidate < lb) && (!lb_open)))) || + } else if (((!is.null(lb)) && ((any(candidate <= lb) && (lb_open)) || (any(candidate < lb) && (!lb_open)))) || ((!is.null(ub)) && ((any(candidate >= ub) && (ub_open)) || (any(candidate > ub) && (!ub_open))))) { if (!is_scalar) { stop(vector_wrong_element_type_or_value(arg_name, candidate, type_message, descriptor_message)) diff --git a/R/rdeephaven/README.md b/R/rdeephaven/README.md index b799f7e79b7..eec85cd5371 100644 --- a/R/rdeephaven/README.md +++ b/R/rdeephaven/README.md @@ -1,11 +1,12 @@ -# The Deephaven R Client -The Deephaven R client is an R package that enables R users to interface with a Deephaven server and perform various +# The Deephaven Core R Client + +The Deephaven Core R client is an R package that enables R users to interface with a Deephaven server and perform various server-side operations from the comfort of RStudio or any other R interface. ## What can the R client do? -The Deephaven Client provides the following functionalities: +The R Client provides the following functionalities: 1. Connect to a Deephaven server - with anonymous authentication (no username or password) @@ -112,13 +113,13 @@ Currently, the R client is only supported on Ubuntu 20.04 or 22.04 and must be b ```r install.packages(c('Rcpp', 'arrow', 'R6', 'dplyr')) ``` - then install the deephaven client itself: + Then, exit the R console with `quit()`. From the rdeephaven directory, build and install the R client: ```r - install.packages(".", repos=NULL, type="source") + cd .. && R CMD build rdeephaven && R CMD INSTALL --no-multiarch --with-keep.source rdeephaven_*.tar.gz && rm rdeephaven_*.tar.gz ``` - This last command can also be executed from RStudio without the need for explicitly starting an R console. + This is needed over the typical `install.packages()` to ensure that the vignettes get built and installed. + - --- **NOTE** If using RStudio for this step, the environment variables that were set in step 3 may not persist into the RStudio @@ -138,15 +139,17 @@ Currently, the R client is only supported on Ubuntu 20.04 or 22.04 and must be b for the RStudio Server installation (the location of that file may depend on your particular RStudio server installation, but a common location is `/etc/rstudio/rserver.conf`). - --- + 6. Now, run ```r library(rdeephaven) ``` in the R session, and start using the client! + + For an introduction to the package, run `vignette("rdeephaven")`. + ---- **NOTE** If an error like this occurs in step 4: @@ -167,7 +170,7 @@ this means that the C++ compiler does not know where to find the relevant header export DHCPP=/path/to/dhcpp ``` 3. The Deephaven C++ client is installed and the `DHCPP` environment variable is set, but the current project is not configured to allow the compiler to access the Deephaven `dhcpp` and `src` directories. This is more difficult to give advice on, as it is an IDE-dependent problem. Consult your IDE's documentation on C/C++ compiler include paths for more information. ---- + ## Running the unit tests diff --git a/R/rdeephaven/inst/tests/testthat/helper.R b/R/rdeephaven/inst/tests/testthat/helper.R index fcb9ad5703c..862a5bd1595 100644 --- a/R/rdeephaven/inst/tests/testthat/helper.R +++ b/R/rdeephaven/inst/tests/testthat/helper.R @@ -1,11 +1,11 @@ get_dh_target <- function() { - dh_host = Sys.getenv("DH_HOST") - if (dh_host == '') { - dh_host = "localhost" + dh_host <- Sys.getenv("DH_HOST") + if (dh_host == "") { + dh_host <- "localhost" } - dh_port = Sys.getenv("DH_PORT") - if (dh_port == '') { - dh_port = 10000 + dh_port <- Sys.getenv("DH_PORT") + if (dh_port == "") { + dh_port <- 10000 } - return(paste0(dh_host, ':', dh_port)) + return(paste0(dh_host, ":", dh_port)) } diff --git a/R/rdeephaven/inst/tests/testthat/test_agg_by.R b/R/rdeephaven/inst/tests/testthat/test_agg_by.R index 1b7a7f7d49c..8d6cc0e13ce 100644 --- a/R/rdeephaven/inst/tests/testthat/test_agg_by.R +++ b/R/rdeephaven/inst/tests/testthat/test_agg_by.R @@ -960,14 +960,20 @@ test_that("agg_count behaves as expected", { test_that("agg_by behaves nicely when given bad input", { data <- setup() - expect_error(data$th1$agg_by(agg_first()), - "Aggregations with no columns cannot be used in 'agg_by'. Got 'agg_first' at index 1 with an empty 'cols' argument.") + expect_error( + data$th1$agg_by(agg_first()), + "Aggregations with no columns cannot be used in 'agg_by'. Got 'agg_first' at index 1 with an empty 'cols' argument." + ) - expect_error(data$th1$agg_by(c(agg_first("int_col"), agg_last())), - "Aggregations with no columns cannot be used in 'agg_by'. Got 'agg_last' at index 2 with an empty 'cols' argument.") + expect_error( + data$th1$agg_by(c(agg_first("int_col"), agg_last())), + "Aggregations with no columns cannot be used in 'agg_by'. Got 'agg_last' at index 2 with an empty 'cols' argument." + ) - expect_error(data$th1$agg_by(c(agg_first("int_col"), agg_last("int_col"), agg_count("n"), agg_avg())), - "Aggregations with no columns cannot be used in 'agg_by'. Got 'agg_avg' at index 4 with an empty 'cols' argument.") + expect_error( + data$th1$agg_by(c(agg_first("int_col"), agg_last("int_col"), agg_count("n"), agg_avg())), + "Aggregations with no columns cannot be used in 'agg_by'. Got 'agg_avg' at index 4 with an empty 'cols' argument." + ) data$client$close() }) diff --git a/R/rdeephaven/inst/tests/testthat/test_client_wrapper.R b/R/rdeephaven/inst/tests/testthat/test_client_wrapper.R index 65d8902a419..686b532cc24 100644 --- a/R/rdeephaven/inst/tests/testthat/test_client_wrapper.R +++ b/R/rdeephaven/inst/tests/testthat/test_client_wrapper.R @@ -30,9 +30,7 @@ setup <- function() { ##### TESTING GOOD INPUTS ##### test_that("client dhConnection works in the simple case of anonymous authentication", { - expect_no_error(client <- Client$new(target = target)) - }) test_that("import_table does not fail with data frame inputs of simple column types", { @@ -150,7 +148,6 @@ int_col("Name_Int_Col", [44, 55, 66]) ##### TESTING BAD INPUTS ##### test_that("client constructor fails nicely with bad inputs", { - expect_error( Client$new(target = target, auth_type = "basic"), "Basic authentication was requested, but 'auth_token' was not provided, and at most one of 'username' or 'password' was provided. Please provide either 'username' and 'password', or 'auth_token'." @@ -239,7 +236,6 @@ test_that("client constructor fails nicely with bad inputs", { Client$new(target = target, extra_headers = list(a = 123)), "'value' must be a single string. Got an object of class numeric." ) - }) test_that("import_table fails nicely with bad inputs", { @@ -298,8 +294,10 @@ test_that("run_script fails nicely with bad input types", { }) test_that("Running Client$new with wrong argument types gives good errors", { - expect_error(Client$new(12345), - "Client initialize first argument must be either a string or an Rcpp::XPtr object.") + expect_error( + Client$new(12345), + "Client initialize first argument must be either a string or an Rcpp::XPtr object." + ) }) test_that("A Client created from an Rcpp::XPtr is functional.", { @@ -309,7 +307,7 @@ test_that("A Client created from an Rcpp::XPtr is functional.", { client2 <- Client$new(client_xptr) t <- client2$open_table("t") df <- t$as_data_frame() - expect_true(df[1,1] == 42) + expect_true(df[1, 1] == 42) client$close() }) @@ -318,7 +316,7 @@ test_that("ticket_to_table works.", { client$empty_table(1)$update("A = 43")$bind_to_variable("t") t <- client$ticket_to_table("s/t") df <- t$as_data_frame() - expect_true(df[1,1] == 43) + expect_true(df[1, 1] == 43) client$close() }) diff --git a/R/rdeephaven/inst/tests/testthat/test_table_handle_wrapper.R b/R/rdeephaven/inst/tests/testthat/test_table_handle_wrapper.R index 3c8d1627a33..a16ee21c3e3 100644 --- a/R/rdeephaven/inst/tests/testthat/test_table_handle_wrapper.R +++ b/R/rdeephaven/inst/tests/testthat/test_table_handle_wrapper.R @@ -68,23 +68,23 @@ test_that("nrow returns the correct number of rows", { test_that("ncol returns the correct number of columns", { data <- setup() - + expect_equal(ncol(data$th1), ncol(data$df1)) expect_equal(ncol(data$th2), ncol(data$df2)) expect_equal(ncol(data$th3), ncol(data$df3)) expect_equal(ncol(data$th4), ncol(data$df4)) - + data$client$close() }) test_that("dim returns the correct dimension", { data <- setup() - + expect_equal(dim(data$th1), dim(data$df1)) expect_equal(dim(data$th2), dim(data$df2)) expect_equal(dim(data$th3), dim(data$df3)) expect_equal(dim(data$th4), dim(data$df4)) - + data$client$close() }) diff --git a/R/rdeephaven/inst/tests/testthat/test_table_ops.R b/R/rdeephaven/inst/tests/testthat/test_table_ops.R index e47afa3847e..fe08d316d0a 100644 --- a/R/rdeephaven/inst/tests/testthat/test_table_ops.R +++ b/R/rdeephaven/inst/tests/testthat/test_table_ops.R @@ -59,32 +59,32 @@ setup <- function() { test_that("merge_tables behaves as expected", { data <- setup() - + new_df1 <- rbind(data$df5) new_th1a <- data$th5$merge() new_th1b <- merge_tables(data$th5) expect_equal(as.data.frame(new_th1a), new_df1) expect_equal(as.data.frame(new_th1b), new_df1) - + new_df2 <- rbind(data$df5, data$df6) new_th2a <- data$th5$merge(data$th6) new_th2b <- merge_tables(data$th5, data$th6) expect_equal(as.data.frame(new_th2a), new_df2) expect_equal(as.data.frame(new_th2b), new_df2) - + new_df3 <- rbind(data$df5, data$df6, data$df6, data$df5) new_th3a <- data$th5$merge(data$th6, data$th6, data$th5) new_th3b <- merge_tables(data$th5, data$th6, data$th6, data$th5) expect_equal(as.data.frame(new_th3a), new_df3) expect_equal(as.data.frame(new_th3b), new_df3) - + new_th4a <- data$th5$merge(c(data$th6)) new_th4b <- merge_tables(data$th5, c(data$th6)) new_th4c <- merge_tables(c(data$th5, data$th6)) expect_equal(as.data.frame(new_th4a), new_df2) expect_equal(as.data.frame(new_th4b), new_df2) expect_equal(as.data.frame(new_th4c), new_df2) - + new_th5a <- data$th5$merge(c(data$th6, NULL, data$th6, data$th5)) new_th5b <- merge_tables(data$th5, c(data$th6, NULL, data$th6, data$th5)) new_th5c <- merge_tables(c(data$th5, data$th6, NULL, data$th6, data$th5)) @@ -97,7 +97,7 @@ test_that("merge_tables behaves as expected", { expect_equal(as.data.frame(new_th5d), new_df3) expect_equal(as.data.frame(new_th5e), new_df3) expect_equal(as.data.frame(new_th5f), new_df3) - + data$client$close() }) @@ -773,9 +773,9 @@ test_that("join behaves as expected", { new_th1 <- data$th5$ join(data$th6, - on = character(), - joins = c("X_y = X", "Y_y = Y", "Number1_y = Number1", "Number2_y = Number2") - ) + on = character(), + joins = c("X_y = X", "Y_y = Y", "Number1_y = Number1", "Number2_y = Number2") + ) new_tb1 <- data$df5 %>% cross_join(data$df6) %>% rename( @@ -795,9 +795,9 @@ test_that("natural_join behaves as expected", { avg_by("X") new_th1 <- data$th5$ natural_join(new_th2, - on = "X", - joins = c("Number3 = Number1", "Number4 = Number2") - ) + on = "X", + joins = c("Number3 = Number1", "Number4 = Number2") + ) new_tb2 <- data$df6 %>% select(-Y) %>% @@ -822,9 +822,9 @@ test_that("exact_join behaves as expected", { avg_by("X") new_th1 <- data$th5$ exact_join(new_th2, - on = "X", - joins = c("Number3 = Number1", "Number4 = Number2") - ) + on = "X", + joins = c("Number3 = Number1", "Number4 = Number2") + ) new_tb2 <- data$df6 %>% select(-Y) %>% diff --git a/R/rdeephaven/inst/tests/testthat/test_update_by.R b/R/rdeephaven/inst/tests/testthat/test_update_by.R index 7b858e3e909..372e04c265a 100644 --- a/R/rdeephaven/inst/tests/testthat/test_update_by.R +++ b/R/rdeephaven/inst/tests/testthat/test_update_by.R @@ -6,7 +6,7 @@ library(zoo) # We suppress warnings because warnings are thrown when min() and max() are # applied to empty sets, which happens in the pure-R versions of rolling_*_time() -options(warn=-1) +options(warn = -1) setup <- function() { df1 <- data.frame( @@ -26,7 +26,7 @@ setup <- function() { bool_col = sample(c(TRUE, FALSE), 250000, TRUE), int_col = sample(0:10000, 250000, TRUE) ) - + deterministic_df3 <- data.frame( time_col = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 30), by = "1 sec")[1:500], bool_col = rep(c(TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, TRUE), 50), @@ -57,14 +57,24 @@ setup <- function() { deterministic_th3 <- client$import_table(deterministic_df3) th4 <- client$import_table(df4) th5 <- client$import_table(df5) - + # create variants with missing data to test NULL stuff - null_df1 <- as.data.frame(lapply(df1, function(x) {replace(x, sample(length(x), .5*length(x)), NA)})) - null_df2 <- as.data.frame(lapply(df2, function(x) {replace(x, sample(length(x), .5*length(x)), NA)})) - null_df3 <- as.data.frame(lapply(df3, function(x) {replace(x, sample(length(x), .5*length(x)), NA)})) - null_df4 <- as.data.frame(lapply(df4, function(x) {replace(x, sample(length(x), .5*length(x)), NA)})) - null_df5 <- as.data.frame(lapply(df5, function(x) {replace(x, sample(length(x), .5*length(x)), NA)})) - + null_df1 <- as.data.frame(lapply(df1, function(x) { + replace(x, sample(length(x), .5 * length(x)), NA) + })) + null_df2 <- as.data.frame(lapply(df2, function(x) { + replace(x, sample(length(x), .5 * length(x)), NA) + })) + null_df3 <- as.data.frame(lapply(df3, function(x) { + replace(x, sample(length(x), .5 * length(x)), NA) + })) + null_df4 <- as.data.frame(lapply(df4, function(x) { + replace(x, sample(length(x), .5 * length(x)), NA) + })) + null_df5 <- as.data.frame(lapply(df5, function(x) { + replace(x, sample(length(x), .5 * length(x)), NA) + })) + null_th1 <- client$import_table(null_df1) null_th2 <- client$import_table(null_df2) null_th3 <- client$import_table(null_df3) @@ -89,300 +99,300 @@ custom_rolling_time_op <- function(col, group_col, ...) { test_that("uby_cum_sum behaves as expected", { data <- setup() - + new_tb1 <- data$df1 %>% mutate(sum_int_col = cumsum(int_col)) new_th1 <- data$th1$ update_by(uby_cum_sum("sum_int_col = int_col")) expect_equal(as.data.frame(new_th1), as.data.frame(new_tb1)) - + new_tb2 <- data$df2 %>% mutate(sum_col1 = cumsum(col1), sum_col3 = cumsum(col3)) new_th2 <- data$th2$ update_by(uby_cum_sum(c("sum_col1 = col1", "sum_col3 = col3"))) expect_equal(as.data.frame(new_th2), as.data.frame(new_tb2)) - + new_tb3 <- data$df3 %>% group_by(bool_col) %>% mutate(sum_int_col = cumsum(int_col)) new_th3 <- data$th3$ update_by(uby_cum_sum("sum_int_col = int_col"), by = "bool_col") expect_equal(as.data.frame(new_th3), as.data.frame(new_tb3)) - + new_tb4 <- data$df4 %>% group_by(X) %>% mutate(sum_Number1 = cumsum(Number1), sum_Number2 = cumsum(Number2)) new_th4 <- data$th4$ update_by(uby_cum_sum(c("sum_Number1 = Number1", "sum_Number2 = Number2")), by = "X") expect_equal(as.data.frame(new_th4), as.data.frame(new_tb4)) - + new_tb5 <- data$df5 %>% group_by(Y) %>% mutate(sum_Number1 = cumsum(Number1), sum_Number2 = cumsum(Number2)) new_th5 <- data$th5$ update_by(uby_cum_sum(c("sum_Number1 = Number1", "sum_Number2 = Number2")), by = "Y") expect_equal(as.data.frame(new_th5), as.data.frame(new_tb5)) - + new_tb6 <- rbind(data$df4, data$df5, data$df4, data$df5) %>% group_by(X, Y) %>% mutate(sum_Number1 = cumsum(Number1), sum_Number2 = cumsum(Number2)) new_th6 <- merge_tables(data$th4, data$th5, data$th4, data$th5)$ update_by(uby_cum_sum(c("sum_Number1 = Number1", "sum_Number2 = Number2")), by = c("X", "Y")) expect_equal(as.data.frame(new_th6), as.data.frame(new_tb6)) - + data$client$close() }) test_that("uby_cum_prod behaves as expected", { data <- setup() - + new_tb1 <- data$df1 %>% mutate(prod_int_col = cumprod(int_col)) new_th1 <- data$th1$ update_by(uby_cum_prod("prod_int_col = int_col")) expect_equal(as.data.frame(new_th1), as.data.frame(new_tb1)) - + new_tb2 <- data$df2 %>% mutate(prod_col1 = cumprod(col1), prod_col3 = cumprod(col3)) new_th2 <- data$th2$ update_by(uby_cum_prod(c("prod_col1 = col1", "prod_col3 = col3"))) expect_equal(as.data.frame(new_th2), as.data.frame(new_tb2)) - + # Using df3 yields gigantic products, which leads to overflow on the server # due to the column being an int. Clients cannot cast to java BigInt type, # so once a table has an int type, we cannot change it from here. Thus, using # cum_prod on int columns from R should be done with an abundance of caution, # and probably not at all. Make it a double before pushing to the server. - + new_tb4 <- data$df4 %>% group_by(X) %>% mutate(prod_Number1 = cumprod(Number1), prod_Number2 = cumprod(Number2)) new_th4 <- data$th4$ update_by(uby_cum_prod(c("prod_Number1 = Number1", "prod_Number2 = Number2")), by = "X") expect_equal(as.data.frame(new_th4), as.data.frame(new_tb4)) - + new_tb5 <- data$df5 %>% group_by(Y) %>% mutate(prod_Number1 = cumprod(Number1), prod_Number2 = cumprod(Number2)) new_th5 <- data$th5$ update_by(uby_cum_prod(c("prod_Number1 = Number1", "prod_Number2 = Number2")), by = "Y") expect_equal(as.data.frame(new_th5), as.data.frame(new_tb5)) - + new_tb6 <- rbind(data$df4, data$df5, data$df4, data$df5) %>% group_by(X, Y) %>% mutate(prod_Number1 = cumprod(Number1), prod_Number2 = cumprod(Number2)) new_th6 <- merge_tables(data$th4, data$th5, data$th4, data$th5)$ update_by(uby_cum_prod(c("prod_Number1 = Number1", "prod_Number2 = Number2")), by = c("X", "Y")) expect_equal(as.data.frame(new_th6), as.data.frame(new_tb6)) - + data$client$close() }) test_that("uby_cum_min behaves as expected", { data <- setup() - + new_tb1 <- data$df1 %>% mutate(min_int_col = cummin(int_col)) new_th1 <- data$th1$ update_by(uby_cum_min("min_int_col = int_col")) expect_equal(as.data.frame(new_th1), as.data.frame(new_tb1)) - + new_tb2 <- data$df2 %>% mutate(min_col1 = cummin(col1), min_col3 = cummin(col3)) new_th2 <- data$th2$ update_by(uby_cum_min(c("min_col1 = col1", "min_col3 = col3"))) expect_equal(as.data.frame(new_th2), as.data.frame(new_tb2)) - + new_tb3 <- data$df3 %>% group_by(bool_col) %>% mutate(min_int_col = cummin(int_col)) new_th3 <- data$th3$ update_by(uby_cum_min("min_int_col = int_col"), by = "bool_col") expect_equal(as.data.frame(new_th3), as.data.frame(new_tb3)) - + new_tb4 <- data$df4 %>% group_by(X) %>% mutate(min_Number1 = cummin(Number1), min_Number2 = cummin(Number2)) new_th4 <- data$th4$ update_by(uby_cum_min(c("min_Number1 = Number1", "min_Number2 = Number2")), by = "X") expect_equal(as.data.frame(new_th4), as.data.frame(new_tb4)) - + new_tb5 <- data$df5 %>% group_by(Y) %>% mutate(min_Number1 = cummin(Number1), min_Number2 = cummin(Number2)) new_th5 <- data$th5$ update_by(uby_cum_min(c("min_Number1 = Number1", "min_Number2 = Number2")), by = "Y") expect_equal(as.data.frame(new_th5), as.data.frame(new_tb5)) - + new_tb6 <- rbind(data$df4, data$df5, data$df4, data$df5) %>% group_by(X, Y) %>% mutate(min_Number1 = cummin(Number1), min_Number2 = cummin(Number2)) new_th6 <- merge_tables(data$th4, data$th5, data$th4, data$th5)$ update_by(uby_cum_min(c("min_Number1 = Number1", "min_Number2 = Number2")), by = c("X", "Y")) expect_equal(as.data.frame(new_th6), as.data.frame(new_tb6)) - + data$client$close() }) test_that("uby_cum_max behaves as expected", { data <- setup() - + new_tb1 <- data$df1 %>% mutate(max_int_col = cummax(int_col)) new_th1 <- data$th1$ update_by(uby_cum_max("max_int_col = int_col")) expect_equal(as.data.frame(new_th1), as.data.frame(new_tb1)) - + new_tb2 <- data$df2 %>% mutate(max_col1 = cummax(col1), max_col3 = cummax(col3)) new_th2 <- data$th2$ update_by(uby_cum_max(c("max_col1 = col1", "max_col3 = col3"))) expect_equal(as.data.frame(new_th2), as.data.frame(new_tb2)) - + new_tb3 <- data$df3 %>% group_by(bool_col) %>% mutate(max_int_col = cummax(int_col)) new_th3 <- data$th3$ update_by(uby_cum_max("max_int_col = int_col"), by = "bool_col") expect_equal(as.data.frame(new_th3), as.data.frame(new_tb3)) - + new_tb4 <- data$df4 %>% group_by(X) %>% mutate(max_Number1 = cummax(Number1), max_Number2 = cummax(Number2)) new_th4 <- data$th4$ update_by(uby_cum_max(c("max_Number1 = Number1", "max_Number2 = Number2")), by = "X") expect_equal(as.data.frame(new_th4), as.data.frame(new_tb4)) - + new_tb5 <- data$df5 %>% group_by(Y) %>% mutate(max_Number1 = cummax(Number1), max_Number2 = cummax(Number2)) new_th5 <- data$th5$ update_by(uby_cum_max(c("max_Number1 = Number1", "max_Number2 = Number2")), by = "Y") expect_equal(as.data.frame(new_th5), as.data.frame(new_tb5)) - + new_tb6 <- rbind(data$df4, data$df5, data$df4, data$df5) %>% group_by(X, Y) %>% mutate(max_Number1 = cummax(Number1), max_Number2 = cummax(Number2)) new_th6 <- merge_tables(data$th4, data$th5, data$th4, data$th5)$ update_by(uby_cum_max(c("max_Number1 = Number1", "max_Number2 = Number2")), by = c("X", "Y")) expect_equal(as.data.frame(new_th6), as.data.frame(new_tb6)) - + data$client$close() }) test_that("uby_forward_fill behaves as expected", { data <- setup() - + new_th1 <- data$null_th1$ update_by(uby_forward_fill()) expect_equal(as.data.frame(new_th1), na.locf(data$null_df1, na.rm = FALSE)) - + new_th2 <- data$null_th2$ update_by(uby_forward_fill()) expect_equal(as.data.frame(new_th2), na.locf(data$null_df2, na.rm = FALSE)) - + new_th3 <- data$null_th3$ update_by(uby_forward_fill()) expect_equal(as.data.frame(new_th3), na.locf(data$null_df3, na.rm = FALSE)) - + new_th4 <- data$null_th4$ update_by(uby_forward_fill()) expect_equal(as.data.frame(new_th4), na.locf(data$null_df4, na.rm = FALSE)) - + new_th5 <- data$null_th5$ update_by(uby_forward_fill()) expect_equal(as.data.frame(new_th5), na.locf(data$null_df5, na.rm = FALSE)) - + data$client$close() }) test_that("uby_delta behaves as expected", { data <- setup() - + new_tb1 <- data$df1 %>% mutate(delta_int_col = c(NaN, diff(int_col))) new_th1 <- data$th1$ update_by(uby_delta("delta_int_col = int_col")) expect_equal(as.data.frame(new_th1), as.data.frame(new_tb1)) - + new_tb2 <- data$df2 %>% mutate(delta_col1 = c(NaN, diff(col1)), delta_col3 = c(NaN, diff(col3))) new_th2 <- data$th2$ update_by(uby_delta(c("delta_col1 = col1", "delta_col3 = col3"))) expect_equal(as.data.frame(new_th2), as.data.frame(new_tb2)) - + new_tb3 <- data$df3 %>% group_by(bool_col) %>% mutate(delta_int_col = c(NaN, diff(int_col))) new_th3 <- data$th3$ update_by(uby_delta("delta_int_col = int_col"), by = "bool_col") expect_equal(as.data.frame(new_th3), as.data.frame(new_tb3)) - + new_tb4 <- data$df4 %>% group_by(X) %>% mutate(delta_Number1 = c(NaN, diff(Number1)), delta_Number2 = c(NaN, diff(Number2))) new_th4 <- data$th4$ update_by(uby_delta(c("delta_Number1 = Number1", "delta_Number2 = Number2")), by = "X") expect_equal(as.data.frame(new_th4), as.data.frame(new_tb4)) - + new_tb5 <- data$df5 %>% group_by(Y) %>% mutate(delta_Number1 = c(NaN, diff(Number1)), delta_Number2 = c(NaN, diff(Number2))) new_th5 <- data$th5$ update_by(uby_delta(c("delta_Number1 = Number1", "delta_Number2 = Number2")), by = "Y") expect_equal(as.data.frame(new_th5), as.data.frame(new_tb5)) - + new_tb6 <- rbind(data$df4, data$df5, data$df4, data$df5) %>% group_by(X, Y) %>% mutate(delta_Number1 = c(NaN, diff(Number1)), delta_Number2 = c(NaN, diff(Number2))) new_th6 <- merge_tables(data$th4, data$th5, data$th4, data$th5)$ update_by(uby_delta(c("delta_Number1 = Number1", "delta_Number2 = Number2")), by = c("X", "Y")) expect_equal(as.data.frame(new_th6), as.data.frame(new_tb6)) - + data$client$close() }) test_that("uby_ema_tick behaves as expected", { data <- setup() - + custom_ema <- function(decay_ticks, x) { if (length(x) == 1) { return(x) } - a = exp(-1/decay_ticks) - ema = c(x[1]) - for(i in seq(2,length(x))) { - ema[i] = a*ema[i-1] + (1-a)*x[i] + a <- exp(-1 / decay_ticks) + ema <- c(x[1]) + for (i in seq(2, length(x))) { + ema[i] <- a * ema[i - 1] + (1 - a) * x[i] } return(ema) } - + new_tb1 <- data$df1 %>% mutate(dbl_col = custom_ema(2, dbl_col)) new_th1 <- data$th1$ update_by(uby_ema_tick(2, "dbl_col")) expect_equal(as.data.frame(new_th1), as.data.frame(new_tb1)) - + new_tb2 <- data$df2 %>% mutate(col1 = custom_ema(5, col1), col3 = custom_ema(5, col3)) new_th2 <- data$th2$ update_by(uby_ema_tick(5, c("col1", "col3"))) expect_equal(as.data.frame(new_th2), as.data.frame(new_tb2)) - + new_tb3 <- data$df3 %>% group_by(bool_col) %>% mutate(ema_int_col = custom_ema(9, int_col)) new_th3 <- data$th3$ update_by(uby_ema_tick(9, "ema_int_col = int_col"), by = "bool_col") expect_equal(as.data.frame(new_th3), as.data.frame(new_tb3)) - + new_tb4 <- data$df4 %>% group_by(X) %>% mutate(ema_Number1 = custom_ema(3, Number1), ema_Number2 = custom_ema(3, Number2)) new_th4 <- data$th4$ update_by(uby_ema_tick(3, c("ema_Number1 = Number1", "ema_Number2 = Number2")), by = "X") expect_equal(as.data.frame(new_th4), as.data.frame(new_tb4)) - + new_tb5 <- data$df5 %>% group_by(Y) %>% mutate(ema_Number1 = custom_ema(3, Number1), ema_Number2 = custom_ema(3, Number2)) @@ -396,327 +406,327 @@ test_that("uby_ema_tick behaves as expected", { new_th6 <- merge_tables(data$th4, data$th5, data$th4, data$th5)$ update_by(uby_ema_tick(3, c("ema_Number1 = Number1", "ema_Number2 = Number2")), by = c("X", "Y")) expect_equal(as.data.frame(new_th6), as.data.frame(new_tb6)) - + data$client$close() }) test_that("uby_ema_time behaves as expected", { data <- setup() - + custom_ema_time <- function(ts, decay_time, x) { if (length(x) == 1) { return(x) } - time_diffs = as.numeric(ts[2:length(ts)] - ts[1:length(ts)-1]) - a = exp(-time_diffs/as.numeric(duration(decay_time))) - ema = c(x[1]) - for(i in seq(2,length(x))) { - ema[i] = a[i-1]*ema[i-1] + (1-a[i-1])*x[i] + time_diffs <- as.numeric(ts[2:length(ts)] - ts[1:length(ts) - 1]) + a <- exp(-time_diffs / as.numeric(duration(decay_time))) + ema <- c(x[1]) + for (i in seq(2, length(x))) { + ema[i] <- a[i - 1] * ema[i - 1] + (1 - a[i - 1]) * x[i] } return(ema) } - + new_tb1 <- data$df3 %>% mutate(ema_int_col = custom_ema_time(time_col, "PT3s", int_col)) new_th1 <- data$th3$ update_by(uby_ema_time("time_col", "PT3s", "ema_int_col = int_col")) expect_equal(as.data.frame(new_th1), as.data.frame(new_tb1)) - + new_tb2 <- data$df3 %>% group_by(bool_col) %>% mutate(ema_int_col = custom_ema_time(time_col, "PT3s", int_col)) new_th2 <- data$th3$ update_by(uby_ema_time("time_col", "PT3s", "ema_int_col = int_col"), by = "bool_col") expect_equal(as.data.frame(new_th2), as.data.frame(new_tb2)) - + data$client$close() }) test_that("uby_ems_tick behaves as expected", { data <- setup() - + custom_ems <- function(decay_ticks, x) { if (length(x) == 1) { return(x) } - a = exp(-1/decay_ticks) - ems = c(x[1]) - for(i in seq(2,length(x))) { - ems[i] = a*ems[i-1] + x[i] + a <- exp(-1 / decay_ticks) + ems <- c(x[1]) + for (i in seq(2, length(x))) { + ems[i] <- a * ems[i - 1] + x[i] } return(ems) } - + new_tb1 <- data$df1 %>% mutate(dbl_col = custom_ems(2, dbl_col)) new_th1 <- data$th1$ update_by(uby_ems_tick(2, "dbl_col")) expect_equal(as.data.frame(new_th1), as.data.frame(new_tb1)) - + new_tb2 <- data$df2 %>% mutate(col1 = custom_ems(5, col1), col3 = custom_ems(5, col3)) new_th2 <- data$th2$ update_by(uby_ems_tick(5, c("col1", "col3"))) expect_equal(as.data.frame(new_th2), as.data.frame(new_tb2)) - + new_tb3 <- data$df3 %>% group_by(bool_col) %>% mutate(ems_int_col = custom_ems(9, int_col)) new_th3 <- data$th3$ update_by(uby_ems_tick(9, "ems_int_col = int_col"), by = "bool_col") expect_equal(as.data.frame(new_th3), as.data.frame(new_tb3)) - + new_tb4 <- data$df4 %>% group_by(X) %>% mutate(ems_Number1 = custom_ems(3, Number1), ems_Number2 = custom_ems(3, Number2)) new_th4 <- data$th4$ update_by(uby_ems_tick(3, c("ems_Number1 = Number1", "ems_Number2 = Number2")), by = "X") expect_equal(as.data.frame(new_th4), as.data.frame(new_tb4)) - + new_tb5 <- data$df5 %>% group_by(Y) %>% mutate(ems_Number1 = custom_ems(3, Number1), ems_Number2 = custom_ems(3, Number2)) new_th5 <- data$th5$ update_by(uby_ems_tick(3, c("ems_Number1 = Number1", "ems_Number2 = Number2")), by = "Y") expect_equal(as.data.frame(new_th5), as.data.frame(new_tb5)) - + new_tb6 <- rbind(data$df4, data$df5, data$df4, data$df5) %>% group_by(X, Y) %>% mutate(ems_Number1 = custom_ems(3, Number1), ems_Number2 = custom_ems(3, Number2)) new_th6 <- merge_tables(data$th4, data$th5, data$th4, data$th5)$ update_by(uby_ems_tick(3, c("ems_Number1 = Number1", "ems_Number2 = Number2")), by = c("X", "Y")) expect_equal(as.data.frame(new_th6), as.data.frame(new_tb6)) - + data$client$close() }) test_that("uby_ems_time behaves as expected", { data <- setup() - + custom_ems_time <- function(ts, decay_time, x) { if (length(x) == 1) { return(x) } - time_diffs = as.numeric(ts[2:length(ts)] - ts[1:length(ts)-1]) - a = exp(-time_diffs/as.numeric(duration(decay_time))) - ems = c(x[1]) - for(i in seq(2,length(x))) { - ems[i] = a[i-1]*ems[i-1] + x[i] + time_diffs <- as.numeric(ts[2:length(ts)] - ts[1:length(ts) - 1]) + a <- exp(-time_diffs / as.numeric(duration(decay_time))) + ems <- c(x[1]) + for (i in seq(2, length(x))) { + ems[i] <- a[i - 1] * ems[i - 1] + x[i] } return(ems) } - + new_tb1 <- data$df3 %>% mutate(ems_int_col = custom_ems_time(time_col, "PT3s", int_col)) new_th1 <- data$th3$ update_by(uby_ems_time("time_col", "PT3s", "ems_int_col = int_col")) expect_equal(as.data.frame(new_th1), as.data.frame(new_tb1)) - + new_tb2 <- data$df3 %>% group_by(bool_col) %>% mutate(ems_int_col = custom_ems_time(time_col, "PT3s", int_col)) new_th2 <- data$th3$ update_by(uby_ems_time("time_col", "PT3s", "ems_int_col = int_col"), by = "bool_col") expect_equal(as.data.frame(new_th2), as.data.frame(new_tb2)) - + data$client$close() }) test_that("uby_emmin_tick behaves as expected", { data <- setup() - + custom_emmin <- function(decay_ticks, x) { if (length(x) == 1) { return(x) } - a = exp(-1/decay_ticks) - emmin = c(x[1]) - for(i in seq(2,length(x))) { - emmin[i] = min(a*emmin[i-1], x[i]) + a <- exp(-1 / decay_ticks) + emmin <- c(x[1]) + for (i in seq(2, length(x))) { + emmin[i] <- min(a * emmin[i - 1], x[i]) } return(emmin) } - + new_tb1 <- data$df1 %>% mutate(dbl_col = custom_emmin(2, dbl_col)) new_th1 <- data$th1$ update_by(uby_emmin_tick(2, "dbl_col")) expect_equal(as.data.frame(new_th1), as.data.frame(new_tb1)) - + new_tb2 <- data$df2 %>% mutate(col1 = custom_emmin(5, col1), col3 = custom_emmin(5, col3)) new_th2 <- data$th2$ update_by(uby_emmin_tick(5, c("col1", "col3"))) expect_equal(as.data.frame(new_th2), as.data.frame(new_tb2)) - + new_tb3 <- data$df3 %>% group_by(bool_col) %>% mutate(emmin_int_col = custom_emmin(9, int_col)) new_th3 <- data$th3$ update_by(uby_emmin_tick(9, "emmin_int_col = int_col"), by = "bool_col") expect_equal(as.data.frame(new_th3), as.data.frame(new_tb3)) - + new_tb4 <- data$df4 %>% group_by(X) %>% mutate(emmin_Number1 = custom_emmin(3, Number1), emmin_Number2 = custom_emmin(3, Number2)) new_th4 <- data$th4$ update_by(uby_emmin_tick(3, c("emmin_Number1 = Number1", "emmin_Number2 = Number2")), by = "X") expect_equal(as.data.frame(new_th4), as.data.frame(new_tb4)) - + new_tb5 <- data$df5 %>% group_by(Y) %>% mutate(emmin_Number1 = custom_emmin(3, Number1), emmin_Number2 = custom_emmin(3, Number2)) new_th5 <- data$th5$ update_by(uby_emmin_tick(3, c("emmin_Number1 = Number1", "emmin_Number2 = Number2")), by = "Y") expect_equal(as.data.frame(new_th5), as.data.frame(new_tb5)) - + new_tb6 <- rbind(data$df4, data$df5, data$df4, data$df5) %>% group_by(X, Y) %>% mutate(emmin_Number1 = custom_emmin(3, Number1), emmin_Number2 = custom_emmin(3, Number2)) new_th6 <- merge_tables(data$th4, data$th5, data$th4, data$th5)$ update_by(uby_emmin_tick(3, c("emmin_Number1 = Number1", "emmin_Number2 = Number2")), by = c("X", "Y")) expect_equal(as.data.frame(new_th6), as.data.frame(new_tb6)) - + data$client$close() }) test_that("uby_emmin_time behaves as expected", { data <- setup() - + custom_emmin_time <- function(ts, decay_time, x) { if (length(x) == 1) { return(x) } - time_diffs = as.numeric(ts[2:length(ts)] - ts[1:length(ts)-1]) - a = exp(-time_diffs/as.numeric(duration(decay_time))) - emmin = c(x[1]) - for(i in seq(2,length(x))) { - emmin[i] = min(a[i-1]*emmin[i-1], x[i]) + time_diffs <- as.numeric(ts[2:length(ts)] - ts[1:length(ts) - 1]) + a <- exp(-time_diffs / as.numeric(duration(decay_time))) + emmin <- c(x[1]) + for (i in seq(2, length(x))) { + emmin[i] <- min(a[i - 1] * emmin[i - 1], x[i]) } return(emmin) } - + new_tb1 <- data$df3 %>% mutate(emmin_int_col = custom_emmin_time(time_col, "PT3s", int_col)) new_th1 <- data$th3$ update_by(uby_emmin_time("time_col", "PT3s", "emmin_int_col = int_col")) expect_equal(as.data.frame(new_th1), as.data.frame(new_tb1)) - + new_tb2 <- data$df3 %>% group_by(bool_col) %>% mutate(emmin_int_col = custom_emmin_time(time_col, "PT3s", int_col)) new_th2 <- data$th3$ update_by(uby_emmin_time("time_col", "PT3s", "emmin_int_col = int_col"), by = "bool_col") expect_equal(as.data.frame(new_th2), as.data.frame(new_tb2)) - + data$client$close() }) test_that("uby_emmax_tick behaves as expected", { data <- setup() - + custom_emmax <- function(decay_ticks, x) { if (length(x) == 1) { return(x) } - a = exp(-1/decay_ticks) - emmax = c(x[1]) - for(i in seq(2,length(x))) { - emmax[i] = max(a*emmax[i-1], x[i]) + a <- exp(-1 / decay_ticks) + emmax <- c(x[1]) + for (i in seq(2, length(x))) { + emmax[i] <- max(a * emmax[i - 1], x[i]) } return(emmax) } - + new_tb1 <- data$df1 %>% mutate(dbl_col = custom_emmax(2, dbl_col)) new_th1 <- data$th1$ update_by(uby_emmax_tick(2, "dbl_col")) expect_equal(as.data.frame(new_th1), as.data.frame(new_tb1)) - + new_tb2 <- data$df2 %>% mutate(col1 = custom_emmax(5, col1), col3 = custom_emmax(5, col3)) new_th2 <- data$th2$ update_by(uby_emmax_tick(5, c("col1", "col3"))) expect_equal(as.data.frame(new_th2), as.data.frame(new_tb2)) - + new_tb3 <- data$df3 %>% group_by(bool_col) %>% mutate(emmax_int_col = custom_emmax(9, int_col)) new_th3 <- data$th3$ update_by(uby_emmax_tick(9, "emmax_int_col = int_col"), by = "bool_col") expect_equal(as.data.frame(new_th3), as.data.frame(new_tb3)) - + new_tb4 <- data$df4 %>% group_by(X) %>% mutate(emmax_Number1 = custom_emmax(3, Number1), emmax_Number2 = custom_emmax(3, Number2)) new_th4 <- data$th4$ update_by(uby_emmax_tick(3, c("emmax_Number1 = Number1", "emmax_Number2 = Number2")), by = "X") expect_equal(as.data.frame(new_th4), as.data.frame(new_tb4)) - + new_tb5 <- data$df5 %>% group_by(Y) %>% mutate(emmax_Number1 = custom_emmax(3, Number1), emmax_Number2 = custom_emmax(3, Number2)) new_th5 <- data$th5$ update_by(uby_emmax_tick(3, c("emmax_Number1 = Number1", "emmax_Number2 = Number2")), by = "Y") expect_equal(as.data.frame(new_th5), as.data.frame(new_tb5)) - + new_tb6 <- rbind(data$df4, data$df5, data$df4, data$df5) %>% group_by(X, Y) %>% mutate(emmax_Number1 = custom_emmax(3, Number1), emmax_Number2 = custom_emmax(3, Number2)) new_th6 <- merge_tables(data$th4, data$th5, data$th4, data$th5)$ update_by(uby_emmax_tick(3, c("emmax_Number1 = Number1", "emmax_Number2 = Number2")), by = c("X", "Y")) expect_equal(as.data.frame(new_th6), as.data.frame(new_tb6)) - + data$client$close() }) test_that("uby_emmax_time behaves as expected", { data <- setup() - + custom_emmax_time <- function(ts, decay_time, x) { if (length(x) == 1) { return(x) } - time_diffs = as.numeric(ts[2:length(ts)] - ts[1:length(ts)-1]) - a = exp(-time_diffs/as.numeric(duration(decay_time))) - emmax = c(x[1]) - for(i in seq(2,length(x))) { - emmax[i] = max(a[i-1]*emmax[i-1], x[i]) + time_diffs <- as.numeric(ts[2:length(ts)] - ts[1:length(ts) - 1]) + a <- exp(-time_diffs / as.numeric(duration(decay_time))) + emmax <- c(x[1]) + for (i in seq(2, length(x))) { + emmax[i] <- max(a[i - 1] * emmax[i - 1], x[i]) } return(emmax) } - + new_tb1 <- data$df3 %>% mutate(emmax_int_col = custom_emmax_time(time_col, "PT3s", int_col)) new_th1 <- data$th3$ update_by(uby_emmax_time("time_col", "PT3s", "emmax_int_col = int_col")) expect_equal(as.data.frame(new_th1), as.data.frame(new_tb1)) - + new_tb2 <- data$df3 %>% group_by(bool_col) %>% mutate(emmax_int_col = custom_emmax_time(time_col, "PT3s", int_col)) new_th2 <- data$th3$ update_by(uby_emmax_time("time_col", "PT3s", "emmax_int_col = int_col"), by = "bool_col") expect_equal(as.data.frame(new_th2), as.data.frame(new_tb2)) - + data$client$close() }) test_that("uby_emstd_tick behaves as expected", { data <- setup() - + custom_emstd <- function(decay_ticks, x) { if (length(x) == 1) { return(NA) } - a = exp(-1/decay_ticks) - current_ema = x[1] - emvar = c(0) - for(i in seq(2,length(x))) { - emvar[i] = a*(emvar[i-1] + (1-a)*((x[i] - current_ema)^2)) - current_ema = a*current_ema + (1-a)*x[i] + a <- exp(-1 / decay_ticks) + current_ema <- x[1] + emvar <- c(0) + for (i in seq(2, length(x))) { + emvar[i] <- a * (emvar[i - 1] + (1 - a) * ((x[i] - current_ema)^2)) + current_ema <- a * current_ema + (1 - a) * x[i] } - emvar[1] = NA + emvar[1] <- NA return(sqrt(emvar)) } @@ -765,632 +775,710 @@ test_that("uby_emstd_tick behaves as expected", { test_that("uby_emstd_time behaves as expected", { data <- setup() - + custom_emstd_time <- function(ts, decay_time, x) { if (length(x) == 1) { return(NA) } - time_diffs = as.numeric(ts[2:length(ts)] - ts[1:length(ts)-1]) - a = exp(-time_diffs/as.numeric(duration(decay_time))) - current_ema = x[1] - emvar = c(0) - for(i in seq(2,length(x))) { - emvar[i] = a[i-1]*(emvar[i-1] + (1-a[i-1])*((x[i] - current_ema)^2)) - current_ema = a[i-1]*current_ema + (1-a[i-1])*x[i] + time_diffs <- as.numeric(ts[2:length(ts)] - ts[1:length(ts) - 1]) + a <- exp(-time_diffs / as.numeric(duration(decay_time))) + current_ema <- x[1] + emvar <- c(0) + for (i in seq(2, length(x))) { + emvar[i] <- a[i - 1] * (emvar[i - 1] + (1 - a[i - 1]) * ((x[i] - current_ema)^2)) + current_ema <- a[i - 1] * current_ema + (1 - a[i - 1]) * x[i] } - emvar[1] = NA + emvar[1] <- NA return(sqrt(emvar)) } - + new_tb1 <- data$df3 %>% mutate(emstd_int_col = custom_emstd_time(time_col, "PT3s", int_col)) new_th1 <- data$th3$ update_by(uby_emstd_time("time_col", "PT3s", "emstd_int_col = int_col")) expect_equal(as.data.frame(new_th1), as.data.frame(new_tb1)) - + new_tb2 <- data$df3 %>% group_by(bool_col) %>% mutate(emstd_int_col = custom_emstd_time(time_col, "PT3s", int_col)) new_th2 <- data$th3$ update_by(uby_emstd_time("time_col", "PT3s", "emstd_int_col = int_col"), by = "bool_col") expect_equal(as.data.frame(new_th2), as.data.frame(new_tb2)) - + data$client$close() }) test_that("uby_rolling_sum_tick behaves as expected", { data <- setup() - + new_tb1a <- data$df1 %>% mutate(dbl_col = rollapply(dbl_col, 3, sum, partial = TRUE, align = "right")) new_th1a <- data$th1$ update_by(uby_rolling_sum_tick("dbl_col", rev_ticks = 3)) expect_equal(as.data.frame(new_th1a), as.data.frame(new_tb1a)) - + new_tb1b <- data$df1 %>% mutate(dbl_col = rollapply(dbl_col, 3, sum, partial = TRUE, align = "left")) new_th1b <- data$th1$ update_by(uby_rolling_sum_tick("dbl_col", rev_ticks = 1, fwd_ticks = 2)) expect_equal(as.data.frame(new_th1b), as.data.frame(new_tb1b)) - + new_tb1c <- data$df1 %>% mutate(dbl_col = rollapply(dbl_col, 3, sum, partial = TRUE, align = "center")) new_th1c <- data$th1$ update_by(uby_rolling_sum_tick("dbl_col", rev_ticks = 2, fwd_ticks = 1)) expect_equal(as.data.frame(new_th1c), as.data.frame(new_tb1c)) - + new_tb2a <- data$df2 %>% - mutate(col1 = rollapply(col1, 5, sum, partial = TRUE, align = "right"), - col3 = rollapply(col3, 5, sum, partial = TRUE, align = "right")) + mutate( + col1 = rollapply(col1, 5, sum, partial = TRUE, align = "right"), + col3 = rollapply(col3, 5, sum, partial = TRUE, align = "right") + ) new_th2a <- data$th2$ update_by(uby_rolling_sum_tick(c("col1", "col3"), rev_ticks = 5)) expect_equal(as.data.frame(new_th2a), as.data.frame(new_tb2a)) - + new_tb2b <- data$df2 %>% - mutate(col1 = rollapply(col1, 5, sum, partial = TRUE, align = "left"), - col3 = rollapply(col3, 5, sum, partial = TRUE, align = "left")) + mutate( + col1 = rollapply(col1, 5, sum, partial = TRUE, align = "left"), + col3 = rollapply(col3, 5, sum, partial = TRUE, align = "left") + ) new_th2b <- data$th2$ update_by(uby_rolling_sum_tick(c("col1", "col3"), rev_ticks = 1, fwd_ticks = 4)) expect_equal(as.data.frame(new_th2b), as.data.frame(new_tb2b)) - + new_tb2c <- data$df2 %>% - mutate(col1 = rollapply(col1, 5, sum, partial = TRUE, align = "center"), - col3 = rollapply(col3, 5, sum, partial = TRUE, align = "center")) + mutate( + col1 = rollapply(col1, 5, sum, partial = TRUE, align = "center"), + col3 = rollapply(col3, 5, sum, partial = TRUE, align = "center") + ) new_th2c <- data$th2$ update_by(uby_rolling_sum_tick(c("col1", "col3"), rev_ticks = 3, fwd_ticks = 2)) expect_equal(as.data.frame(new_th2c), as.data.frame(new_tb2c)) - + new_tb3a <- data$df3 %>% group_by(bool_col) %>% mutate(int_col = rollapply(int_col, 9, sum, partial = TRUE, align = "right")) new_th3a <- data$th3$ update_by(uby_rolling_sum_tick("int_col", rev_ticks = 9), by = "bool_col") expect_equal(as.data.frame(new_th3a), as.data.frame(new_tb3a)) - + new_tb3b <- data$df3 %>% group_by(bool_col) %>% mutate(int_col = rollapply(int_col, 9, sum, partial = TRUE, align = "left")) new_th3b <- data$th3$ update_by(uby_rolling_sum_tick("int_col", rev_ticks = 1, fwd_ticks = 8), by = "bool_col") expect_equal(as.data.frame(new_th3b), as.data.frame(new_tb3b)) - + new_tb3c <- data$df3 %>% group_by(bool_col) %>% mutate(int_col = rollapply(int_col, 9, sum, partial = TRUE, align = "center")) new_th3c <- data$th3$ update_by(uby_rolling_sum_tick("int_col", rev_ticks = 5, fwd_ticks = 4), by = "bool_col") expect_equal(as.data.frame(new_th3c), as.data.frame(new_tb3c)) - + new_tb4a <- data$df4 %>% group_by(X) %>% - mutate(Number1 = rollapply(Number1, 3, sum, partial = TRUE, align = "right"), - Number2 = rollapply(Number2, 3, sum, partial = TRUE, align = "right")) + mutate( + Number1 = rollapply(Number1, 3, sum, partial = TRUE, align = "right"), + Number2 = rollapply(Number2, 3, sum, partial = TRUE, align = "right") + ) new_th4a <- data$th4$ update_by(uby_rolling_sum_tick(c("Number1", "Number2"), rev_ticks = 3), by = "X") expect_equal(as.data.frame(new_th4a), as.data.frame(new_tb4a)) - + new_tb4b <- data$df4 %>% group_by(X) %>% - mutate(Number1 = rollapply(Number1, 3, sum, partial = TRUE, align = "left"), - Number2 = rollapply(Number2, 3, sum, partial = TRUE, align = "left")) + mutate( + Number1 = rollapply(Number1, 3, sum, partial = TRUE, align = "left"), + Number2 = rollapply(Number2, 3, sum, partial = TRUE, align = "left") + ) new_th4b <- data$th4$ update_by(uby_rolling_sum_tick(c("Number1", "Number2"), rev_ticks = 1, fwd_ticks = 2), by = "X") expect_equal(as.data.frame(new_th4b), as.data.frame(new_tb4b)) - + new_tb4c <- data$df4 %>% group_by(X) %>% - mutate(Number1 = rollapply(Number1, 3, sum, partial = TRUE, align = "center"), - Number2 = rollapply(Number2, 3, sum, partial = TRUE, align = "center")) + mutate( + Number1 = rollapply(Number1, 3, sum, partial = TRUE, align = "center"), + Number2 = rollapply(Number2, 3, sum, partial = TRUE, align = "center") + ) new_th4c <- data$th4$ update_by(uby_rolling_sum_tick(c("Number1", "Number2"), rev_ticks = 2, fwd_ticks = 1), by = "X") expect_equal(as.data.frame(new_th4c), as.data.frame(new_tb4c)) - + new_tb5a <- data$df5 %>% group_by(Y) %>% - mutate(Number1 = rollapply(Number1, 3, sum, partial = TRUE, align = "right"), - Number2 = rollapply(Number2, 3, sum, partial = TRUE, align = "right")) + mutate( + Number1 = rollapply(Number1, 3, sum, partial = TRUE, align = "right"), + Number2 = rollapply(Number2, 3, sum, partial = TRUE, align = "right") + ) new_th5a <- data$th5$ update_by(uby_rolling_sum_tick(c("Number1", "Number2"), rev_ticks = 3), by = "Y") expect_equal(as.data.frame(new_th5a), as.data.frame(new_tb5a)) - + new_tb5b <- data$df5 %>% group_by(Y) %>% - mutate(Number1 = rollapply(Number1, 3, sum, partial = TRUE, align = "left"), - Number2 = rollapply(Number2, 3, sum, partial = TRUE, align = "left")) + mutate( + Number1 = rollapply(Number1, 3, sum, partial = TRUE, align = "left"), + Number2 = rollapply(Number2, 3, sum, partial = TRUE, align = "left") + ) new_th5b <- data$th5$ update_by(uby_rolling_sum_tick(c("Number1", "Number2"), rev_ticks = 1, fwd_ticks = 2), by = "Y") expect_equal(as.data.frame(new_th5b), as.data.frame(new_tb5b)) - + new_tb5c <- data$df5 %>% group_by(Y) %>% - mutate(Number1 = rollapply(Number1, 3, sum, partial = TRUE, align = "center"), - Number2 = rollapply(Number2, 3, sum, partial = TRUE, align = "center")) + mutate( + Number1 = rollapply(Number1, 3, sum, partial = TRUE, align = "center"), + Number2 = rollapply(Number2, 3, sum, partial = TRUE, align = "center") + ) new_th5c <- data$th5$ update_by(uby_rolling_sum_tick(c("Number1", "Number2"), rev_ticks = 2, fwd_ticks = 1), by = "Y") expect_equal(as.data.frame(new_th5c), as.data.frame(new_tb5c)) - + new_tb6a <- rbind(data$df4, data$df5, data$df4, data$df5) %>% group_by(X, Y) %>% - mutate(Number1 = rollapply(Number1, 3, sum, partial = TRUE, align = "right"), - Number2 = rollapply(Number2, 3, sum, partial = TRUE, align = "right")) + mutate( + Number1 = rollapply(Number1, 3, sum, partial = TRUE, align = "right"), + Number2 = rollapply(Number2, 3, sum, partial = TRUE, align = "right") + ) new_th6a <- merge_tables(data$th4, data$th5, data$th4, data$th5)$ update_by(uby_rolling_sum_tick(c("Number1", "Number2"), rev_ticks = 3), by = c("X", "Y")) expect_equal(as.data.frame(new_th6a), as.data.frame(new_tb6a)) - + new_tb6b <- rbind(data$df4, data$df5, data$df4, data$df5) %>% group_by(X, Y) %>% - mutate(Number1 = rollapply(Number1, 3, sum, partial = TRUE, align = "left"), - Number2 = rollapply(Number2, 3, sum, partial = TRUE, align = "left")) + mutate( + Number1 = rollapply(Number1, 3, sum, partial = TRUE, align = "left"), + Number2 = rollapply(Number2, 3, sum, partial = TRUE, align = "left") + ) new_th6b <- merge_tables(data$th4, data$th5, data$th4, data$th5)$ update_by(uby_rolling_sum_tick(c("Number1", "Number2"), rev_ticks = 1, fwd_ticks = 2), by = c("X", "Y")) expect_equal(as.data.frame(new_th6b), as.data.frame(new_tb6b)) - + new_tb6c <- rbind(data$df4, data$df5, data$df4, data$df5) %>% group_by(X, Y) %>% - mutate(Number1 = rollapply(Number1, 3, sum, partial = TRUE, align = "center"), - Number2 = rollapply(Number2, 3, sum, partial = TRUE, align = "center")) + mutate( + Number1 = rollapply(Number1, 3, sum, partial = TRUE, align = "center"), + Number2 = rollapply(Number2, 3, sum, partial = TRUE, align = "center") + ) new_th6c <- merge_tables(data$th4, data$th5, data$th4, data$th5)$ update_by(uby_rolling_sum_tick(c("Number1", "Number2"), rev_ticks = 2, fwd_ticks = 1), by = c("X", "Y")) expect_equal(as.data.frame(new_th6c), as.data.frame(new_tb6c)) - + data$client$close() }) test_that("uby_rolling_sum_time behaves as expected", { data <- setup() - + new_tb1a <- head(data$df3, 500) %>% - mutate(int_col = rollapply(int_col, 9, sum, partial=TRUE, align="right")) + mutate(int_col = rollapply(int_col, 9, sum, partial = TRUE, align = "right")) new_th1a <- head(data$th3, 500)$ update_by(uby_rolling_sum_time("time_col", "int_col", "PT8s")) expect_equal(as.data.frame(new_th1a), as.data.frame(new_tb1a)) - + new_tb1b <- head(data$df3, 500) %>% - mutate(int_col = rollapply(int_col, 9, sum, partial=TRUE, align="left")) + mutate(int_col = rollapply(int_col, 9, sum, partial = TRUE, align = "left")) new_th1b <- head(data$th3, 500)$ update_by(uby_rolling_sum_time("time_col", "int_col", "PT0s", "PT8s")) expect_equal(as.data.frame(new_th1b), as.data.frame(new_tb1b)) - + new_tb1c <- head(data$df3, 500) %>% - mutate(int_col = rollapply(int_col, 9, sum, partial=TRUE, align="center")) + mutate(int_col = rollapply(int_col, 9, sum, partial = TRUE, align = "center")) new_th1c <- head(data$th3, 500)$ update_by(uby_rolling_sum_time("time_col", "int_col", "PT4s", "PT4s")) expect_equal(as.data.frame(new_th1c), as.data.frame(new_tb1c)) - + new_tb2a <- head(data$df3, 500) %>% - mutate(int_col = custom_rolling_time_op(int_col, bool_col, width=9, FUN=sum, partial=TRUE, align="right", na.rm=TRUE)) + mutate(int_col = custom_rolling_time_op(int_col, bool_col, width = 9, FUN = sum, partial = TRUE, align = "right", na.rm = TRUE)) new_th2a <- head(data$th3, 500)$ update_by(uby_rolling_sum_time("time_col", "int_col", "PT8s"), by = "bool_col") expect_equal(as.data.frame(new_th2a), as.data.frame(new_tb2a)) - + new_tb2b <- head(data$df3, 500) %>% - mutate(int_col = custom_rolling_time_op(int_col, bool_col, width=9, FUN=sum, partial=TRUE, align="left", na.rm=TRUE)) + mutate(int_col = custom_rolling_time_op(int_col, bool_col, width = 9, FUN = sum, partial = TRUE, align = "left", na.rm = TRUE)) new_th2b <- head(data$th3, 500)$ update_by(uby_rolling_sum_time("time_col", "int_col", "PT0s", "PT8s"), by = "bool_col") expect_equal(as.data.frame(new_th2b), as.data.frame(new_tb2b)) - + new_tb2c <- head(data$df3, 500) %>% - mutate(int_col = custom_rolling_time_op(int_col, bool_col, width=9, FUN=sum, partial=TRUE, align="center", na.rm=TRUE)) + mutate(int_col = custom_rolling_time_op(int_col, bool_col, width = 9, FUN = sum, partial = TRUE, align = "center", na.rm = TRUE)) new_th2c <- head(data$th3, 500)$ update_by(uby_rolling_sum_time("time_col", "int_col", "PT4s", "PT4s"), by = "bool_col") expect_equal(as.data.frame(new_th2b), as.data.frame(new_tb2b)) - + data$client$close() }) test_that("uby_rolling_group_tick behaves as expected", { data <- setup() - - right_group <- list(1.65, - c(1.6500, 3.1234), - c(1.6500, 3.1234, 100000.5000), - c(3.1234, 100000.5000, 543.234567), - c(100000.5000, 543.234567, 0.0000)) + + right_group <- list( + 1.65, + c(1.6500, 3.1234), + c(1.6500, 3.1234, 100000.5000), + c(3.1234, 100000.5000, 543.234567), + c(100000.5000, 543.234567, 0.0000) + ) new_th1a <- data$th1$ update_by(uby_rolling_group_tick("dbl_col_group = dbl_col", rev_ticks = 3)) expect_equal(as.list(as.data.frame(new_th1a)$dbl_col_group), right_group) - - - left_group <- list(c(1.6500, 3.1234, 100000.5000), - c(3.1234, 100000.5000, 543.234567), - c(100000.5000, 543.234567, 0.0000), - c(543.234567, 0.0000), - 0) + + + left_group <- list( + c(1.6500, 3.1234, 100000.5000), + c(3.1234, 100000.5000, 543.234567), + c(100000.5000, 543.234567, 0.0000), + c(543.234567, 0.0000), + 0 + ) new_th1b <- data$th1$ update_by(uby_rolling_group_tick("dbl_col_group = dbl_col", rev_ticks = 1, fwd_ticks = 2)) expect_equal(as.list(as.data.frame(new_th1b)$dbl_col_group), left_group) - - - center_group <- list(c(1.6500, 3.1234), - c(1.6500, 3.1234, 100000.5000), - c(3.1234, 100000.5000, 543.234567), - c(100000.5000, 543.234567, 0.0000), - c(543.234567, 0.0000)) + + + center_group <- list( + c(1.6500, 3.1234), + c(1.6500, 3.1234, 100000.5000), + c(3.1234, 100000.5000, 543.234567), + c(100000.5000, 543.234567, 0.0000), + c(543.234567, 0.0000) + ) new_th1c <- data$th1$ update_by(uby_rolling_group_tick("dbl_col_group = dbl_col", rev_ticks = 2, fwd_ticks = 1)) expect_equal(as.list(as.data.frame(new_th1c)$dbl_col_group), center_group) - + data$client$close() }) test_that("uby_rolling_group_time behaves as expected", { data <- setup() - - right_group <- c(lapply(1:9, function(x) 1:x), lapply(2:492, function(x) c(x:(x+8)))) + + right_group <- c(lapply(1:9, function(x) 1:x), lapply(2:492, function(x) c(x:(x + 8)))) new_th1a <- data$deterministic_th3$ update_by(uby_rolling_group_time("time_col", "int_col_group = int_col", "PT8s")) expect_equal(as.list(as.data.frame(new_th1a)$int_col_group), right_group) - - left_group <- c(lapply(1:491, function(x) c(x:(x+8))), lapply(492:500, function(x) x:500)) + + left_group <- c(lapply(1:491, function(x) c(x:(x + 8))), lapply(492:500, function(x) x:500)) new_th1b <- data$deterministic_th3$ update_by(uby_rolling_group_time("time_col", "int_col_group = int_col", "PT0s", "PT8s")) expect_equal(as.list(as.data.frame(new_th1b)$int_col_group), left_group) - - center_group <- c(lapply(5:9, function(x) 1:x), lapply(2:491, function(x) c(x:(x+8))), lapply(492:496, function(x) x:500)) + + center_group <- c(lapply(5:9, function(x) 1:x), lapply(2:491, function(x) c(x:(x + 8))), lapply(492:496, function(x) x:500)) new_th1c <- data$deterministic_th3$ update_by(uby_rolling_group_time("time_col", "int_col_group = int_col", "PT4s", "PT4s")) expect_equal(as.list(as.data.frame(new_th1c)$int_col_group), center_group) - + data$client$close() }) test_that("uby_rolling_avg_tick behaves as expected", { data <- setup() - + new_tb1a <- data$df1 %>% mutate(dbl_col = rollapply(dbl_col, 3, mean, partial = TRUE, align = "right")) new_th1a <- data$th1$ update_by(uby_rolling_avg_tick("dbl_col", rev_ticks = 3)) expect_equal(as.data.frame(new_th1a), as.data.frame(new_tb1a)) - + new_tb1b <- data$df1 %>% mutate(dbl_col = rollapply(dbl_col, 3, mean, partial = TRUE, align = "left")) new_th1b <- data$th1$ update_by(uby_rolling_avg_tick("dbl_col", rev_ticks = 1, fwd_ticks = 2)) expect_equal(as.data.frame(new_th1b), as.data.frame(new_tb1b)) - + new_tb1c <- data$df1 %>% mutate(dbl_col = rollapply(dbl_col, 3, mean, partial = TRUE, align = "center")) new_th1c <- data$th1$ update_by(uby_rolling_avg_tick("dbl_col", rev_ticks = 2, fwd_ticks = 1)) expect_equal(as.data.frame(new_th1c), as.data.frame(new_tb1c)) - + new_tb2a <- data$df2 %>% - mutate(col1 = rollapply(col1, 5, mean, partial = TRUE, align = "right"), - col3 = rollapply(col3, 5, mean, partial = TRUE, align = "right")) + mutate( + col1 = rollapply(col1, 5, mean, partial = TRUE, align = "right"), + col3 = rollapply(col3, 5, mean, partial = TRUE, align = "right") + ) new_th2a <- data$th2$ update_by(uby_rolling_avg_tick(c("col1", "col3"), rev_ticks = 5)) expect_equal(as.data.frame(new_th2a), as.data.frame(new_tb2a)) - + new_tb2b <- data$df2 %>% - mutate(col1 = rollapply(col1, 5, mean, partial = TRUE, align = "left"), - col3 = rollapply(col3, 5, mean, partial = TRUE, align = "left")) + mutate( + col1 = rollapply(col1, 5, mean, partial = TRUE, align = "left"), + col3 = rollapply(col3, 5, mean, partial = TRUE, align = "left") + ) new_th2b <- data$th2$ update_by(uby_rolling_avg_tick(c("col1", "col3"), rev_ticks = 1, fwd_ticks = 4)) expect_equal(as.data.frame(new_th2b), as.data.frame(new_tb2b)) - + new_tb2c <- data$df2 %>% - mutate(col1 = rollapply(col1, 5, mean, partial = TRUE, align = "center"), - col3 = rollapply(col3, 5, mean, partial = TRUE, align = "center")) + mutate( + col1 = rollapply(col1, 5, mean, partial = TRUE, align = "center"), + col3 = rollapply(col3, 5, mean, partial = TRUE, align = "center") + ) new_th2c <- data$th2$ update_by(uby_rolling_avg_tick(c("col1", "col3"), rev_ticks = 3, fwd_ticks = 2)) expect_equal(as.data.frame(new_th2c), as.data.frame(new_tb2c)) - + new_tb3a <- data$df3 %>% group_by(bool_col) %>% mutate(int_col = rollapply(int_col, 9, mean, partial = TRUE, align = "right")) new_th3a <- data$th3$ update_by(uby_rolling_avg_tick("int_col", rev_ticks = 9), by = "bool_col") expect_equal(as.data.frame(new_th3a), as.data.frame(new_tb3a)) - + new_tb3b <- data$df3 %>% group_by(bool_col) %>% mutate(int_col = rollapply(int_col, 9, mean, partial = TRUE, align = "left")) new_th3b <- data$th3$ update_by(uby_rolling_avg_tick("int_col", rev_ticks = 1, fwd_ticks = 8), by = "bool_col") expect_equal(as.data.frame(new_th3b), as.data.frame(new_tb3b)) - + new_tb3c <- data$df3 %>% group_by(bool_col) %>% mutate(int_col = rollapply(int_col, 9, mean, partial = TRUE, align = "center")) new_th3c <- data$th3$ update_by(uby_rolling_avg_tick("int_col", rev_ticks = 5, fwd_ticks = 4), by = "bool_col") expect_equal(as.data.frame(new_th3c), as.data.frame(new_tb3c)) - + new_tb4a <- data$df4 %>% group_by(X) %>% - mutate(Number1 = rollapply(Number1, 3, mean, partial = TRUE, align = "right"), - Number2 = rollapply(Number2, 3, mean, partial = TRUE, align = "right")) + mutate( + Number1 = rollapply(Number1, 3, mean, partial = TRUE, align = "right"), + Number2 = rollapply(Number2, 3, mean, partial = TRUE, align = "right") + ) new_th4a <- data$th4$ update_by(uby_rolling_avg_tick(c("Number1", "Number2"), rev_ticks = 3), by = "X") expect_equal(as.data.frame(new_th4a), as.data.frame(new_tb4a)) - + new_tb4b <- data$df4 %>% group_by(X) %>% - mutate(Number1 = rollapply(Number1, 3, mean, partial = TRUE, align = "left"), - Number2 = rollapply(Number2, 3, mean, partial = TRUE, align = "left")) + mutate( + Number1 = rollapply(Number1, 3, mean, partial = TRUE, align = "left"), + Number2 = rollapply(Number2, 3, mean, partial = TRUE, align = "left") + ) new_th4b <- data$th4$ update_by(uby_rolling_avg_tick(c("Number1", "Number2"), rev_ticks = 1, fwd_ticks = 2), by = "X") expect_equal(as.data.frame(new_th4b), as.data.frame(new_tb4b)) - + new_tb4c <- data$df4 %>% group_by(X) %>% - mutate(Number1 = rollapply(Number1, 3, mean, partial = TRUE, align = "center"), - Number2 = rollapply(Number2, 3, mean, partial = TRUE, align = "center")) + mutate( + Number1 = rollapply(Number1, 3, mean, partial = TRUE, align = "center"), + Number2 = rollapply(Number2, 3, mean, partial = TRUE, align = "center") + ) new_th4c <- data$th4$ update_by(uby_rolling_avg_tick(c("Number1", "Number2"), rev_ticks = 2, fwd_ticks = 1), by = "X") expect_equal(as.data.frame(new_th4c), as.data.frame(new_tb4c)) - + new_tb5a <- data$df5 %>% group_by(Y) %>% - mutate(Number1 = rollapply(Number1, 3, mean, partial = TRUE, align = "right"), - Number2 = rollapply(Number2, 3, mean, partial = TRUE, align = "right")) + mutate( + Number1 = rollapply(Number1, 3, mean, partial = TRUE, align = "right"), + Number2 = rollapply(Number2, 3, mean, partial = TRUE, align = "right") + ) new_th5a <- data$th5$ update_by(uby_rolling_avg_tick(c("Number1", "Number2"), rev_ticks = 3), by = "Y") expect_equal(as.data.frame(new_th5a), as.data.frame(new_tb5a)) - + new_tb5b <- data$df5 %>% group_by(Y) %>% - mutate(Number1 = rollapply(Number1, 3, mean, partial = TRUE, align = "left"), - Number2 = rollapply(Number2, 3, mean, partial = TRUE, align = "left")) + mutate( + Number1 = rollapply(Number1, 3, mean, partial = TRUE, align = "left"), + Number2 = rollapply(Number2, 3, mean, partial = TRUE, align = "left") + ) new_th5b <- data$th5$ update_by(uby_rolling_avg_tick(c("Number1", "Number2"), rev_ticks = 1, fwd_ticks = 2), by = "Y") expect_equal(as.data.frame(new_th5b), as.data.frame(new_tb5b)) - + new_tb5c <- data$df5 %>% group_by(Y) %>% - mutate(Number1 = rollapply(Number1, 3, mean, partial = TRUE, align = "center"), - Number2 = rollapply(Number2, 3, mean, partial = TRUE, align = "center")) + mutate( + Number1 = rollapply(Number1, 3, mean, partial = TRUE, align = "center"), + Number2 = rollapply(Number2, 3, mean, partial = TRUE, align = "center") + ) new_th5c <- data$th5$ update_by(uby_rolling_avg_tick(c("Number1", "Number2"), rev_ticks = 2, fwd_ticks = 1), by = "Y") expect_equal(as.data.frame(new_th5c), as.data.frame(new_tb5c)) - + new_tb6a <- rbind(data$df4, data$df5, data$df4, data$df5) %>% group_by(X, Y) %>% - mutate(Number1 = rollapply(Number1, 3, mean, partial = TRUE, align = "right"), - Number2 = rollapply(Number2, 3, mean, partial = TRUE, align = "right")) + mutate( + Number1 = rollapply(Number1, 3, mean, partial = TRUE, align = "right"), + Number2 = rollapply(Number2, 3, mean, partial = TRUE, align = "right") + ) new_th6a <- merge_tables(data$th4, data$th5, data$th4, data$th5)$ update_by(uby_rolling_avg_tick(c("Number1", "Number2"), rev_ticks = 3), by = c("X", "Y")) expect_equal(as.data.frame(new_th6a), as.data.frame(new_tb6a)) - + new_tb6b <- rbind(data$df4, data$df5, data$df4, data$df5) %>% group_by(X, Y) %>% - mutate(Number1 = rollapply(Number1, 3, mean, partial = TRUE, align = "left"), - Number2 = rollapply(Number2, 3, mean, partial = TRUE, align = "left")) + mutate( + Number1 = rollapply(Number1, 3, mean, partial = TRUE, align = "left"), + Number2 = rollapply(Number2, 3, mean, partial = TRUE, align = "left") + ) new_th6b <- merge_tables(data$th4, data$th5, data$th4, data$th5)$ update_by(uby_rolling_avg_tick(c("Number1", "Number2"), rev_ticks = 1, fwd_ticks = 2), by = c("X", "Y")) expect_equal(as.data.frame(new_th6b), as.data.frame(new_tb6b)) - + new_tb6c <- rbind(data$df4, data$df5, data$df4, data$df5) %>% group_by(X, Y) %>% - mutate(Number1 = rollapply(Number1, 3, mean, partial = TRUE, align = "center"), - Number2 = rollapply(Number2, 3, mean, partial = TRUE, align = "center")) + mutate( + Number1 = rollapply(Number1, 3, mean, partial = TRUE, align = "center"), + Number2 = rollapply(Number2, 3, mean, partial = TRUE, align = "center") + ) new_th6c <- merge_tables(data$th4, data$th5, data$th4, data$th5)$ update_by(uby_rolling_avg_tick(c("Number1", "Number2"), rev_ticks = 2, fwd_ticks = 1), by = c("X", "Y")) expect_equal(as.data.frame(new_th6c), as.data.frame(new_tb6c)) - + data$client$close() }) test_that("uby_rolling_avg_time behaves as expected", { data <- setup() - + new_tb1a <- head(data$df3, 500) %>% - mutate(int_col = rollapply(int_col, 9, mean, partial=TRUE, align="right")) + mutate(int_col = rollapply(int_col, 9, mean, partial = TRUE, align = "right")) new_th1a <- head(data$th3, 500)$ update_by(uby_rolling_avg_time("time_col", "int_col", "PT8s")) expect_equal(as.data.frame(new_th1a), as.data.frame(new_tb1a)) - + new_tb1b <- head(data$df3, 500) %>% - mutate(int_col = rollapply(int_col, 9, mean, partial=TRUE, align="left")) + mutate(int_col = rollapply(int_col, 9, mean, partial = TRUE, align = "left")) new_th1b <- head(data$th3, 500)$ update_by(uby_rolling_avg_time("time_col", "int_col", "PT0s", "PT8s")) expect_equal(as.data.frame(new_th1b), as.data.frame(new_tb1b)) - + new_tb1c <- head(data$df3, 500) %>% - mutate(int_col = rollapply(int_col, 9, mean, partial=TRUE, align="center")) + mutate(int_col = rollapply(int_col, 9, mean, partial = TRUE, align = "center")) new_th1c <- head(data$th3, 500)$ update_by(uby_rolling_avg_time("time_col", "int_col", "PT4s", "PT4s")) expect_equal(as.data.frame(new_th1c), as.data.frame(new_tb1c)) - + new_tb2a <- head(data$df3, 500) %>% - mutate(int_col = custom_rolling_time_op(int_col, bool_col, width=9, FUN=mean, partial=TRUE, align="right", na.rm=TRUE)) + mutate(int_col = custom_rolling_time_op(int_col, bool_col, width = 9, FUN = mean, partial = TRUE, align = "right", na.rm = TRUE)) new_th2a <- head(data$th3, 500)$ update_by(uby_rolling_avg_time("time_col", "int_col", "PT8s"), by = "bool_col") expect_equal(as.data.frame(new_th2a), as.data.frame(new_tb2a)) - + new_tb2b <- head(data$df3, 500) %>% - mutate(int_col = custom_rolling_time_op(int_col, bool_col, width=9, FUN=mean, partial=TRUE, align="left", na.rm=TRUE)) + mutate(int_col = custom_rolling_time_op(int_col, bool_col, width = 9, FUN = mean, partial = TRUE, align = "left", na.rm = TRUE)) new_th2b <- head(data$th3, 500)$ update_by(uby_rolling_avg_time("time_col", "int_col", "PT0s", "PT8s"), by = "bool_col") expect_equal(as.data.frame(new_th2b), as.data.frame(new_tb2b)) - + new_tb2c <- head(data$df3, 500) %>% - mutate(int_col = custom_rolling_time_op(int_col, bool_col, width=9, FUN=mean, partial=TRUE, align="center", na.rm=TRUE)) + mutate(int_col = custom_rolling_time_op(int_col, bool_col, width = 9, FUN = mean, partial = TRUE, align = "center", na.rm = TRUE)) new_th2c <- head(data$th3, 500)$ update_by(uby_rolling_avg_time("time_col", "int_col", "PT4s", "PT4s"), by = "bool_col") expect_equal(as.data.frame(new_th2b), as.data.frame(new_tb2b)) - + data$client$close() }) test_that("uby_rolling_min_tick behaves as expected", { data <- setup() - + new_tb1a <- data$df1 %>% mutate(dbl_col = rollapply(dbl_col, 3, min, partial = TRUE, align = "right")) new_th1a <- data$th1$ update_by(uby_rolling_min_tick("dbl_col", rev_ticks = 3)) expect_equal(as.data.frame(new_th1a), as.data.frame(new_tb1a)) - + new_tb1b <- data$df1 %>% mutate(dbl_col = rollapply(dbl_col, 3, min, partial = TRUE, align = "left")) new_th1b <- data$th1$ update_by(uby_rolling_min_tick("dbl_col", rev_ticks = 1, fwd_ticks = 2)) expect_equal(as.data.frame(new_th1b), as.data.frame(new_tb1b)) - + new_tb1c <- data$df1 %>% mutate(dbl_col = rollapply(dbl_col, 3, min, partial = TRUE, align = "center")) new_th1c <- data$th1$ update_by(uby_rolling_min_tick("dbl_col", rev_ticks = 2, fwd_ticks = 1)) expect_equal(as.data.frame(new_th1c), as.data.frame(new_tb1c)) - + new_tb2a <- data$df2 %>% - mutate(col1 = rollapply(col1, 5, min, partial = TRUE, align = "right"), - col3 = rollapply(col3, 5, min, partial = TRUE, align = "right")) + mutate( + col1 = rollapply(col1, 5, min, partial = TRUE, align = "right"), + col3 = rollapply(col3, 5, min, partial = TRUE, align = "right") + ) new_th2a <- data$th2$ update_by(uby_rolling_min_tick(c("col1", "col3"), rev_ticks = 5)) expect_equal(as.data.frame(new_th2a), as.data.frame(new_tb2a)) - + new_tb2b <- data$df2 %>% - mutate(col1 = rollapply(col1, 5, min, partial = TRUE, align = "left"), - col3 = rollapply(col3, 5, min, partial = TRUE, align = "left")) + mutate( + col1 = rollapply(col1, 5, min, partial = TRUE, align = "left"), + col3 = rollapply(col3, 5, min, partial = TRUE, align = "left") + ) new_th2b <- data$th2$ update_by(uby_rolling_min_tick(c("col1", "col3"), rev_ticks = 1, fwd_ticks = 4)) expect_equal(as.data.frame(new_th2b), as.data.frame(new_tb2b)) - + new_tb2c <- data$df2 %>% - mutate(col1 = rollapply(col1, 5, min, partial = TRUE, align = "center"), - col3 = rollapply(col3, 5, min, partial = TRUE, align = "center")) + mutate( + col1 = rollapply(col1, 5, min, partial = TRUE, align = "center"), + col3 = rollapply(col3, 5, min, partial = TRUE, align = "center") + ) new_th2c <- data$th2$ update_by(uby_rolling_min_tick(c("col1", "col3"), rev_ticks = 3, fwd_ticks = 2)) expect_equal(as.data.frame(new_th2c), as.data.frame(new_tb2c)) - + new_tb3a <- data$df3 %>% group_by(bool_col) %>% mutate(int_col = rollapply(int_col, 9, min, partial = TRUE, align = "right")) new_th3a <- data$th3$ update_by(uby_rolling_min_tick("int_col", rev_ticks = 9), by = "bool_col") expect_equal(as.data.frame(new_th3a), as.data.frame(new_tb3a)) - + new_tb3b <- data$df3 %>% group_by(bool_col) %>% mutate(int_col = rollapply(int_col, 9, min, partial = TRUE, align = "left")) new_th3b <- data$th3$ update_by(uby_rolling_min_tick("int_col", rev_ticks = 1, fwd_ticks = 8), by = "bool_col") expect_equal(as.data.frame(new_th3b), as.data.frame(new_tb3b)) - + new_tb3c <- data$df3 %>% group_by(bool_col) %>% mutate(int_col = rollapply(int_col, 9, min, partial = TRUE, align = "center")) new_th3c <- data$th3$ update_by(uby_rolling_min_tick("int_col", rev_ticks = 5, fwd_ticks = 4), by = "bool_col") expect_equal(as.data.frame(new_th3c), as.data.frame(new_tb3c)) - + new_tb4a <- data$df4 %>% group_by(X) %>% - mutate(Number1 = rollapply(Number1, 3, min, partial = TRUE, align = "right"), - Number2 = rollapply(Number2, 3, min, partial = TRUE, align = "right")) + mutate( + Number1 = rollapply(Number1, 3, min, partial = TRUE, align = "right"), + Number2 = rollapply(Number2, 3, min, partial = TRUE, align = "right") + ) new_th4a <- data$th4$ update_by(uby_rolling_min_tick(c("Number1", "Number2"), rev_ticks = 3), by = "X") expect_equal(as.data.frame(new_th4a), as.data.frame(new_tb4a)) - + new_tb4b <- data$df4 %>% group_by(X) %>% - mutate(Number1 = rollapply(Number1, 3, min, partial = TRUE, align = "left"), - Number2 = rollapply(Number2, 3, min, partial = TRUE, align = "left")) + mutate( + Number1 = rollapply(Number1, 3, min, partial = TRUE, align = "left"), + Number2 = rollapply(Number2, 3, min, partial = TRUE, align = "left") + ) new_th4b <- data$th4$ update_by(uby_rolling_min_tick(c("Number1", "Number2"), rev_ticks = 1, fwd_ticks = 2), by = "X") expect_equal(as.data.frame(new_th4b), as.data.frame(new_tb4b)) - + new_tb4c <- data$df4 %>% group_by(X) %>% - mutate(Number1 = rollapply(Number1, 3, min, partial = TRUE, align = "center"), - Number2 = rollapply(Number2, 3, min, partial = TRUE, align = "center")) + mutate( + Number1 = rollapply(Number1, 3, min, partial = TRUE, align = "center"), + Number2 = rollapply(Number2, 3, min, partial = TRUE, align = "center") + ) new_th4c <- data$th4$ update_by(uby_rolling_min_tick(c("Number1", "Number2"), rev_ticks = 2, fwd_ticks = 1), by = "X") expect_equal(as.data.frame(new_th4c), as.data.frame(new_tb4c)) - + new_tb5a <- data$df5 %>% group_by(Y) %>% - mutate(Number1 = rollapply(Number1, 3, min, partial = TRUE, align = "right"), - Number2 = rollapply(Number2, 3, min, partial = TRUE, align = "right")) + mutate( + Number1 = rollapply(Number1, 3, min, partial = TRUE, align = "right"), + Number2 = rollapply(Number2, 3, min, partial = TRUE, align = "right") + ) new_th5a <- data$th5$ update_by(uby_rolling_min_tick(c("Number1", "Number2"), rev_ticks = 3), by = "Y") expect_equal(as.data.frame(new_th5a), as.data.frame(new_tb5a)) - + new_tb5b <- data$df5 %>% group_by(Y) %>% - mutate(Number1 = rollapply(Number1, 3, min, partial = TRUE, align = "left"), - Number2 = rollapply(Number2, 3, min, partial = TRUE, align = "left")) + mutate( + Number1 = rollapply(Number1, 3, min, partial = TRUE, align = "left"), + Number2 = rollapply(Number2, 3, min, partial = TRUE, align = "left") + ) new_th5b <- data$th5$ update_by(uby_rolling_min_tick(c("Number1", "Number2"), rev_ticks = 1, fwd_ticks = 2), by = "Y") expect_equal(as.data.frame(new_th5b), as.data.frame(new_tb5b)) - + new_tb5c <- data$df5 %>% group_by(Y) %>% - mutate(Number1 = rollapply(Number1, 3, min, partial = TRUE, align = "center"), - Number2 = rollapply(Number2, 3, min, partial = TRUE, align = "center")) + mutate( + Number1 = rollapply(Number1, 3, min, partial = TRUE, align = "center"), + Number2 = rollapply(Number2, 3, min, partial = TRUE, align = "center") + ) new_th5c <- data$th5$ update_by(uby_rolling_min_tick(c("Number1", "Number2"), rev_ticks = 2, fwd_ticks = 1), by = "Y") expect_equal(as.data.frame(new_th5c), as.data.frame(new_tb5c)) - + new_tb6a <- rbind(data$df4, data$df5, data$df4, data$df5) %>% group_by(X, Y) %>% - mutate(Number1 = rollapply(Number1, 3, min, partial = TRUE, align = "right"), - Number2 = rollapply(Number2, 3, min, partial = TRUE, align = "right")) + mutate( + Number1 = rollapply(Number1, 3, min, partial = TRUE, align = "right"), + Number2 = rollapply(Number2, 3, min, partial = TRUE, align = "right") + ) new_th6a <- merge_tables(data$th4, data$th5, data$th4, data$th5)$ update_by(uby_rolling_min_tick(c("Number1", "Number2"), rev_ticks = 3), by = c("X", "Y")) expect_equal(as.data.frame(new_th6a), as.data.frame(new_tb6a)) - + new_tb6b <- rbind(data$df4, data$df5, data$df4, data$df5) %>% group_by(X, Y) %>% - mutate(Number1 = rollapply(Number1, 3, min, partial = TRUE, align = "left"), - Number2 = rollapply(Number2, 3, min, partial = TRUE, align = "left")) + mutate( + Number1 = rollapply(Number1, 3, min, partial = TRUE, align = "left"), + Number2 = rollapply(Number2, 3, min, partial = TRUE, align = "left") + ) new_th6b <- merge_tables(data$th4, data$th5, data$th4, data$th5)$ update_by(uby_rolling_min_tick(c("Number1", "Number2"), rev_ticks = 1, fwd_ticks = 2), by = c("X", "Y")) expect_equal(as.data.frame(new_th6b), as.data.frame(new_tb6b)) - + new_tb6c <- rbind(data$df4, data$df5, data$df4, data$df5) %>% group_by(X, Y) %>% - mutate(Number1 = rollapply(Number1, 3, min, partial = TRUE, align = "center"), - Number2 = rollapply(Number2, 3, min, partial = TRUE, align = "center")) + mutate( + Number1 = rollapply(Number1, 3, min, partial = TRUE, align = "center"), + Number2 = rollapply(Number2, 3, min, partial = TRUE, align = "center") + ) new_th6c <- merge_tables(data$th4, data$th5, data$th4, data$th5)$ update_by(uby_rolling_min_tick(c("Number1", "Number2"), rev_ticks = 2, fwd_ticks = 1), by = c("X", "Y")) expect_equal(as.data.frame(new_th6c), as.data.frame(new_tb6c)) - + data$client$close() }) test_that("uby_rolling_min_time behaves as expected", { data <- setup() - + new_tb1a <- head(data$df3, 500) %>% - mutate(int_col = rollapply(int_col, 9, min, partial=TRUE, align="right")) + mutate(int_col = rollapply(int_col, 9, min, partial = TRUE, align = "right")) new_th1a <- head(data$th3, 500)$ update_by(uby_rolling_min_time("time_col", "int_col", "PT8s")) expect_equal(as.data.frame(new_th1a), as.data.frame(new_tb1a)) - + new_tb1b <- head(data$df3, 500) %>% - mutate(int_col = rollapply(int_col, 9, min, partial=TRUE, align="left")) + mutate(int_col = rollapply(int_col, 9, min, partial = TRUE, align = "left")) new_th1b <- head(data$th3, 500)$ update_by(uby_rolling_min_time("time_col", "int_col", "PT0s", "PT8s")) expect_equal(as.data.frame(new_th1b), as.data.frame(new_tb1b)) - + new_tb1c <- head(data$df3, 500) %>% - mutate(int_col = rollapply(int_col, 9, min, partial=TRUE, align="center")) + mutate(int_col = rollapply(int_col, 9, min, partial = TRUE, align = "center")) new_th1c <- head(data$th3, 500)$ update_by(uby_rolling_min_time("time_col", "int_col", "PT4s", "PT4s")) expect_equal(as.data.frame(new_th1c), as.data.frame(new_tb1c)) - + new_tb2a <- head(data$df3, 500) %>% - mutate(int_col = custom_rolling_time_op(int_col, bool_col, width=9, FUN=min, partial=TRUE, align="right", na.rm=TRUE)) + mutate(int_col = custom_rolling_time_op(int_col, bool_col, width = 9, FUN = min, partial = TRUE, align = "right", na.rm = TRUE)) new_th2a <- head(data$th3, 500)$ update_by(uby_rolling_min_time("time_col", "int_col", "PT8s"), by = "bool_col") expect_equal(as.data.frame(new_th2a), as.data.frame(new_tb2a)) - + new_tb2b <- head(data$df3, 500) %>% - mutate(int_col = custom_rolling_time_op(int_col, bool_col, width=9, FUN=min, partial=TRUE, align="left", na.rm=TRUE)) + mutate(int_col = custom_rolling_time_op(int_col, bool_col, width = 9, FUN = min, partial = TRUE, align = "left", na.rm = TRUE)) new_th2b <- head(data$th3, 500)$ update_by(uby_rolling_min_time("time_col", "int_col", "PT0s", "PT8s"), by = "bool_col") expect_equal(as.data.frame(new_th2b), as.data.frame(new_tb2b)) - + new_tb2c <- head(data$df3, 500) %>% - mutate(int_col = custom_rolling_time_op(int_col, bool_col, width=9, FUN=min, partial=TRUE, align="center", na.rm=TRUE)) + mutate(int_col = custom_rolling_time_op(int_col, bool_col, width = 9, FUN = min, partial = TRUE, align = "center", na.rm = TRUE)) new_th2c <- head(data$th3, 500)$ update_by(uby_rolling_min_time("time_col", "int_col", "PT4s", "PT4s"), by = "bool_col") expect_equal(as.data.frame(new_th2b), as.data.frame(new_tb2b)) - + data$client$close() }) @@ -1416,22 +1504,28 @@ test_that("uby_rolling_max_tick behaves as expected", { expect_equal(as.data.frame(new_th1c), as.data.frame(new_tb1c)) new_tb2a <- data$df2 %>% - mutate(col1 = rollapply(col1, 5, max, partial = TRUE, align = "right"), - col3 = rollapply(col3, 5, max, partial = TRUE, align = "right")) + mutate( + col1 = rollapply(col1, 5, max, partial = TRUE, align = "right"), + col3 = rollapply(col3, 5, max, partial = TRUE, align = "right") + ) new_th2a <- data$th2$ update_by(uby_rolling_max_tick(c("col1", "col3"), rev_ticks = 5)) expect_equal(as.data.frame(new_th2a), as.data.frame(new_tb2a)) new_tb2b <- data$df2 %>% - mutate(col1 = rollapply(col1, 5, max, partial = TRUE, align = "left"), - col3 = rollapply(col3, 5, max, partial = TRUE, align = "left")) + mutate( + col1 = rollapply(col1, 5, max, partial = TRUE, align = "left"), + col3 = rollapply(col3, 5, max, partial = TRUE, align = "left") + ) new_th2b <- data$th2$ update_by(uby_rolling_max_tick(c("col1", "col3"), rev_ticks = 1, fwd_ticks = 4)) expect_equal(as.data.frame(new_th2b), as.data.frame(new_tb2b)) new_tb2c <- data$df2 %>% - mutate(col1 = rollapply(col1, 5, max, partial = TRUE, align = "center"), - col3 = rollapply(col3, 5, max, partial = TRUE, align = "center")) + mutate( + col1 = rollapply(col1, 5, max, partial = TRUE, align = "center"), + col3 = rollapply(col3, 5, max, partial = TRUE, align = "center") + ) new_th2c <- data$th2$ update_by(uby_rolling_max_tick(c("col1", "col3"), rev_ticks = 3, fwd_ticks = 2)) expect_equal(as.data.frame(new_th2c), as.data.frame(new_tb2c)) @@ -1459,72 +1553,90 @@ test_that("uby_rolling_max_tick behaves as expected", { new_tb4a <- data$df4 %>% group_by(X) %>% - mutate(Number1 = rollapply(Number1, 3, max, partial = TRUE, align = "right"), - Number2 = rollapply(Number2, 3, max, partial = TRUE, align = "right")) + mutate( + Number1 = rollapply(Number1, 3, max, partial = TRUE, align = "right"), + Number2 = rollapply(Number2, 3, max, partial = TRUE, align = "right") + ) new_th4a <- data$th4$ update_by(uby_rolling_max_tick(c("Number1", "Number2"), rev_ticks = 3), by = "X") expect_equal(as.data.frame(new_th4a), as.data.frame(new_tb4a)) new_tb4b <- data$df4 %>% group_by(X) %>% - mutate(Number1 = rollapply(Number1, 3, max, partial = TRUE, align = "left"), - Number2 = rollapply(Number2, 3, max, partial = TRUE, align = "left")) + mutate( + Number1 = rollapply(Number1, 3, max, partial = TRUE, align = "left"), + Number2 = rollapply(Number2, 3, max, partial = TRUE, align = "left") + ) new_th4b <- data$th4$ update_by(uby_rolling_max_tick(c("Number1", "Number2"), rev_ticks = 1, fwd_ticks = 2), by = "X") expect_equal(as.data.frame(new_th4b), as.data.frame(new_tb4b)) new_tb4c <- data$df4 %>% group_by(X) %>% - mutate(Number1 = rollapply(Number1, 3, max, partial = TRUE, align = "center"), - Number2 = rollapply(Number2, 3, max, partial = TRUE, align = "center")) + mutate( + Number1 = rollapply(Number1, 3, max, partial = TRUE, align = "center"), + Number2 = rollapply(Number2, 3, max, partial = TRUE, align = "center") + ) new_th4c <- data$th4$ update_by(uby_rolling_max_tick(c("Number1", "Number2"), rev_ticks = 2, fwd_ticks = 1), by = "X") expect_equal(as.data.frame(new_th4c), as.data.frame(new_tb4c)) new_tb5a <- data$df5 %>% group_by(Y) %>% - mutate(Number1 = rollapply(Number1, 3, max, partial = TRUE, align = "right"), - Number2 = rollapply(Number2, 3, max, partial = TRUE, align = "right")) + mutate( + Number1 = rollapply(Number1, 3, max, partial = TRUE, align = "right"), + Number2 = rollapply(Number2, 3, max, partial = TRUE, align = "right") + ) new_th5a <- data$th5$ update_by(uby_rolling_max_tick(c("Number1", "Number2"), rev_ticks = 3), by = "Y") expect_equal(as.data.frame(new_th5a), as.data.frame(new_tb5a)) new_tb5b <- data$df5 %>% group_by(Y) %>% - mutate(Number1 = rollapply(Number1, 3, max, partial = TRUE, align = "left"), - Number2 = rollapply(Number2, 3, max, partial = TRUE, align = "left")) + mutate( + Number1 = rollapply(Number1, 3, max, partial = TRUE, align = "left"), + Number2 = rollapply(Number2, 3, max, partial = TRUE, align = "left") + ) new_th5b <- data$th5$ update_by(uby_rolling_max_tick(c("Number1", "Number2"), rev_ticks = 1, fwd_ticks = 2), by = "Y") expect_equal(as.data.frame(new_th5b), as.data.frame(new_tb5b)) new_tb5c <- data$df5 %>% group_by(Y) %>% - mutate(Number1 = rollapply(Number1, 3, max, partial = TRUE, align = "center"), - Number2 = rollapply(Number2, 3, max, partial = TRUE, align = "center")) + mutate( + Number1 = rollapply(Number1, 3, max, partial = TRUE, align = "center"), + Number2 = rollapply(Number2, 3, max, partial = TRUE, align = "center") + ) new_th5c <- data$th5$ update_by(uby_rolling_max_tick(c("Number1", "Number2"), rev_ticks = 2, fwd_ticks = 1), by = "Y") expect_equal(as.data.frame(new_th5c), as.data.frame(new_tb5c)) new_tb6a <- rbind(data$df4, data$df5, data$df4, data$df5) %>% group_by(X, Y) %>% - mutate(Number1 = rollapply(Number1, 3, max, partial = TRUE, align = "right"), - Number2 = rollapply(Number2, 3, max, partial = TRUE, align = "right")) + mutate( + Number1 = rollapply(Number1, 3, max, partial = TRUE, align = "right"), + Number2 = rollapply(Number2, 3, max, partial = TRUE, align = "right") + ) new_th6a <- merge_tables(data$th4, data$th5, data$th4, data$th5)$ update_by(uby_rolling_max_tick(c("Number1", "Number2"), rev_ticks = 3), by = c("X", "Y")) expect_equal(as.data.frame(new_th6a), as.data.frame(new_tb6a)) new_tb6b <- rbind(data$df4, data$df5, data$df4, data$df5) %>% group_by(X, Y) %>% - mutate(Number1 = rollapply(Number1, 3, max, partial = TRUE, align = "left"), - Number2 = rollapply(Number2, 3, max, partial = TRUE, align = "left")) + mutate( + Number1 = rollapply(Number1, 3, max, partial = TRUE, align = "left"), + Number2 = rollapply(Number2, 3, max, partial = TRUE, align = "left") + ) new_th6b <- merge_tables(data$th4, data$th5, data$th4, data$th5)$ update_by(uby_rolling_max_tick(c("Number1", "Number2"), rev_ticks = 1, fwd_ticks = 2), by = c("X", "Y")) expect_equal(as.data.frame(new_th6b), as.data.frame(new_tb6b)) new_tb6c <- rbind(data$df4, data$df5, data$df4, data$df5) %>% group_by(X, Y) %>% - mutate(Number1 = rollapply(Number1, 3, max, partial = TRUE, align = "center"), - Number2 = rollapply(Number2, 3, max, partial = TRUE, align = "center")) + mutate( + Number1 = rollapply(Number1, 3, max, partial = TRUE, align = "center"), + Number2 = rollapply(Number2, 3, max, partial = TRUE, align = "center") + ) new_th6c <- merge_tables(data$th4, data$th5, data$th4, data$th5)$ update_by(uby_rolling_max_tick(c("Number1", "Number2"), rev_ticks = 2, fwd_ticks = 1), by = c("X", "Y")) expect_equal(as.data.frame(new_th6c), as.data.frame(new_tb6c)) @@ -1534,405 +1646,455 @@ test_that("uby_rolling_max_tick behaves as expected", { test_that("uby_rolling_max_time behaves as expected", { data <- setup() - + new_tb1a <- head(data$df3, 500) %>% - mutate(int_col = rollapply(int_col, 9, max, partial=TRUE, align="right")) + mutate(int_col = rollapply(int_col, 9, max, partial = TRUE, align = "right")) new_th1a <- head(data$th3, 500)$ update_by(uby_rolling_max_time("time_col", "int_col", "PT8s")) expect_equal(as.data.frame(new_th1a), as.data.frame(new_tb1a)) - + new_tb1b <- head(data$df3, 500) %>% - mutate(int_col = rollapply(int_col, 9, max, partial=TRUE, align="left")) + mutate(int_col = rollapply(int_col, 9, max, partial = TRUE, align = "left")) new_th1b <- head(data$th3, 500)$ update_by(uby_rolling_max_time("time_col", "int_col", "PT0s", "PT8s")) expect_equal(as.data.frame(new_th1b), as.data.frame(new_tb1b)) - + new_tb1c <- head(data$df3, 500) %>% - mutate(int_col = rollapply(int_col, 9, max, partial=TRUE, align="center")) + mutate(int_col = rollapply(int_col, 9, max, partial = TRUE, align = "center")) new_th1c <- head(data$th3, 500)$ update_by(uby_rolling_max_time("time_col", "int_col", "PT4s", "PT4s")) expect_equal(as.data.frame(new_th1c), as.data.frame(new_tb1c)) - + new_tb2a <- head(data$df3, 500) %>% - mutate(int_col = custom_rolling_time_op(int_col, bool_col, width=9, FUN=max, partial=TRUE, align="right", na.rm=TRUE)) + mutate(int_col = custom_rolling_time_op(int_col, bool_col, width = 9, FUN = max, partial = TRUE, align = "right", na.rm = TRUE)) new_th2a <- head(data$th3, 500)$ update_by(uby_rolling_max_time("time_col", "int_col", "PT8s"), by = "bool_col") expect_equal(as.data.frame(new_th2a), as.data.frame(new_tb2a)) - + new_tb2b <- head(data$df3, 500) %>% - mutate(int_col = custom_rolling_time_op(int_col, bool_col, width=9, FUN=max, partial=TRUE, align="left", na.rm=TRUE)) + mutate(int_col = custom_rolling_time_op(int_col, bool_col, width = 9, FUN = max, partial = TRUE, align = "left", na.rm = TRUE)) new_th2b <- head(data$th3, 500)$ update_by(uby_rolling_max_time("time_col", "int_col", "PT0s", "PT8s"), by = "bool_col") expect_equal(as.data.frame(new_th2b), as.data.frame(new_tb2b)) - + new_tb2c <- head(data$df3, 500) %>% - mutate(int_col = custom_rolling_time_op(int_col, bool_col, width=9, FUN=max, partial=TRUE, align="center", na.rm=TRUE)) + mutate(int_col = custom_rolling_time_op(int_col, bool_col, width = 9, FUN = max, partial = TRUE, align = "center", na.rm = TRUE)) new_th2c <- head(data$th3, 500)$ update_by(uby_rolling_max_time("time_col", "int_col", "PT4s", "PT4s"), by = "bool_col") expect_equal(as.data.frame(new_th2b), as.data.frame(new_tb2b)) - + data$client$close() }) test_that("uby_rolling_prod_tick behaves as expected", { data <- setup() - + new_tb1a <- data$df1 %>% mutate(dbl_col = rollapply(dbl_col, 3, prod, partial = TRUE, align = "right")) new_th1a <- data$th1$ update_by(uby_rolling_prod_tick("dbl_col", rev_ticks = 3)) expect_equal(as.data.frame(new_th1a), as.data.frame(new_tb1a)) - + new_tb1b <- data$df1 %>% mutate(dbl_col = rollapply(dbl_col, 3, prod, partial = TRUE, align = "left")) new_th1b <- data$th1$ update_by(uby_rolling_prod_tick("dbl_col", rev_ticks = 1, fwd_ticks = 2)) expect_equal(as.data.frame(new_th1b), as.data.frame(new_tb1b)) - + new_tb1c <- data$df1 %>% mutate(dbl_col = rollapply(dbl_col, 3, prod, partial = TRUE, align = "center")) new_th1c <- data$th1$ update_by(uby_rolling_prod_tick("dbl_col", rev_ticks = 2, fwd_ticks = 1)) expect_equal(as.data.frame(new_th1c), as.data.frame(new_tb1c)) - + new_tb2a <- data$df2 %>% - mutate(col1 = rollapply(col1, 5, prod, partial = TRUE, align = "right"), - col3 = rollapply(col3, 5, prod, partial = TRUE, align = "right")) + mutate( + col1 = rollapply(col1, 5, prod, partial = TRUE, align = "right"), + col3 = rollapply(col3, 5, prod, partial = TRUE, align = "right") + ) new_th2a <- data$th2$ update_by(uby_rolling_prod_tick(c("col1", "col3"), rev_ticks = 5)) expect_equal(as.data.frame(new_th2a), as.data.frame(new_tb2a)) - + new_tb2b <- data$df2 %>% - mutate(col1 = rollapply(col1, 5, prod, partial = TRUE, align = "left"), - col3 = rollapply(col3, 5, prod, partial = TRUE, align = "left")) + mutate( + col1 = rollapply(col1, 5, prod, partial = TRUE, align = "left"), + col3 = rollapply(col3, 5, prod, partial = TRUE, align = "left") + ) new_th2b <- data$th2$ update_by(uby_rolling_prod_tick(c("col1", "col3"), rev_ticks = 1, fwd_ticks = 4)) expect_equal(as.data.frame(new_th2b), as.data.frame(new_tb2b)) - + new_tb2c <- data$df2 %>% - mutate(col1 = rollapply(col1, 5, prod, partial = TRUE, align = "center"), - col3 = rollapply(col3, 5, prod, partial = TRUE, align = "center")) + mutate( + col1 = rollapply(col1, 5, prod, partial = TRUE, align = "center"), + col3 = rollapply(col3, 5, prod, partial = TRUE, align = "center") + ) new_th2c <- data$th2$ update_by(uby_rolling_prod_tick(c("col1", "col3"), rev_ticks = 3, fwd_ticks = 2)) expect_equal(as.data.frame(new_th2c), as.data.frame(new_tb2c)) - + new_tb3a <- data$df3 %>% group_by(bool_col) %>% mutate(int_col = rollapply(int_col, 9, prod, partial = TRUE, align = "right")) new_th3a <- data$th3$ update_by(uby_rolling_prod_tick("int_col", rev_ticks = 9), by = "bool_col") expect_equal(as.data.frame(new_th3a), as.data.frame(new_tb3a)) - + new_tb3b <- data$df3 %>% group_by(bool_col) %>% mutate(int_col = rollapply(int_col, 9, prod, partial = TRUE, align = "left")) new_th3b <- data$th3$ update_by(uby_rolling_prod_tick("int_col", rev_ticks = 1, fwd_ticks = 8), by = "bool_col") expect_equal(as.data.frame(new_th3b), as.data.frame(new_tb3b)) - + new_tb3c <- data$df3 %>% group_by(bool_col) %>% mutate(int_col = rollapply(int_col, 9, prod, partial = TRUE, align = "center")) new_th3c <- data$th3$ update_by(uby_rolling_prod_tick("int_col", rev_ticks = 5, fwd_ticks = 4), by = "bool_col") expect_equal(as.data.frame(new_th3c), as.data.frame(new_tb3c)) - + new_tb4a <- data$df4 %>% group_by(X) %>% - mutate(Number1 = rollapply(Number1, 3, prod, partial = TRUE, align = "right"), - Number2 = rollapply(Number2, 3, prod, partial = TRUE, align = "right")) + mutate( + Number1 = rollapply(Number1, 3, prod, partial = TRUE, align = "right"), + Number2 = rollapply(Number2, 3, prod, partial = TRUE, align = "right") + ) new_th4a <- data$th4$ update_by(uby_rolling_prod_tick(c("Number1", "Number2"), rev_ticks = 3), by = "X") expect_equal(as.data.frame(new_th4a), as.data.frame(new_tb4a)) - + new_tb4b <- data$df4 %>% group_by(X) %>% - mutate(Number1 = rollapply(Number1, 3, prod, partial = TRUE, align = "left"), - Number2 = rollapply(Number2, 3, prod, partial = TRUE, align = "left")) + mutate( + Number1 = rollapply(Number1, 3, prod, partial = TRUE, align = "left"), + Number2 = rollapply(Number2, 3, prod, partial = TRUE, align = "left") + ) new_th4b <- data$th4$ update_by(uby_rolling_prod_tick(c("Number1", "Number2"), rev_ticks = 1, fwd_ticks = 2), by = "X") expect_equal(as.data.frame(new_th4b), as.data.frame(new_tb4b)) - + new_tb4c <- data$df4 %>% group_by(X) %>% - mutate(Number1 = rollapply(Number1, 3, prod, partial = TRUE, align = "center"), - Number2 = rollapply(Number2, 3, prod, partial = TRUE, align = "center")) + mutate( + Number1 = rollapply(Number1, 3, prod, partial = TRUE, align = "center"), + Number2 = rollapply(Number2, 3, prod, partial = TRUE, align = "center") + ) new_th4c <- data$th4$ update_by(uby_rolling_prod_tick(c("Number1", "Number2"), rev_ticks = 2, fwd_ticks = 1), by = "X") expect_equal(as.data.frame(new_th4c), as.data.frame(new_tb4c)) - + new_tb5a <- data$df5 %>% group_by(Y) %>% - mutate(Number1 = rollapply(Number1, 3, prod, partial = TRUE, align = "right"), - Number2 = rollapply(Number2, 3, prod, partial = TRUE, align = "right")) + mutate( + Number1 = rollapply(Number1, 3, prod, partial = TRUE, align = "right"), + Number2 = rollapply(Number2, 3, prod, partial = TRUE, align = "right") + ) new_th5a <- data$th5$ update_by(uby_rolling_prod_tick(c("Number1", "Number2"), rev_ticks = 3), by = "Y") expect_equal(as.data.frame(new_th5a), as.data.frame(new_tb5a)) - + new_tb5b <- data$df5 %>% group_by(Y) %>% - mutate(Number1 = rollapply(Number1, 3, prod, partial = TRUE, align = "left"), - Number2 = rollapply(Number2, 3, prod, partial = TRUE, align = "left")) + mutate( + Number1 = rollapply(Number1, 3, prod, partial = TRUE, align = "left"), + Number2 = rollapply(Number2, 3, prod, partial = TRUE, align = "left") + ) new_th5b <- data$th5$ update_by(uby_rolling_prod_tick(c("Number1", "Number2"), rev_ticks = 1, fwd_ticks = 2), by = "Y") expect_equal(as.data.frame(new_th5b), as.data.frame(new_tb5b)) - + new_tb5c <- data$df5 %>% group_by(Y) %>% - mutate(Number1 = rollapply(Number1, 3, prod, partial = TRUE, align = "center"), - Number2 = rollapply(Number2, 3, prod, partial = TRUE, align = "center")) + mutate( + Number1 = rollapply(Number1, 3, prod, partial = TRUE, align = "center"), + Number2 = rollapply(Number2, 3, prod, partial = TRUE, align = "center") + ) new_th5c <- data$th5$ update_by(uby_rolling_prod_tick(c("Number1", "Number2"), rev_ticks = 2, fwd_ticks = 1), by = "Y") expect_equal(as.data.frame(new_th5c), as.data.frame(new_tb5c)) - + new_tb6a <- rbind(data$df4, data$df5, data$df4, data$df5) %>% group_by(X, Y) %>% - mutate(Number1 = rollapply(Number1, 3, prod, partial = TRUE, align = "right"), - Number2 = rollapply(Number2, 3, prod, partial = TRUE, align = "right")) + mutate( + Number1 = rollapply(Number1, 3, prod, partial = TRUE, align = "right"), + Number2 = rollapply(Number2, 3, prod, partial = TRUE, align = "right") + ) new_th6a <- merge_tables(data$th4, data$th5, data$th4, data$th5)$ update_by(uby_rolling_prod_tick(c("Number1", "Number2"), rev_ticks = 3), by = c("X", "Y")) expect_equal(as.data.frame(new_th6a), as.data.frame(new_tb6a)) - + new_tb6b <- rbind(data$df4, data$df5, data$df4, data$df5) %>% group_by(X, Y) %>% - mutate(Number1 = rollapply(Number1, 3, prod, partial = TRUE, align = "left"), - Number2 = rollapply(Number2, 3, prod, partial = TRUE, align = "left")) + mutate( + Number1 = rollapply(Number1, 3, prod, partial = TRUE, align = "left"), + Number2 = rollapply(Number2, 3, prod, partial = TRUE, align = "left") + ) new_th6b <- merge_tables(data$th4, data$th5, data$th4, data$th5)$ update_by(uby_rolling_prod_tick(c("Number1", "Number2"), rev_ticks = 1, fwd_ticks = 2), by = c("X", "Y")) expect_equal(as.data.frame(new_th6b), as.data.frame(new_tb6b)) - + new_tb6c <- rbind(data$df4, data$df5, data$df4, data$df5) %>% group_by(X, Y) %>% - mutate(Number1 = rollapply(Number1, 3, prod, partial = TRUE, align = "center"), - Number2 = rollapply(Number2, 3, prod, partial = TRUE, align = "center")) + mutate( + Number1 = rollapply(Number1, 3, prod, partial = TRUE, align = "center"), + Number2 = rollapply(Number2, 3, prod, partial = TRUE, align = "center") + ) new_th6c <- merge_tables(data$th4, data$th5, data$th4, data$th5)$ update_by(uby_rolling_prod_tick(c("Number1", "Number2"), rev_ticks = 2, fwd_ticks = 1), by = c("X", "Y")) expect_equal(as.data.frame(new_th6c), as.data.frame(new_tb6c)) - + data$client$close() }) test_that("uby_rolling_prod_time behaves as expected", { data <- setup() - + new_tb1a <- head(data$df3, 500) %>% - mutate(int_col = rollapply(int_col, 9, prod, partial=TRUE, align="right")) + mutate(int_col = rollapply(int_col, 9, prod, partial = TRUE, align = "right")) new_th1a <- head(data$th3, 500)$ update_by(uby_rolling_prod_time("time_col", "int_col", "PT8s")) expect_equal(as.data.frame(new_th1a), as.data.frame(new_tb1a)) - + new_tb1b <- head(data$df3, 500) %>% - mutate(int_col = rollapply(int_col, 9, prod, partial=TRUE, align="left")) + mutate(int_col = rollapply(int_col, 9, prod, partial = TRUE, align = "left")) new_th1b <- head(data$th3, 500)$ update_by(uby_rolling_prod_time("time_col", "int_col", "PT0s", "PT8s")) expect_equal(as.data.frame(new_th1b), as.data.frame(new_tb1b)) - + new_tb1c <- head(data$df3, 500) %>% - mutate(int_col = rollapply(int_col, 9, prod, partial=TRUE, align="center")) + mutate(int_col = rollapply(int_col, 9, prod, partial = TRUE, align = "center")) new_th1c <- head(data$th3, 500)$ update_by(uby_rolling_prod_time("time_col", "int_col", "PT4s", "PT4s")) expect_equal(as.data.frame(new_th1c), as.data.frame(new_tb1c)) - + new_tb2a <- head(data$df3, 500) %>% - mutate(int_col = custom_rolling_time_op(int_col, bool_col, width=9, FUN=prod, partial=TRUE, align="right", na.rm=TRUE)) + mutate(int_col = custom_rolling_time_op(int_col, bool_col, width = 9, FUN = prod, partial = TRUE, align = "right", na.rm = TRUE)) new_th2a <- head(data$th3, 500)$ update_by(uby_rolling_prod_time("time_col", "int_col", "PT8s"), by = "bool_col") expect_equal(as.data.frame(new_th2a), as.data.frame(new_tb2a)) - + new_tb2b <- head(data$df3, 500) %>% - mutate(int_col = custom_rolling_time_op(int_col, bool_col, width=9, FUN=prod, partial=TRUE, align="left", na.rm=TRUE)) + mutate(int_col = custom_rolling_time_op(int_col, bool_col, width = 9, FUN = prod, partial = TRUE, align = "left", na.rm = TRUE)) new_th2b <- head(data$th3, 500)$ update_by(uby_rolling_prod_time("time_col", "int_col", "PT0s", "PT8s"), by = "bool_col") expect_equal(as.data.frame(new_th2b), as.data.frame(new_tb2b)) - + new_tb2c <- head(data$df3, 500) %>% - mutate(int_col = custom_rolling_time_op(int_col, bool_col, width=9, FUN=prod, partial=TRUE, align="center", na.rm=TRUE)) + mutate(int_col = custom_rolling_time_op(int_col, bool_col, width = 9, FUN = prod, partial = TRUE, align = "center", na.rm = TRUE)) new_th2c <- head(data$th3, 500)$ update_by(uby_rolling_prod_time("time_col", "int_col", "PT4s", "PT4s"), by = "bool_col") expect_equal(as.data.frame(new_th2b), as.data.frame(new_tb2b)) - + data$client$close() }) test_that("uby_rolling_count_tick behaves as expected", { data <- setup() - + new_tb1a <- data$df1 %>% mutate(dbl_col = rollapply(dbl_col, 3, length, partial = TRUE, align = "right")) new_th1a <- data$th1$ update_by(uby_rolling_count_tick("dbl_col", rev_ticks = 3)) expect_equal(as.data.frame(new_th1a), as.data.frame(new_tb1a)) - + new_tb1b <- data$df1 %>% mutate(dbl_col = rollapply(dbl_col, 3, length, partial = TRUE, align = "left")) new_th1b <- data$th1$ update_by(uby_rolling_count_tick("dbl_col", rev_ticks = 1, fwd_ticks = 2)) expect_equal(as.data.frame(new_th1b), as.data.frame(new_tb1b)) - + new_tb1c <- data$df1 %>% mutate(dbl_col = rollapply(dbl_col, 3, length, partial = TRUE, align = "center")) new_th1c <- data$th1$ update_by(uby_rolling_count_tick("dbl_col", rev_ticks = 2, fwd_ticks = 1)) expect_equal(as.data.frame(new_th1c), as.data.frame(new_tb1c)) - + new_tb2a <- data$df2 %>% - mutate(col1 = rollapply(col1, 5, length, partial = TRUE, align = "right"), - col3 = rollapply(col3, 5, length, partial = TRUE, align = "right")) + mutate( + col1 = rollapply(col1, 5, length, partial = TRUE, align = "right"), + col3 = rollapply(col3, 5, length, partial = TRUE, align = "right") + ) new_th2a <- data$th2$ update_by(uby_rolling_count_tick(c("col1", "col3"), rev_ticks = 5)) expect_equal(as.data.frame(new_th2a), as.data.frame(new_tb2a)) - + new_tb2b <- data$df2 %>% - mutate(col1 = rollapply(col1, 5, length, partial = TRUE, align = "left"), - col3 = rollapply(col3, 5, length, partial = TRUE, align = "left")) + mutate( + col1 = rollapply(col1, 5, length, partial = TRUE, align = "left"), + col3 = rollapply(col3, 5, length, partial = TRUE, align = "left") + ) new_th2b <- data$th2$ update_by(uby_rolling_count_tick(c("col1", "col3"), rev_ticks = 1, fwd_ticks = 4)) expect_equal(as.data.frame(new_th2b), as.data.frame(new_tb2b)) - + new_tb2c <- data$df2 %>% - mutate(col1 = rollapply(col1, 5, length, partial = TRUE, align = "center"), - col3 = rollapply(col3, 5, length, partial = TRUE, align = "center")) + mutate( + col1 = rollapply(col1, 5, length, partial = TRUE, align = "center"), + col3 = rollapply(col3, 5, length, partial = TRUE, align = "center") + ) new_th2c <- data$th2$ update_by(uby_rolling_count_tick(c("col1", "col3"), rev_ticks = 3, fwd_ticks = 2)) expect_equal(as.data.frame(new_th2c), as.data.frame(new_tb2c)) - + new_tb3a <- data$df3 %>% group_by(bool_col) %>% mutate(int_col = rollapply(int_col, 9, length, partial = TRUE, align = "right")) new_th3a <- data$th3$ update_by(uby_rolling_count_tick("int_col", rev_ticks = 9), by = "bool_col") expect_equal(as.data.frame(new_th3a), as.data.frame(new_tb3a)) - + new_tb3b <- data$df3 %>% group_by(bool_col) %>% mutate(int_col = rollapply(int_col, 9, length, partial = TRUE, align = "left")) new_th3b <- data$th3$ update_by(uby_rolling_count_tick("int_col", rev_ticks = 1, fwd_ticks = 8), by = "bool_col") expect_equal(as.data.frame(new_th3b), as.data.frame(new_tb3b)) - + new_tb3c <- data$df3 %>% group_by(bool_col) %>% mutate(int_col = rollapply(int_col, 9, length, partial = TRUE, align = "center")) new_th3c <- data$th3$ update_by(uby_rolling_count_tick("int_col", rev_ticks = 5, fwd_ticks = 4), by = "bool_col") expect_equal(as.data.frame(new_th3c), as.data.frame(new_tb3c)) - + new_tb4a <- data$df4 %>% group_by(X) %>% - mutate(Number1 = rollapply(Number1, 3, length, partial = TRUE, align = "right"), - Number2 = rollapply(Number2, 3, length, partial = TRUE, align = "right")) + mutate( + Number1 = rollapply(Number1, 3, length, partial = TRUE, align = "right"), + Number2 = rollapply(Number2, 3, length, partial = TRUE, align = "right") + ) new_th4a <- data$th4$ update_by(uby_rolling_count_tick(c("Number1", "Number2"), rev_ticks = 3), by = "X") expect_equal(as.data.frame(new_th4a), as.data.frame(new_tb4a)) - + new_tb4b <- data$df4 %>% group_by(X) %>% - mutate(Number1 = rollapply(Number1, 3, length, partial = TRUE, align = "left"), - Number2 = rollapply(Number2, 3, length, partial = TRUE, align = "left")) + mutate( + Number1 = rollapply(Number1, 3, length, partial = TRUE, align = "left"), + Number2 = rollapply(Number2, 3, length, partial = TRUE, align = "left") + ) new_th4b <- data$th4$ update_by(uby_rolling_count_tick(c("Number1", "Number2"), rev_ticks = 1, fwd_ticks = 2), by = "X") expect_equal(as.data.frame(new_th4b), as.data.frame(new_tb4b)) - + new_tb4c <- data$df4 %>% group_by(X) %>% - mutate(Number1 = rollapply(Number1, 3, length, partial = TRUE, align = "center"), - Number2 = rollapply(Number2, 3, length, partial = TRUE, align = "center")) + mutate( + Number1 = rollapply(Number1, 3, length, partial = TRUE, align = "center"), + Number2 = rollapply(Number2, 3, length, partial = TRUE, align = "center") + ) new_th4c <- data$th4$ update_by(uby_rolling_count_tick(c("Number1", "Number2"), rev_ticks = 2, fwd_ticks = 1), by = "X") expect_equal(as.data.frame(new_th4c), as.data.frame(new_tb4c)) - + new_tb5a <- data$df5 %>% group_by(Y) %>% - mutate(Number1 = rollapply(Number1, 3, length, partial = TRUE, align = "right"), - Number2 = rollapply(Number2, 3, length, partial = TRUE, align = "right")) + mutate( + Number1 = rollapply(Number1, 3, length, partial = TRUE, align = "right"), + Number2 = rollapply(Number2, 3, length, partial = TRUE, align = "right") + ) new_th5a <- data$th5$ update_by(uby_rolling_count_tick(c("Number1", "Number2"), rev_ticks = 3), by = "Y") expect_equal(as.data.frame(new_th5a), as.data.frame(new_tb5a)) - + new_tb5b <- data$df5 %>% group_by(Y) %>% - mutate(Number1 = rollapply(Number1, 3, length, partial = TRUE, align = "left"), - Number2 = rollapply(Number2, 3, length, partial = TRUE, align = "left")) + mutate( + Number1 = rollapply(Number1, 3, length, partial = TRUE, align = "left"), + Number2 = rollapply(Number2, 3, length, partial = TRUE, align = "left") + ) new_th5b <- data$th5$ update_by(uby_rolling_count_tick(c("Number1", "Number2"), rev_ticks = 1, fwd_ticks = 2), by = "Y") expect_equal(as.data.frame(new_th5b), as.data.frame(new_tb5b)) - + new_tb5c <- data$df5 %>% group_by(Y) %>% - mutate(Number1 = rollapply(Number1, 3, length, partial = TRUE, align = "center"), - Number2 = rollapply(Number2, 3, length, partial = TRUE, align = "center")) + mutate( + Number1 = rollapply(Number1, 3, length, partial = TRUE, align = "center"), + Number2 = rollapply(Number2, 3, length, partial = TRUE, align = "center") + ) new_th5c <- data$th5$ update_by(uby_rolling_count_tick(c("Number1", "Number2"), rev_ticks = 2, fwd_ticks = 1), by = "Y") expect_equal(as.data.frame(new_th5c), as.data.frame(new_tb5c)) - + new_tb6a <- rbind(data$df4, data$df5, data$df4, data$df5) %>% group_by(X, Y) %>% - mutate(Number1 = rollapply(Number1, 3, length, partial = TRUE, align = "right"), - Number2 = rollapply(Number2, 3, length, partial = TRUE, align = "right")) + mutate( + Number1 = rollapply(Number1, 3, length, partial = TRUE, align = "right"), + Number2 = rollapply(Number2, 3, length, partial = TRUE, align = "right") + ) new_th6a <- merge_tables(data$th4, data$th5, data$th4, data$th5)$ update_by(uby_rolling_count_tick(c("Number1", "Number2"), rev_ticks = 3), by = c("X", "Y")) expect_equal(as.data.frame(new_th6a), as.data.frame(new_tb6a)) - + new_tb6b <- rbind(data$df4, data$df5, data$df4, data$df5) %>% group_by(X, Y) %>% - mutate(Number1 = rollapply(Number1, 3, length, partial = TRUE, align = "left"), - Number2 = rollapply(Number2, 3, length, partial = TRUE, align = "left")) + mutate( + Number1 = rollapply(Number1, 3, length, partial = TRUE, align = "left"), + Number2 = rollapply(Number2, 3, length, partial = TRUE, align = "left") + ) new_th6b <- merge_tables(data$th4, data$th5, data$th4, data$th5)$ update_by(uby_rolling_count_tick(c("Number1", "Number2"), rev_ticks = 1, fwd_ticks = 2), by = c("X", "Y")) expect_equal(as.data.frame(new_th6b), as.data.frame(new_tb6b)) - + new_tb6c <- rbind(data$df4, data$df5, data$df4, data$df5) %>% group_by(X, Y) %>% - mutate(Number1 = rollapply(Number1, 3, length, partial = TRUE, align = "center"), - Number2 = rollapply(Number2, 3, length, partial = TRUE, align = "center")) + mutate( + Number1 = rollapply(Number1, 3, length, partial = TRUE, align = "center"), + Number2 = rollapply(Number2, 3, length, partial = TRUE, align = "center") + ) new_th6c <- merge_tables(data$th4, data$th5, data$th4, data$th5)$ update_by(uby_rolling_count_tick(c("Number1", "Number2"), rev_ticks = 2, fwd_ticks = 1), by = c("X", "Y")) expect_equal(as.data.frame(new_th6c), as.data.frame(new_tb6c)) - + data$client$close() }) test_that("uby_rolling_count_time behaves as expected", { data <- setup() - - custom_count <- function(x) {return(sum(!is.na(x)))} - + + custom_count <- function(x) { + return(sum(!is.na(x))) + } + new_tb1a <- head(data$df3, 500) %>% - mutate(int_col = rollapply(int_col, 9, length, partial=TRUE, align="right")) + mutate(int_col = rollapply(int_col, 9, length, partial = TRUE, align = "right")) new_th1a <- head(data$th3, 500)$ update_by(uby_rolling_count_time("time_col", "int_col", "PT8s")) expect_equal(as.data.frame(new_th1a), as.data.frame(new_tb1a)) - + new_tb1b <- head(data$df3, 500) %>% - mutate(int_col = rollapply(int_col, 9, length, partial=TRUE, align="left")) + mutate(int_col = rollapply(int_col, 9, length, partial = TRUE, align = "left")) new_th1b <- head(data$th3, 500)$ update_by(uby_rolling_count_time("time_col", "int_col", "PT0s", "PT8s")) expect_equal(as.data.frame(new_th1b), as.data.frame(new_tb1b)) - + new_tb1c <- head(data$df3, 500) %>% - mutate(int_col = rollapply(int_col, 9, length, partial=TRUE, align="center")) + mutate(int_col = rollapply(int_col, 9, length, partial = TRUE, align = "center")) new_th1c <- head(data$th3, 500)$ update_by(uby_rolling_count_time("time_col", "int_col", "PT4s", "PT4s")) expect_equal(as.data.frame(new_th1c), as.data.frame(new_tb1c)) - + new_tb2a <- head(data$df3, 500) %>% - mutate(int_col = custom_rolling_time_op(int_col, bool_col, width=9, FUN=custom_count, partial=TRUE, align="right")) + mutate(int_col = custom_rolling_time_op(int_col, bool_col, width = 9, FUN = custom_count, partial = TRUE, align = "right")) new_th2a <- head(data$th3, 500)$ update_by(uby_rolling_count_time("time_col", "int_col", "PT8s"), by = "bool_col") expect_equal(as.data.frame(new_th2a), as.data.frame(new_tb2a)) - + new_tb2b <- head(data$df3, 500) %>% - mutate(int_col = custom_rolling_time_op(int_col, bool_col, width=9, FUN=custom_count, partial=TRUE, align="left")) + mutate(int_col = custom_rolling_time_op(int_col, bool_col, width = 9, FUN = custom_count, partial = TRUE, align = "left")) new_th2b <- head(data$th3, 500)$ update_by(uby_rolling_count_time("time_col", "int_col", "PT0s", "PT8s"), by = "bool_col") expect_equal(as.data.frame(new_th2b), as.data.frame(new_tb2b)) - + new_tb2c <- head(data$df3, 500) %>% - mutate(int_col = custom_rolling_time_op(int_col, bool_col, width=9, FUN=custom_count, partial=TRUE, align="center")) + mutate(int_col = custom_rolling_time_op(int_col, bool_col, width = 9, FUN = custom_count, partial = TRUE, align = "center")) new_th2c <- head(data$th3, 500)$ update_by(uby_rolling_count_time("time_col", "int_col", "PT4s", "PT4s"), by = "bool_col") expect_equal(as.data.frame(new_th2b), as.data.frame(new_tb2b)) - + data$client$close() }) @@ -1958,22 +2120,28 @@ test_that("uby_rolling_std_tick behaves as expected", { expect_equal(as.data.frame(new_th1c), as.data.frame(new_tb1c)) new_tb2a <- data$df2 %>% - mutate(col1 = rollapply(col1, 5, sd, partial = TRUE, align = "right"), - col3 = rollapply(col3, 5, sd, partial = TRUE, align = "right")) + mutate( + col1 = rollapply(col1, 5, sd, partial = TRUE, align = "right"), + col3 = rollapply(col3, 5, sd, partial = TRUE, align = "right") + ) new_th2a <- data$th2$ update_by(uby_rolling_std_tick(c("col1", "col3"), rev_ticks = 5)) expect_equal(as.data.frame(new_th2a), as.data.frame(new_tb2a)) new_tb2b <- data$df2 %>% - mutate(col1 = rollapply(col1, 5, sd, partial = TRUE, align = "left"), - col3 = rollapply(col3, 5, sd, partial = TRUE, align = "left")) + mutate( + col1 = rollapply(col1, 5, sd, partial = TRUE, align = "left"), + col3 = rollapply(col3, 5, sd, partial = TRUE, align = "left") + ) new_th2b <- data$th2$ update_by(uby_rolling_std_tick(c("col1", "col3"), rev_ticks = 1, fwd_ticks = 4)) expect_equal(as.data.frame(new_th2b), as.data.frame(new_tb2b)) new_tb2c <- data$df2 %>% - mutate(col1 = rollapply(col1, 5, sd, partial = TRUE, align = "center"), - col3 = rollapply(col3, 5, sd, partial = TRUE, align = "center")) + mutate( + col1 = rollapply(col1, 5, sd, partial = TRUE, align = "center"), + col3 = rollapply(col3, 5, sd, partial = TRUE, align = "center") + ) new_th2c <- data$th2$ update_by(uby_rolling_std_tick(c("col1", "col3"), rev_ticks = 3, fwd_ticks = 2)) expect_equal(as.data.frame(new_th2c), as.data.frame(new_tb2c)) @@ -2001,72 +2169,90 @@ test_that("uby_rolling_std_tick behaves as expected", { new_tb4a <- data$df4 %>% group_by(X) %>% - mutate(Number1 = rollapply(Number1, 3, sd, partial = TRUE, align = "right"), - Number2 = rollapply(Number2, 3, sd, partial = TRUE, align = "right")) + mutate( + Number1 = rollapply(Number1, 3, sd, partial = TRUE, align = "right"), + Number2 = rollapply(Number2, 3, sd, partial = TRUE, align = "right") + ) new_th4a <- data$th4$ update_by(uby_rolling_std_tick(c("Number1", "Number2"), rev_ticks = 3), by = "X") expect_equal(as.data.frame(new_th4a), as.data.frame(new_tb4a)) new_tb4b <- data$df4 %>% group_by(X) %>% - mutate(Number1 = rollapply(Number1, 3, sd, partial = TRUE, align = "left"), - Number2 = rollapply(Number2, 3, sd, partial = TRUE, align = "left")) + mutate( + Number1 = rollapply(Number1, 3, sd, partial = TRUE, align = "left"), + Number2 = rollapply(Number2, 3, sd, partial = TRUE, align = "left") + ) new_th4b <- data$th4$ update_by(uby_rolling_std_tick(c("Number1", "Number2"), rev_ticks = 1, fwd_ticks = 2), by = "X") expect_equal(as.data.frame(new_th4b), as.data.frame(new_tb4b)) new_tb4c <- data$df4 %>% group_by(X) %>% - mutate(Number1 = rollapply(Number1, 3, sd, partial = TRUE, align = "center"), - Number2 = rollapply(Number2, 3, sd, partial = TRUE, align = "center")) + mutate( + Number1 = rollapply(Number1, 3, sd, partial = TRUE, align = "center"), + Number2 = rollapply(Number2, 3, sd, partial = TRUE, align = "center") + ) new_th4c <- data$th4$ update_by(uby_rolling_std_tick(c("Number1", "Number2"), rev_ticks = 2, fwd_ticks = 1), by = "X") expect_equal(as.data.frame(new_th4c), as.data.frame(new_tb4c)) new_tb5a <- data$df5 %>% group_by(Y) %>% - mutate(Number1 = rollapply(Number1, 3, sd, partial = TRUE, align = "right"), - Number2 = rollapply(Number2, 3, sd, partial = TRUE, align = "right")) + mutate( + Number1 = rollapply(Number1, 3, sd, partial = TRUE, align = "right"), + Number2 = rollapply(Number2, 3, sd, partial = TRUE, align = "right") + ) new_th5a <- data$th5$ update_by(uby_rolling_std_tick(c("Number1", "Number2"), rev_ticks = 3), by = "Y") expect_equal(as.data.frame(new_th5a), as.data.frame(new_tb5a)) new_tb5b <- data$df5 %>% group_by(Y) %>% - mutate(Number1 = rollapply(Number1, 3, sd, partial = TRUE, align = "left"), - Number2 = rollapply(Number2, 3, sd, partial = TRUE, align = "left")) + mutate( + Number1 = rollapply(Number1, 3, sd, partial = TRUE, align = "left"), + Number2 = rollapply(Number2, 3, sd, partial = TRUE, align = "left") + ) new_th5b <- data$th5$ update_by(uby_rolling_std_tick(c("Number1", "Number2"), rev_ticks = 1, fwd_ticks = 2), by = "Y") expect_equal(as.data.frame(new_th5b), as.data.frame(new_tb5b)) new_tb5c <- data$df5 %>% group_by(Y) %>% - mutate(Number1 = rollapply(Number1, 3, sd, partial = TRUE, align = "center"), - Number2 = rollapply(Number2, 3, sd, partial = TRUE, align = "center")) + mutate( + Number1 = rollapply(Number1, 3, sd, partial = TRUE, align = "center"), + Number2 = rollapply(Number2, 3, sd, partial = TRUE, align = "center") + ) new_th5c <- data$th5$ update_by(uby_rolling_std_tick(c("Number1", "Number2"), rev_ticks = 2, fwd_ticks = 1), by = "Y") expect_equal(as.data.frame(new_th5c), as.data.frame(new_tb5c)) new_tb6a <- rbind(data$df4, data$df5, data$df4, data$df5) %>% group_by(X, Y) %>% - mutate(Number1 = rollapply(Number1, 3, sd, partial = TRUE, align = "right"), - Number2 = rollapply(Number2, 3, sd, partial = TRUE, align = "right")) + mutate( + Number1 = rollapply(Number1, 3, sd, partial = TRUE, align = "right"), + Number2 = rollapply(Number2, 3, sd, partial = TRUE, align = "right") + ) new_th6a <- merge_tables(data$th4, data$th5, data$th4, data$th5)$ update_by(uby_rolling_std_tick(c("Number1", "Number2"), rev_ticks = 3), by = c("X", "Y")) expect_equal(as.data.frame(new_th6a), as.data.frame(new_tb6a)) new_tb6b <- rbind(data$df4, data$df5, data$df4, data$df5) %>% group_by(X, Y) %>% - mutate(Number1 = rollapply(Number1, 3, sd, partial = TRUE, align = "left"), - Number2 = rollapply(Number2, 3, sd, partial = TRUE, align = "left")) + mutate( + Number1 = rollapply(Number1, 3, sd, partial = TRUE, align = "left"), + Number2 = rollapply(Number2, 3, sd, partial = TRUE, align = "left") + ) new_th6b <- merge_tables(data$th4, data$th5, data$th4, data$th5)$ update_by(uby_rolling_std_tick(c("Number1", "Number2"), rev_ticks = 1, fwd_ticks = 2), by = c("X", "Y")) expect_equal(as.data.frame(new_th6b), as.data.frame(new_tb6b)) new_tb6c <- rbind(data$df4, data$df5, data$df4, data$df5) %>% group_by(X, Y) %>% - mutate(Number1 = rollapply(Number1, 3, sd, partial = TRUE, align = "center"), - Number2 = rollapply(Number2, 3, sd, partial = TRUE, align = "center")) + mutate( + Number1 = rollapply(Number1, 3, sd, partial = TRUE, align = "center"), + Number2 = rollapply(Number2, 3, sd, partial = TRUE, align = "center") + ) new_th6c <- merge_tables(data$th4, data$th5, data$th4, data$th5)$ update_by(uby_rolling_std_tick(c("Number1", "Number2"), rev_ticks = 2, fwd_ticks = 1), by = c("X", "Y")) expect_equal(as.data.frame(new_th6c), as.data.frame(new_tb6c)) @@ -2078,37 +2264,37 @@ test_that("uby_rolling_std_time behaves as expected", { data <- setup() new_tb1a <- head(data$df3, 500) %>% - mutate(int_col = rollapply(int_col, 9, sd, partial=TRUE, align="right")) + mutate(int_col = rollapply(int_col, 9, sd, partial = TRUE, align = "right")) new_th1a <- head(data$th3, 500)$ update_by(uby_rolling_std_time("time_col", "int_col", "PT8s")) expect_equal(as.data.frame(new_th1a), as.data.frame(new_tb1a)) - + new_tb1b <- head(data$df3, 500) %>% - mutate(int_col = rollapply(int_col, 9, sd, partial=TRUE, align="left")) + mutate(int_col = rollapply(int_col, 9, sd, partial = TRUE, align = "left")) new_th1b <- head(data$th3, 500)$ update_by(uby_rolling_std_time("time_col", "int_col", "PT0s", "PT8s")) expect_equal(as.data.frame(new_th1b), as.data.frame(new_tb1b)) - + new_tb1c <- head(data$df3, 500) %>% - mutate(int_col = rollapply(int_col, 9, sd, partial=TRUE, align="center")) + mutate(int_col = rollapply(int_col, 9, sd, partial = TRUE, align = "center")) new_th1c <- head(data$th3, 500)$ update_by(uby_rolling_std_time("time_col", "int_col", "PT4s", "PT4s")) expect_equal(as.data.frame(new_th1c), as.data.frame(new_tb1c)) - + new_tb2a <- head(data$df3, 500) %>% - mutate(int_col = custom_rolling_time_op(int_col, bool_col, width=9, FUN=sd, partial=TRUE, align="right", na.rm=TRUE)) + mutate(int_col = custom_rolling_time_op(int_col, bool_col, width = 9, FUN = sd, partial = TRUE, align = "right", na.rm = TRUE)) new_th2a <- head(data$th3, 500)$ update_by(uby_rolling_std_time("time_col", "int_col", "PT8s"), by = "bool_col") expect_equal(as.data.frame(new_th2a), as.data.frame(new_tb2a)) - + new_tb2b <- head(data$df3, 500) %>% - mutate(int_col = custom_rolling_time_op(int_col, bool_col, width=9, FUN=sd, partial=TRUE, align="left", na.rm=TRUE)) + mutate(int_col = custom_rolling_time_op(int_col, bool_col, width = 9, FUN = sd, partial = TRUE, align = "left", na.rm = TRUE)) new_th2b <- head(data$th3, 500)$ update_by(uby_rolling_std_time("time_col", "int_col", "PT0s", "PT8s"), by = "bool_col") expect_equal(as.data.frame(new_th2b), as.data.frame(new_tb2b)) - + new_tb2c <- head(data$df3, 500) %>% - mutate(int_col = custom_rolling_time_op(int_col, bool_col, width=9, FUN=sd, partial=TRUE, align="center", na.rm=TRUE)) + mutate(int_col = custom_rolling_time_op(int_col, bool_col, width = 9, FUN = sd, partial = TRUE, align = "center", na.rm = TRUE)) new_th2c <- head(data$th3, 500)$ update_by(uby_rolling_std_time("time_col", "int_col", "PT4s", "PT4s"), by = "bool_col") expect_equal(as.data.frame(new_th2b), as.data.frame(new_tb2b)) @@ -2118,10 +2304,10 @@ test_that("uby_rolling_std_time behaves as expected", { test_that("uby_rolling_wavg_tick behaves as expected", { data <- setup() - + # There is not a clean analog to our grouped weighted average in R, so we create # these tables directly - + new_df1a <- data.frame( string_col = c("I", "am", "a", "string", "column"), int_col = c(0, 1, 2, 3, 4), @@ -2130,7 +2316,7 @@ test_that("uby_rolling_wavg_tick behaves as expected", { new_th1a <- data$th1$ update_by(uby_rolling_wavg_tick("int_col", "dbl_col", rev_ticks = 3)) expect_true(all.equal(as.data.frame(new_th1a), new_df1a, tolerance = 1e-4)) - + new_df1b <- data.frame( string_col = c("I", "am", "a", "string", "column"), int_col = c(0, 1, 2, 3, 4), @@ -2139,7 +2325,7 @@ test_that("uby_rolling_wavg_tick behaves as expected", { new_th1b <- data$th1$ update_by(uby_rolling_wavg_tick("int_col", "dbl_col", rev_ticks = 1, fwd_ticks = 2)) expect_true(all.equal(as.data.frame(new_th1b), new_df1b, tolerance = 1e-4)) - + new_df1c <- data.frame( string_col = c("I", "am", "a", "string", "column"), int_col = c(0, 1, 2, 3, 4), @@ -2148,7 +2334,7 @@ test_that("uby_rolling_wavg_tick behaves as expected", { new_th1c <- data$th1$ update_by(uby_rolling_wavg_tick("int_col", "dbl_col", rev_ticks = 2, fwd_ticks = 1)) expect_true(all.equal(as.data.frame(new_th1c), new_df1c, tolerance = 1e-4)) - + new_df4a <- data.frame( X = c("A", "B", "A", "C", "B", "A", "B", "B", "C"), Y = c("M", "N", "O", "N", "P", "M", "O", "P", "M"), @@ -2158,7 +2344,7 @@ test_that("uby_rolling_wavg_tick behaves as expected", { new_th4a <- data$th4$ update_by(uby_rolling_wavg_tick("Number1", c("Number1", "Number2"), rev_ticks = 3), by = "X") expect_true(all.equal(as.data.frame(new_th4a), new_df4a, tolerance = 1e-4)) - + new_df4b <- data.frame( X = c("A", "B", "A", "C", "B", "A", "B", "B", "C"), Y = c("M", "N", "O", "N", "P", "M", "O", "P", "M"), @@ -2168,7 +2354,7 @@ test_that("uby_rolling_wavg_tick behaves as expected", { new_th4b <- data$th4$ update_by(uby_rolling_wavg_tick("Number1", c("Number1", "Number2"), rev_ticks = 1, fwd_ticks = 2), by = "X") expect_true(all.equal(as.data.frame(new_th4b), new_df4b, tolerance = 1e-4)) - + new_df4c <- data.frame( X = c("A", "B", "A", "C", "B", "A", "B", "B", "C"), Y = c("M", "N", "O", "N", "P", "M", "O", "P", "M"), @@ -2178,7 +2364,7 @@ test_that("uby_rolling_wavg_tick behaves as expected", { new_th4c <- data$th4$ update_by(uby_rolling_wavg_tick("Number1", c("Number1", "Number2"), rev_ticks = 2, fwd_ticks = 1), by = "X") expect_true(all.equal(as.data.frame(new_th4c), new_df4c, tolerance = 1e-4)) - + new_df5a <- data.frame( X = c("B", "C", "B", "A", "A", "C", "B", "C", "B", "A"), Y = c("N", "N", "M", "P", "O", "P", "O", "N", "O", "O"), @@ -2188,7 +2374,7 @@ test_that("uby_rolling_wavg_tick behaves as expected", { new_th5a <- data$th5$ update_by(uby_rolling_wavg_tick("Number2", c("Number1", "Number2"), rev_ticks = 3), by = "Y") expect_true(all.equal(as.data.frame(new_th5a), new_df5a, tolerance = 1e-4)) - + new_df5b <- data.frame( X = c("B", "C", "B", "A", "A", "C", "B", "C", "B", "A"), Y = c("N", "N", "M", "P", "O", "P", "O", "N", "O", "O"), @@ -2198,7 +2384,7 @@ test_that("uby_rolling_wavg_tick behaves as expected", { new_th5b <- data$th5$ update_by(uby_rolling_wavg_tick("Number2", c("Number1", "Number2"), rev_ticks = 1, fwd_ticks = 2), by = "Y") expect_true(all.equal(as.data.frame(new_th5b), new_df5b, tolerance = 1e-4)) - + new_df5c <- data.frame( X = c("B", "C", "B", "A", "A", "C", "B", "C", "B", "A"), Y = c("N", "N", "M", "P", "O", "P", "O", "N", "O", "O"), @@ -2208,205 +2394,243 @@ test_that("uby_rolling_wavg_tick behaves as expected", { new_th5c <- data$th5$ update_by(uby_rolling_wavg_tick("Number2", c("Number1", "Number2"), rev_ticks = 2, fwd_ticks = 1), by = "Y") expect_true(all.equal(as.data.frame(new_th5c), new_df5c, tolerance = 1e-4)) - + new_df6a <- data.frame( - X = c("A", "B", "A", "C", "B", "A", "B", "B", "C", "B", - "C", "B", "A", "A", "C", "B", "C", "B", "A", "A", - "B", "A", "C", "B", "A", "B", "B", "C", "B", "C", - "B", "A", "A", "C", "B", "C", "B", "A"), - Y = c("M", "N", "O", "N", "P", "M", "O", "P", "M", "N", - "N", "M", "P", "O", "P", "O", "N", "O", "O", "M", - "N", "O", "N", "P", "M", "O", "P", "M", "N", "N", - "M", "P", "O", "P", "O", "N", "O", "O"), - Number1 = c(100.00000, -44.00000, 49.00000, 11.00000, -66.00000, - 83.33333, 29.00000, -97.50000, -70.00000, 451.00000, - 63.91566, 86.00000, -45.00000, 48.04000, NA, 320.49733, - 529.44444, 274.13742, 53.93333, 90.00000, - -209.00000, 53.93333, 529.44444, -79.26316, - 75.00000, 274.13742, -166.80000, -70.00000, 121.00000, - 529.44444, 86.00000, -45.00000, 53.93333, NA, 274.13742, - 529.44444, 274.13742, 53.93333), - Number2 = c(-55.00000, 76.00000, 20.00000, 130.00000, 230.00000, - -53.33333, 73.00000, 264.87500, 214.00000, 76.00000, - 20.69880, -6.00000, 34.00000, 19.84000, NA, 47.17112, - 113.50000, 44.41438, 21.37778, -54.00000, - 76.00000, 21.37778, 113.50000, 244.68421, - -52.50000, 44.41438, 341.60000, 214.00000, 76.00000, - 113.50000, -6.00000, 34.00000, 21.37778, NA, 44.41438, - 113.50000, 44.41438, 21.37778) + X = c( + "A", "B", "A", "C", "B", "A", "B", "B", "C", "B", + "C", "B", "A", "A", "C", "B", "C", "B", "A", "A", + "B", "A", "C", "B", "A", "B", "B", "C", "B", "C", + "B", "A", "A", "C", "B", "C", "B", "A" + ), + Y = c( + "M", "N", "O", "N", "P", "M", "O", "P", "M", "N", + "N", "M", "P", "O", "P", "O", "N", "O", "O", "M", + "N", "O", "N", "P", "M", "O", "P", "M", "N", "N", + "M", "P", "O", "P", "O", "N", "O", "O" + ), + Number1 = c( + 100.00000, -44.00000, 49.00000, 11.00000, -66.00000, + 83.33333, 29.00000, -97.50000, -70.00000, 451.00000, + 63.91566, 86.00000, -45.00000, 48.04000, NA, 320.49733, + 529.44444, 274.13742, 53.93333, 90.00000, + -209.00000, 53.93333, 529.44444, -79.26316, + 75.00000, 274.13742, -166.80000, -70.00000, 121.00000, + 529.44444, 86.00000, -45.00000, 53.93333, NA, 274.13742, + 529.44444, 274.13742, 53.93333 + ), + Number2 = c( + -55.00000, 76.00000, 20.00000, 130.00000, 230.00000, + -53.33333, 73.00000, 264.87500, 214.00000, 76.00000, + 20.69880, -6.00000, 34.00000, 19.84000, NA, 47.17112, + 113.50000, 44.41438, 21.37778, -54.00000, + 76.00000, 21.37778, 113.50000, 244.68421, + -52.50000, 44.41438, 341.60000, 214.00000, 76.00000, + 113.50000, -6.00000, 34.00000, 21.37778, NA, 44.41438, + 113.50000, 44.41438, 21.37778 + ) ) new_th6a <- merge_tables(data$th4, data$th5, data$th4, data$th5)$ update_by(uby_rolling_wavg_tick("Number1", c("Number1", "Number2"), rev_ticks = 3), by = c("X", "Y")) expect_true(all.equal(as.data.frame(new_th6a), new_df6a, tolerance = 1e-4)) - + new_df6b <- data.frame( - X = c("A", "B", "A", "C", "B", "A", "B", "B", "C", "B", - "C", "B", "A", "A", "C", "B", "C", "B", "A", "A", - "B", "A", "C", "B", "A", "B", "B", "C", "B", "C", - "B", "A", "A", "C", "B", "C", "B", "A"), - Y = c("M", "N", "O", "N", "P", "M", "O", "P", "M", "N", - "N", "M", "P", "O", "P", "O", "N", "O", "O", "M", - "N", "O", "N", "P", "M", "O", "P", "M", "N", "N", - "M", "P", "O", "P", "O", "N", "O", "O"), - Number1 = c(90.00000, -209.00000, 53.93333, 529.44444, -79.26316, - 75.00000, 274.13742, -166.80000, -70.00000, 121.00000, - 529.44444, 86.00000, -45.00000, 53.93333, NA, 274.13742, - 529.44444, 274.13742, 53.93333, 83.33333, - 451.00000, 53.93333, 529.44444, -97.50000, - 50.00000, 274.13742, 18.00000, -70.00000, 55.00000, - 1344.14286, 86.00000, -45.00000, -6.50000, NA, 290.14865, - -65.00000, 99.00000, -5.00000), - Number2 = c(-54.00000, 76.00000, 21.37778, 113.50000, 244.68421, - -52.50000, 44.41438, 341.60000, 214.00000, 76.00000, - 113.50000, -6.00000, 34.00000, 21.37778, NA, 44.41438, - 113.50000, 44.41438, 21.37778, -53.33333, - 76.00000, 21.37778, 113.50000, 264.87500, - -50.00000, 44.41438, 137.00000, 214.00000, 76.00000, - 87.57143, -6.00000, 34.00000, 4.50000, NA, 42.54730, - -5.00000, 34.00000, 6.00000) + X = c( + "A", "B", "A", "C", "B", "A", "B", "B", "C", "B", + "C", "B", "A", "A", "C", "B", "C", "B", "A", "A", + "B", "A", "C", "B", "A", "B", "B", "C", "B", "C", + "B", "A", "A", "C", "B", "C", "B", "A" + ), + Y = c( + "M", "N", "O", "N", "P", "M", "O", "P", "M", "N", + "N", "M", "P", "O", "P", "O", "N", "O", "O", "M", + "N", "O", "N", "P", "M", "O", "P", "M", "N", "N", + "M", "P", "O", "P", "O", "N", "O", "O" + ), + Number1 = c( + 90.00000, -209.00000, 53.93333, 529.44444, -79.26316, + 75.00000, 274.13742, -166.80000, -70.00000, 121.00000, + 529.44444, 86.00000, -45.00000, 53.93333, NA, 274.13742, + 529.44444, 274.13742, 53.93333, 83.33333, + 451.00000, 53.93333, 529.44444, -97.50000, + 50.00000, 274.13742, 18.00000, -70.00000, 55.00000, + 1344.14286, 86.00000, -45.00000, -6.50000, NA, 290.14865, + -65.00000, 99.00000, -5.00000 + ), + Number2 = c( + -54.00000, 76.00000, 21.37778, 113.50000, 244.68421, + -52.50000, 44.41438, 341.60000, 214.00000, 76.00000, + 113.50000, -6.00000, 34.00000, 21.37778, NA, 44.41438, + 113.50000, 44.41438, 21.37778, -53.33333, + 76.00000, 21.37778, 113.50000, 264.87500, + -50.00000, 44.41438, 137.00000, 214.00000, 76.00000, + 87.57143, -6.00000, 34.00000, 4.50000, NA, 42.54730, + -5.00000, 34.00000, 6.00000 + ) ) new_th6b <- merge_tables(data$th4, data$th5, data$th4, data$th5)$ update_by(uby_rolling_wavg_tick("Number1", c("Number1", "Number2"), rev_ticks = 1, fwd_ticks = 2), by = c("X", "Y")) expect_true(all.equal(as.data.frame(new_th6b), new_df6b, tolerance = 1e-4)) - + new_df6c <- data.frame( - X = c("A", "B", "A", "C", "B", "A", "B", "B", "C", "B", - "C", "B", "A", "A", "C", "B", "C", "B", "A", "A", - "B", "A", "C", "B", "A", "B", "B", "C", "B", "C", - "B", "A", "A", "C", "B", "C", "B", "A"), - Y = c("M", "N", "O", "N", "P", "M", "O", "P", "M", "N", - "N", "M", "P", "O", "P", "O", "N", "O", "O", "M", - "N", "O", "N", "P", "M", "O", "P", "M", "N", "N", - "M", "P", "O", "P", "O", "N", "O", "O"), - Number1 = c(83.33333, 451.00000, 48.04000, 63.91566, -97.50000, - 90.00000, 320.49733, -79.26316, -70.00000, -209.00000, - 529.44444, 86.00000, -45.00000, 53.93333, NA, 274.13742, - 529.44444, 274.13742, 53.93333, 75.00000, - 121.00000, 53.93333, 529.44444, -166.80000, - 83.33333, 274.13742, -97.50000, -70.00000, 451.00000, - 529.44444, 86.00000, -45.00000, 53.93333, NA, 274.13742, - 1344.14286, 290.14865, -6.50000), - Number2 = c(-53.33333, 76.00000, 19.84000, 20.69880, 264.87500, - -54.00000, 47.17112, 244.68421, 214.00000, 76.00000, - 113.50000, -6.00000, 34.00000, 21.37778, NA, 44.41438, - 113.50000, 44.41438, 21.37778, -52.50000, - 76.00000, 21.37778, 113.50000, 341.60000, - -53.33333, 44.41438, 264.87500, 214.00000, 76.00000, - 113.50000, -6.00000, 34.00000, 21.37778, NA, 44.41438, - 87.57143, 42.54730, 4.50000) + X = c( + "A", "B", "A", "C", "B", "A", "B", "B", "C", "B", + "C", "B", "A", "A", "C", "B", "C", "B", "A", "A", + "B", "A", "C", "B", "A", "B", "B", "C", "B", "C", + "B", "A", "A", "C", "B", "C", "B", "A" + ), + Y = c( + "M", "N", "O", "N", "P", "M", "O", "P", "M", "N", + "N", "M", "P", "O", "P", "O", "N", "O", "O", "M", + "N", "O", "N", "P", "M", "O", "P", "M", "N", "N", + "M", "P", "O", "P", "O", "N", "O", "O" + ), + Number1 = c( + 83.33333, 451.00000, 48.04000, 63.91566, -97.50000, + 90.00000, 320.49733, -79.26316, -70.00000, -209.00000, + 529.44444, 86.00000, -45.00000, 53.93333, NA, 274.13742, + 529.44444, 274.13742, 53.93333, 75.00000, + 121.00000, 53.93333, 529.44444, -166.80000, + 83.33333, 274.13742, -97.50000, -70.00000, 451.00000, + 529.44444, 86.00000, -45.00000, 53.93333, NA, 274.13742, + 1344.14286, 290.14865, -6.50000 + ), + Number2 = c( + -53.33333, 76.00000, 19.84000, 20.69880, 264.87500, + -54.00000, 47.17112, 244.68421, 214.00000, 76.00000, + 113.50000, -6.00000, 34.00000, 21.37778, NA, 44.41438, + 113.50000, 44.41438, 21.37778, -52.50000, + 76.00000, 21.37778, 113.50000, 341.60000, + -53.33333, 44.41438, 264.87500, 214.00000, 76.00000, + 113.50000, -6.00000, 34.00000, 21.37778, NA, 44.41438, + 87.57143, 42.54730, 4.50000 + ) ) new_th6c <- merge_tables(data$th4, data$th5, data$th4, data$th5)$ update_by(uby_rolling_wavg_tick("Number1", c("Number1", "Number2"), rev_ticks = 2, fwd_ticks = 1), by = c("X", "Y")) expect_true(all.equal(as.data.frame(new_th6c), new_df6c, tolerance = 1e-4)) - + data$client$close() }) test_that("uby_rolling_wavg_time behaves as expected", { data <- setup() - + # Need to append a weight column to the df and th data$deterministic_df3 <- data$deterministic_df3 %>% mutate(weight_col = sqrt(int_col)) data$deterministic_th3 <- data$deterministic_th3$ update("weight_col = sqrt(int_col)") - + base_df <- data.frame( time_col = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.001), by = "1 sec")[1:50], - bool_col = c(TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, TRUE, - TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, TRUE, - TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, TRUE, - TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, TRUE, - TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, TRUE) + bool_col = c( + TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, TRUE, + TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, TRUE, + TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, TRUE, + TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, TRUE, + TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, TRUE + ) ) - - new_df1a <- cbind(base_df, "int_col" = c(1.000000, 1.585786, 2.176557, 2.769907, 3.364806, 3.960724, - 4.557357, 5.154516, 5.752074, 6.599146, 7.501993, 8.433335, - 9.381805, 10.341536, 11.309121, 12.282429, 13.260044, 14.240990, - 15.224566, 16.210258, 17.197678, 18.186530, 19.176580, 20.167643, - 21.159573, 22.152247, 23.145567, 24.139451, 25.133831, 26.128647, - 27.123851, 28.119401, 29.115260, 30.111398, 31.107787, 32.104403, - 33.101225, 34.098236, 35.095418, 36.092758, 37.090243, 38.087860, - 39.085600, 40.083454, 41.081413, 42.079469, 43.077616, 44.075848, - 45.074159, 46.072543)) + + new_df1a <- cbind(base_df, "int_col" = c( + 1.000000, 1.585786, 2.176557, 2.769907, 3.364806, 3.960724, + 4.557357, 5.154516, 5.752074, 6.599146, 7.501993, 8.433335, + 9.381805, 10.341536, 11.309121, 12.282429, 13.260044, 14.240990, + 15.224566, 16.210258, 17.197678, 18.186530, 19.176580, 20.167643, + 21.159573, 22.152247, 23.145567, 24.139451, 25.133831, 26.128647, + 27.123851, 28.119401, 29.115260, 30.111398, 31.107787, 32.104403, + 33.101225, 34.098236, 35.095418, 36.092758, 37.090243, 38.087860, + 39.085600, 40.083454, 41.081413, 42.079469, 43.077616, 44.075848, + 45.074159, 46.072543 + )) new_th1a <- head(data$deterministic_th3, 50)$ update_by(uby_rolling_wavg_time("time_col", "weight_col", "int_col", "PT8s"))$ drop_columns("weight_col") expect_equal(as.data.frame(new_th1a), new_df1a) - - new_df1b <- cbind(base_df, "int_col" = c(5.752074, 6.599146, 7.501993, 8.433335, 9.381805, 10.341536, - 11.309121, 12.282429, 13.260044, 14.240990, 15.224566, - 16.210258, 17.197678, 18.186530, 19.176580, 20.167643, - 21.159573, 22.152247, 23.145567, 24.139451, 25.133831, - 26.128647, 27.123851, 28.119401, 29.115260, 30.111398, - 31.107787, 32.104403, 33.101225, 34.098236, 35.095418, - 36.092758, 37.090243, 38.087860, 39.085600, 40.083454, - 41.081413, 42.079469, 43.077616, 44.075848, 45.074159, - 46.072543, 46.556499, 47.042580, 47.530715, 48.020839, - 48.512889, 49.006803, 49.502525, 50.000000)) + + new_df1b <- cbind(base_df, "int_col" = c( + 5.752074, 6.599146, 7.501993, 8.433335, 9.381805, 10.341536, + 11.309121, 12.282429, 13.260044, 14.240990, 15.224566, + 16.210258, 17.197678, 18.186530, 19.176580, 20.167643, + 21.159573, 22.152247, 23.145567, 24.139451, 25.133831, + 26.128647, 27.123851, 28.119401, 29.115260, 30.111398, + 31.107787, 32.104403, 33.101225, 34.098236, 35.095418, + 36.092758, 37.090243, 38.087860, 39.085600, 40.083454, + 41.081413, 42.079469, 43.077616, 44.075848, 45.074159, + 46.072543, 46.556499, 47.042580, 47.530715, 48.020839, + 48.512889, 49.006803, 49.502525, 50.000000 + )) new_th1b <- head(data$deterministic_th3, 50)$ update_by(uby_rolling_wavg_time("time_col", "weight_col", "int_col", "PT0s", "PT8s"))$ drop_columns("weight_col") expect_equal(as.data.frame(new_th1b), new_df1b) - - new_df1c <- cbind(base_df, "int_col" = c(3.364806, 3.960724, 4.557357, 5.154516, 5.752074, 6.599146, - 7.501993, 8.433335, 9.381805, 10.341536, 11.309121, - 12.282429, 13.260044, 14.240990, 15.224566, 16.210258, - 17.197678, 18.186530, 19.176580, 20.167643, 21.159573, - 22.152247, 23.145567, 24.139451, 25.133831, 26.128647, - 27.123851, 28.119401, 29.115260, 30.111398, 31.107787, - 32.104403, 33.101225, 34.098236, 35.095418, 36.092758, - 37.090243, 38.087860, 39.085600, 40.083454, 41.081413, - 42.079469, 43.077616, 44.075848, 45.074159, 46.072543, - 46.556499, 47.042580, 47.530715, 48.020839)) + + new_df1c <- cbind(base_df, "int_col" = c( + 3.364806, 3.960724, 4.557357, 5.154516, 5.752074, 6.599146, + 7.501993, 8.433335, 9.381805, 10.341536, 11.309121, + 12.282429, 13.260044, 14.240990, 15.224566, 16.210258, + 17.197678, 18.186530, 19.176580, 20.167643, 21.159573, + 22.152247, 23.145567, 24.139451, 25.133831, 26.128647, + 27.123851, 28.119401, 29.115260, 30.111398, 31.107787, + 32.104403, 33.101225, 34.098236, 35.095418, 36.092758, + 37.090243, 38.087860, 39.085600, 40.083454, 41.081413, + 42.079469, 43.077616, 44.075848, 45.074159, 46.072543, + 46.556499, 47.042580, 47.530715, 48.020839 + )) new_th1c <- head(data$deterministic_th3, 50)$ update_by(uby_rolling_wavg_time("time_col", "weight_col", "int_col", "PT4s", "PT4s"))$ drop_columns("weight_col") expect_equal(as.data.frame(new_th1c), new_df1c) - - new_df2a <- cbind(base_df, "int_col" = c(1.000000, 1.585786, 3.000000, 3.535898, 3.227496, 4.512320, - 4.595515, 5.607180, 6.454681, 6.782586, 8.609158, 9.401493, - 9.357245, 10.469018, 11.316537, 12.394463, 13.259445, - 15.370444, 16.163520, 16.268778, 18.407602, 19.182620, - 19.169030, 20.230497, 21.162927, 22.211264, 23.146719, - 25.322767, 26.100235, 26.164183, 28.351280, 29.118634, - 29.111044, 30.153311, 31.109992, 32.144589, 33.102407, - 35.302156, 36.072311, 36.118326, 38.324651, 39.087902, - 39.082723, 40.114920, 41.083063, 42.109955, 43.078675, - 45.290649, 46.056564, 46.092521)) + + new_df2a <- cbind(base_df, "int_col" = c( + 1.000000, 1.585786, 3.000000, 3.535898, 3.227496, 4.512320, + 4.595515, 5.607180, 6.454681, 6.782586, 8.609158, 9.401493, + 9.357245, 10.469018, 11.316537, 12.394463, 13.259445, + 15.370444, 16.163520, 16.268778, 18.407602, 19.182620, + 19.169030, 20.230497, 21.162927, 22.211264, 23.146719, + 25.322767, 26.100235, 26.164183, 28.351280, 29.118634, + 29.111044, 30.153311, 31.109992, 32.144589, 33.102407, + 35.302156, 36.072311, 36.118326, 38.324651, 39.087902, + 39.082723, 40.114920, 41.083063, 42.109955, 43.078675, + 45.290649, 46.056564, 46.092521 + )) new_th2a <- head(data$deterministic_th3, 50)$ update_by(uby_rolling_wavg_time("time_col", "weight_col", "int_col", "PT8s"), by = "bool_col")$ drop_columns("weight_col") expect_equal(as.data.frame(new_th2a), new_df2a) - - new_df2b <- cbind(base_df, "int_col" = c(4.595515, 6.782586, 6.454681, 7.036869, 9.401493, 10.469018, - 11.316537, 12.394463, 13.260793, 13.259445, 13.956975, - 16.268778, 16.163520, 16.861439, 19.182620, 20.230497, - 21.162927, 22.211264, 23.144128, 23.146719, 23.869532, - 26.164183, 26.100235, 26.819386, 29.118634, 30.153311, - 31.109992, 32.144589, 33.099748, 33.102407, 33.834106, - 36.118326, 36.072311, 36.800397, 39.087902, 40.114920, - 41.083063, 42.109955, 43.076293, 43.078675, 43.814892, - 46.092521, 46.056564, 46.789573, 47.377845, 47.683028, - 48.523201, 48.502577, 49.000000, 50.000000)) + + new_df2b <- cbind(base_df, "int_col" = c( + 4.595515, 6.782586, 6.454681, 7.036869, 9.401493, 10.469018, + 11.316537, 12.394463, 13.260793, 13.259445, 13.956975, + 16.268778, 16.163520, 16.861439, 19.182620, 20.230497, + 21.162927, 22.211264, 23.144128, 23.146719, 23.869532, + 26.164183, 26.100235, 26.819386, 29.118634, 30.153311, + 31.109992, 32.144589, 33.099748, 33.102407, 33.834106, + 36.118326, 36.072311, 36.800397, 39.087902, 40.114920, + 41.083063, 42.109955, 43.076293, 43.078675, 43.814892, + 46.092521, 46.056564, 46.789573, 47.377845, 47.683028, + 48.523201, 48.502577, 49.000000, 50.000000 + )) new_th2b <- head(data$deterministic_th3, 50)$ update_by(uby_rolling_wavg_time("time_col", "weight_col", "int_col", "PT0s", "PT8s"), by = "bool_col")$ drop_columns("weight_col") expect_equal(as.data.frame(new_th2b), new_df2b) - - new_df2c <- cbind(base_df, "int_col" = c(3.227496, 3.227496, 4.512320, 5.607180, 4.595515, 6.454681, - 8.609158, 7.036869, 9.357245, 10.183304, 11.316537, 12.143151, - 13.260793, 15.370444, 13.956975, 16.163520, 18.407602, 16.861439, - 19.169030, 20.089214, 21.162927, 22.078589, 23.144128, 25.322767, - 23.869532, 26.100235, 28.351280, 26.819386, 29.111044, 30.059047, - 31.109992, 32.054206, 33.099748, 35.302156, 33.834106, 36.072311, - 38.324651, 36.800397, 39.082723, 40.044139, 41.083063, 42.041378, - 43.076293, 45.290649, 43.814892, 46.056564, 47.377845, 46.789573, - 47.683028, 48.523201)) + + new_df2c <- cbind(base_df, "int_col" = c( + 3.227496, 3.227496, 4.512320, 5.607180, 4.595515, 6.454681, + 8.609158, 7.036869, 9.357245, 10.183304, 11.316537, 12.143151, + 13.260793, 15.370444, 13.956975, 16.163520, 18.407602, 16.861439, + 19.169030, 20.089214, 21.162927, 22.078589, 23.144128, 25.322767, + 23.869532, 26.100235, 28.351280, 26.819386, 29.111044, 30.059047, + 31.109992, 32.054206, 33.099748, 35.302156, 33.834106, 36.072311, + 38.324651, 36.800397, 39.082723, 40.044139, 41.083063, 42.041378, + 43.076293, 45.290649, 43.814892, 46.056564, 47.377845, 46.789573, + 47.683028, 48.523201 + )) new_th2c <- head(data$deterministic_th3, 50)$ update_by(uby_rolling_wavg_time("time_col", "weight_col", "int_col", "PT4s", "PT4s"), by = "bool_col")$ drop_columns("weight_col") expect_equal(as.data.frame(new_th2c), new_df2c) - + data$client$close() }) diff --git a/R/rdeephaven/inst/tests/testthat/test_update_by_ops_wrappers.R b/R/rdeephaven/inst/tests/testthat/test_update_by_ops_wrappers.R index 4fb7baed427..250f25078c8 100644 --- a/R/rdeephaven/inst/tests/testthat/test_update_by_ops_wrappers.R +++ b/R/rdeephaven/inst/tests/testthat/test_update_by_ops_wrappers.R @@ -1470,4 +1470,4 @@ test_that("uby_rolling_wavg_time fails nicely when 'fwd_time' is a bad type", { uby_rolling_wavg_time("PT0s", "wcol", "col", "PT0s", c("Many", "strings")), "'fwd_time' must be a single string. Got a vector of length 2." ) -}) \ No newline at end of file +}) diff --git a/R/rdeephaven/man/AggBy.Rd b/R/rdeephaven/man/AggBy.Rd deleted file mode 100644 index c9bd2a63f5a..00000000000 --- a/R/rdeephaven/man/AggBy.Rd +++ /dev/null @@ -1,101 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/agg_ops_wrapper.R -\docType{class} -\name{AggBy} -\alias{AggBy} -\title{Aggregations in Deephaven} -\description{ -Table aggregations are a quintessential feature of Deephaven. You can apply as many aggregations as -needed to static tables \emph{or} streaming tables, and if the parent tables are streaming, the resulting aggregated -tables will update alongside their parent tables. It is also very easy to perform \emph{grouped} aggregations, which -allow you to aggregate tables on a per-group basis. -} -\section{Apply aggregations to a table}{ - -There are two methods for performing aggregations on a table, \code{agg_by()} and \code{agg_all_by()}. \code{agg_by()} allows you to -perform many aggregations on specified columns, while \code{agg_all_by()} allows you to perform a single aggregation to -every non-grouping column in the table. Both methods have an optional \code{by} parameter that is used to specify grouping columns. -Here are some details on each method: -\itemize{ -\item \code{TableHandle$agg_by(aggs, by)}: Creates a new table containing grouping columns and grouped data. -The resulting grouped data is defined by the aggregation(s) specified. -\item \code{TableHandle$agg_all_by(agg, by)}: Creates a new table containing grouping columns and grouped data. -The resulting grouped data is defined by the aggregation specified. This method applies the aggregation to all -non-grouping columns of the table, so it can only accept one aggregation at a time. -} - -The \code{agg_by()} and \code{agg_all_by()} methods themselves do not know anything about the columns on which you want to -perform aggregations. Rather, the desired columns are passed to individual \code{agg} functions, enabling you to apply -various kinds of aggregations to different columns or groups of columns as needed. -} - -\section{\code{agg} functions}{ - -\code{agg} functions are used to perform aggregation calculations on grouped data by passing them to \code{agg_by()} or -\code{agg_all_by()}. These functions are \emph{generators}, meaning they return \emph{functions} that the Deephaven engine knows -how to interpret. We call the functions that they return \code{\link{AggOp}}s. These \code{AggOp}s are not R-level functions, -but Deephaven-specific data types that perform all of the intensive calculations. Here is a list of all \code{agg} functions -available in Deephaven: -\itemize{ -\item \code{\link[=agg_first]{agg_first()}} -\item \code{\link[=agg_last]{agg_last()}} -\item \code{\link[=agg_min]{agg_min()}} -\item \code{\link[=agg_max]{agg_max()}} -\item \code{\link[=agg_sum]{agg_sum()}} -\item \code{\link[=agg_abs_sum]{agg_abs_sum()}} -\item \code{\link[=agg_avg]{agg_avg()}} -\item \code{\link[=agg_w_avg]{agg_w_avg()}} -\item \code{\link[=agg_median]{agg_median()}} -\item \code{\link[=agg_var]{agg_var()}} -\item \code{\link[=agg_std]{agg_std()}} -\item \code{\link[=agg_percentile]{agg_percentile()}} -\item \code{\link[=agg_count]{agg_count()}} -} - -For more details on each aggregation function, click on one of the methods above or see the reference documentation -by running \code{?agg_first}, \code{?agg_last}, etc. -} - -\examples{ -\dontrun{ -library(rdeephaven) - -# connecting to Deephaven server -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") - -# create data frame, push to server, retrieve TableHandle -df <- data.frame( - X = c("A", "B", "A", "C", "B", "A", "B", "B", "C"), - Y = c("M", "N", "O", "N", "P", "M", "O", "P", "M"), - Number1 = c(100, -44, 49, 11, -66, 50, 29, 18, -70), - Number2 = c(-55, 76, 20, 130, 230, -50, 73, 137, 214) -) -th <- client$import_table(df) - -# get first and last elements of each column -th1 <- th$ - agg_by(agg_first(c("XFirst = X", "YFirst = Y", "Number1First = Number1", "Number2First = Number2")), - agg_last(c("XLast = X", "YLast = Y", "Number1Last = Number1", "Number2Last = Number2"))) - -# compute mean and standard deviation of Number1 and Number2, grouped by X -th2 <- th$ - agg_by( - c(agg_avg(c("Number1Avg = Number1", "Number2Avg = Number2")), - agg_std(c("Number1Std = Number1", "Number2Std = Number2"))), - by="X") - -# compute maximum of all non-grouping columns, grouped by X and Y -th3 <- th$ - agg_all_by(agg_max(), by=c("X", "Y")) - -# compute minimum and maximum of Number1 and Number2 respectively grouped by Y -th4 <- th$ - agg_by( - c(agg_min("Number1Min = Number1"), - agg_max("Number2Max = Number2")), - by="Y") - -client$close() -} - -} diff --git a/R/rdeephaven/man/AggOp.Rd b/R/rdeephaven/man/AggOp.Rd index 761ae21a628..166797cb209 100644 --- a/R/rdeephaven/man/AggOp.Rd +++ b/R/rdeephaven/man/AggOp.Rd @@ -5,9 +5,10 @@ \alias{AggOp} \title{Deephaven AggOps} \description{ -An \code{AggOp} is the return type of one of Deephaven's \code{\link[=AggBy]{agg}} functions. It is a function that performs the +An \code{AggOp} is the return type of one of Deephaven's \code{agg} functions. It is a function that performs the computation specified by the \code{agg} function. These are intended to be passed directly to \code{agg_by()} or \code{agg_all_by()}, -and should never be instantiated directly be user code. +and should never be instantiated directly be user code. For more information, see the +vignette on \code{agg} functions with \code{vignette("agg_by")}. If multiple tables have the same schema and the same aggregations need to be applied to each table, saving these objects directly in a variable may be useful to avoid having to re-create them each time: @@ -19,10 +20,7 @@ result1 <- th1$agg_by(aggregations, by="Group") result2 <- th2$agg_by(aggregations, by="Group") }\if{html}{\out{</div>}} -In this example, \code{aggregations} would be a vector of two \code{AggOp}s that can be reused in multiple calls to \code{agg_by()}. -} -\details{ -Name AggOp +In this example, \code{aggregations} would be a vector of two AggOps that can be reused in multiple calls to \code{agg_by()}. } \section{Methods}{ \subsection{Public methods}{ diff --git a/R/rdeephaven/man/Client.Rd b/R/rdeephaven/man/Client.Rd index 132fdb46dfb..9602e5ec5e1 100644 --- a/R/rdeephaven/man/Client.Rd +++ b/R/rdeephaven/man/Client.Rd @@ -13,7 +13,7 @@ import data to and export data from the server, and run queries on the server. library(rdeephaven) # connecting to Deephaven server -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") # create a data frame and push it to the server, retrieve a reference to it as a TableHandle df <- data.frame( diff --git a/R/rdeephaven/man/TableHandle.Rd b/R/rdeephaven/man/TableHandle.Rd index 8d86943811b..9f7694a3c34 100644 --- a/R/rdeephaven/man/TableHandle.Rd +++ b/R/rdeephaven/man/TableHandle.Rd @@ -60,12 +60,12 @@ th2$bind_to_variable("t2") library(rdeephaven) # connecting to Deephaven server -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") # create a data frame, push it to the server, and retrieve a TableHandle referencing the new table df <- data.frame( timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:50], - boolCol = sample(c(TRUE,FALSE), 50, TRUE), + boolCol = sample(c(TRUE, FALSE), 50, TRUE), col1 = sample(1000, size = 50, replace = TRUE), col2 = sample(1000, size = 50, replace = TRUE), col3 = 1:50 diff --git a/R/rdeephaven/man/UpdateBy.Rd b/R/rdeephaven/man/UpdateBy.Rd deleted file mode 100644 index fcfccdc1c5b..00000000000 --- a/R/rdeephaven/man/UpdateBy.Rd +++ /dev/null @@ -1,110 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/update_by_ops_wrapper.R -\docType{class} -\name{UpdateBy} -\alias{UpdateBy} -\title{Deephaven's UpdateBy Operations} -\description{ -Deephaven's \code{update_by()} table method and suite of \code{uby} functions enable cumulative and moving calculations -on static \emph{and} streaming tables. Complex operations like cumulative minima and maxima, exponential moving averages, -and rolling standard deviations are all possible and effortless to execute. As always in Deephaven, -the results of these calculations will continue to update as their parent tables are updated. Additionally, it's easy -to group data by one or more columns, enabling complex group-wise calculations with a single line of code. -} -\section{Applying UpdateBy operations to a table}{ - -The table method \code{update_by()} is the entry point for UpdateBy operations. It takes two arguments: the first is an -\code{\link{UpdateByOp}} or a list of \code{UpdateByOp}s denoting the calculations to perform on specific columns of the -table. Then, it takes a column name or a list of column names that define the groups on which to perform the calculations. -If you don't want grouped calculations, omit this argument. - -The \code{update_by()} method itself does not know anything about the columns on which you want to perform calculations. -Rather, the desired columns are passed to individual \code{uby} functions, enabling a massive amount of flexibility. -} - -\section{\code{uby} functions}{ - -\code{uby} functions are the workers that actually execute the complex UpdateBy calculations. These functions are -\emph{generators}, meaning they return \emph{functions} that the Deephaven engine knows how to interpret. We call the functions -that they return \code{\link{UpdateByOp}}s. These \code{UpdateByOp}s are not R-level functions, but Deephaven-specific -data types that perform all of the intensive calculations. Here is a list of all \code{uby} functions available in Deephaven: -\itemize{ -\item \code{\link[=uby_cum_min]{uby_cum_min()}} -\item \code{\link[=uby_cum_max]{uby_cum_max()}} -\item \code{\link[=uby_cum_sum]{uby_cum_sum()}} -\item \code{\link[=uby_cum_prod]{uby_cum_prod()}} -\item \code{\link[=uby_forward_fill]{uby_forward_fill()}} -\item \code{\link[=uby_delta]{uby_delta()}} -\item \code{\link[=uby_emmin_tick]{uby_emmin_tick()}} -\item \code{\link[=uby_emmin_time]{uby_emmin_time()}} -\item \code{\link[=uby_emmax_tick]{uby_emmax_tick()}} -\item \code{\link[=uby_emmax_time]{uby_emmax_time()}} -\item \code{\link[=uby_ems_tick]{uby_ems_tick()}} -\item \code{\link[=uby_ems_time]{uby_ems_time()}} -\item \code{\link[=uby_ema_tick]{uby_ema_tick()}} -\item \code{\link[=uby_ema_time]{uby_ema_time()}} -\item \code{\link[=uby_emstd_tick]{uby_emstd_tick()}} -\item \code{\link[=uby_emstd_time]{uby_emstd_time()}} -\item \code{\link[=uby_rolling_count_tick]{uby_rolling_count_tick()}} -\item \code{\link[=uby_rolling_count_time]{uby_rolling_count_time()}} -\item \code{\link[=uby_rolling_group_tick]{uby_rolling_group_tick()}} -\item \code{\link[=uby_rolling_group_time]{uby_rolling_group_time()}} -\item \code{\link[=uby_rolling_min_tick]{uby_rolling_min_tick()}} -\item \code{\link[=uby_rolling_min_time]{uby_rolling_min_time()}} -\item \code{\link[=uby_rolling_max_tick]{uby_rolling_max_tick()}} -\item \code{\link[=uby_rolling_max_time]{uby_rolling_max_time()}} -\item \code{\link[=uby_rolling_sum_tick]{uby_rolling_sum_tick()}} -\item \code{\link[=uby_rolling_sum_time]{uby_rolling_sum_time()}} -\item \code{\link[=uby_rolling_prod_tick]{uby_rolling_prod_tick()}} -\item \code{\link[=uby_rolling_prod_time]{uby_rolling_prod_time()}} -\item \code{\link[=uby_rolling_avg_tick]{uby_rolling_avg_tick()}} -\item \code{\link[=uby_rolling_avg_time]{uby_rolling_avg_time()}} -\item \code{\link[=uby_rolling_wavg_tick]{uby_rolling_wavg_tick()}} -\item \code{\link[=uby_rolling_wavg_time]{uby_rolling_wavg_time()}} -\item \code{\link[=uby_rolling_std_tick]{uby_rolling_std_tick()}} -\item \code{\link[=uby_rolling_std_time]{uby_rolling_std_time()}} -} - -For more details on each aggregation function, click on one of the methods above or see the reference documentation -by running \code{?uby_cum_min}, \code{?uby_delta}, etc. -} - -\examples{ -\dontrun{ -library(rdeephaven) - -# connecting to Deephaven server -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") - -# create data frame, push to server, retrieve TableHandle -df <- data.frame( - timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], - boolCol = sample(c(TRUE,FALSE), 500, TRUE), - col1 = sample(10000, size = 500, replace = TRUE), - col2 = sample(10000, size = 500, replace = TRUE), - col3 = 1:500 -) -th <- client$import_table(df) - -# compute 10-row exponential weighted moving average of col1 and col2, grouped by boolCol -th1 <- th$ - update_by(uby_ema_tick(decay_ticks=10, cols=c("col1Ema = col1", "col2Ema = col2")), by="boolCol") - -# compute rolling 10-second weighted average and standard deviation of col1 and col2, weighted by col3 -th2 <- th$ - update_by( - c(uby_rolling_wavg_time(ts_col="timeCol", wcol="col3", cols=c("col1WAvg = col1", "col2WAvg = col2"), rev_time="PT10s"), - uby_rolling_std_time(ts_col="timeCol", cols=c("col1Std = col1", "col2Std = col2"), rev_time="PT10s"))) - -# compute cumulative minimum and maximum of col1 and col2 respectively, and the rolling 20-row sum of col3, grouped by boolCol -th3 <- th$ - update_by( - c(uby_cum_min(cols="col1"), - uby_cum_max(cols="col2"), - uby_rolling_sum_tick(cols="col3", rev_ticks=20)), - by="boolCol") - -client$close() -} - -} diff --git a/R/rdeephaven/man/UpdateByOp.Rd b/R/rdeephaven/man/UpdateByOp.Rd index b4612690cf8..db1f1a5b597 100644 --- a/R/rdeephaven/man/UpdateByOp.Rd +++ b/R/rdeephaven/man/UpdateByOp.Rd @@ -7,7 +7,8 @@ \description{ An \code{UpdateByOp} is the return type of one of Deephaven's \code{\link[=UpdateBy]{uby}} functions. It is a function that performs the computation specified by the \code{uby} function. These are intended to be passed directly to \code{update_by()}, -and should never be instantiated directly be user code. +and should never be instantiated directly be user code. For more information, see the vignette on +\code{uby} functions with \code{vignette("update_by")}. If multiple tables have the same schema and the same UpdateBy operations need to be applied to each table, saving these objects directly in a variable may be useful to avoid having to re-create them each time: diff --git a/R/rdeephaven/man/agg_abs_sum.Rd b/R/rdeephaven/man/agg_abs_sum.Rd index a5c74e02526..3688270cd29 100644 --- a/R/rdeephaven/man/agg_abs_sum.Rd +++ b/R/rdeephaven/man/agg_abs_sum.Rd @@ -8,7 +8,7 @@ Default is to aggregate all non-grouping columns, which is only valid in the \code{agg_all_by()} operation.} } \value{ -\code{AggOp} to be used in a call to \code{agg_by()} or \code{agg_all_by()}. +\code{\link{AggOp}} to be used in a call to \code{agg_by()} or \code{agg_all_by()}. } \description{ Creates an Absolute Sum aggregation that computes the absolute sum of each column in \code{cols} for each aggregation group. @@ -23,13 +23,16 @@ This function, like other Deephaven \code{agg} functions, is a generator functio function called an \code{\link{AggOp}} intended to be used in a call to \code{agg_by()} or \code{agg_all_by()}. This detail is typically hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of an \code{agg} function can otherwise seem unexpected. + +For more information, see the vignette on \code{agg} functions by running +\code{vignette("agg_by")}. } \examples{ \dontrun{ library(rdeephaven) # connecting to Deephaven server -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") # create data frame, push to server, retrieve TableHandle df <- data.frame( @@ -46,11 +49,11 @@ th1 <- th$ # compute absolute sum of Number1 and Number2 grouped by X th2 <- th$ - agg_by(agg_abs_sum(c("Number1", "Number2")), by="X") + agg_by(agg_abs_sum(c("Number1", "Number2")), by = "X") # compute absolute sum of Number1 and Number2 grouped by X and Y th3 <- th$ - agg_by(agg_abs_sum(c("Number1", "Number2")), by=c("X", "Y")) + agg_by(agg_abs_sum(c("Number1", "Number2")), by = c("X", "Y")) client$close() } diff --git a/R/rdeephaven/man/agg_avg.Rd b/R/rdeephaven/man/agg_avg.Rd index 21711b256f7..156d9f0f646 100644 --- a/R/rdeephaven/man/agg_avg.Rd +++ b/R/rdeephaven/man/agg_avg.Rd @@ -8,7 +8,7 @@ Default is to aggregate all non-grouping columns, which is only valid in the \code{agg_all_by()} operation.} } \value{ -\code{AggOp} to be used in a call to \code{agg_by()} or \code{agg_all_by()}. +\code{\link{AggOp}} to be used in a call to \code{agg_by()} or \code{agg_all_by()}. } \description{ Creates an Average aggregation that computes the average of each column in \code{cols} for each aggregation group. @@ -23,13 +23,16 @@ This function, like other Deephaven \code{agg} functions, is a generator functio function called an \code{\link{AggOp}} intended to be used in a call to \code{agg_by()} or \code{agg_all_by()}. This detail is typically hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of an \code{agg} function can otherwise seem unexpected. + +For more information, see the vignette on \code{agg} functions by running +\code{vignette("agg_by")}. } \examples{ \dontrun{ library(rdeephaven) # connecting to Deephaven server -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") # create data frame, push to server, retrieve TableHandle df <- data.frame( @@ -46,11 +49,11 @@ th1 <- th$ # compute average of Number1 and Number2 grouped by X th2 <- th$ - agg_by(agg_avg(c("Number1", "Number2")), by="X") + agg_by(agg_avg(c("Number1", "Number2")), by = "X") # compute average of Number1 and Number2 grouped by X and Y th3 <- th$ - agg_by(agg_avg(c("Number1", "Number2")), by=c("X", "Y")) + agg_by(agg_avg(c("Number1", "Number2")), by = c("X", "Y")) client$close() } diff --git a/R/rdeephaven/man/agg_count.Rd b/R/rdeephaven/man/agg_count.Rd index 785545726bd..ea02848cf0e 100644 --- a/R/rdeephaven/man/agg_count.Rd +++ b/R/rdeephaven/man/agg_count.Rd @@ -7,7 +7,7 @@ \item{col}{String denoting the name of the new column to hold the counts of each aggregation group.} } \value{ -\code{AggOp} to be used in a call to \code{agg_by()}. +\code{\link{AggOp}} to be used in a call to \code{agg_by()}. } \description{ Creates a Count aggregation that counts the number of rows in each aggregation group. @@ -23,6 +23,9 @@ function called an \code{\link{AggOp}} intended to be used in a call to \code{ag typically hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of an \code{agg} function can otherwise seem unexpected. +For more information, see the vignette on \code{agg} functions by running +\code{vignette("agg_by")}. + Note that this operation is not supported in \code{agg_all_by()}. } \examples{ @@ -30,7 +33,7 @@ Note that this operation is not supported in \code{agg_all_by()}. library(rdeephaven) # connecting to Deephaven server -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") # create data frame, push to server, retrieve TableHandle df <- data.frame( @@ -43,11 +46,11 @@ th <- client$import_table(df) # count number of elements in each group when grouped by X, name resulting column "count" th1 <- th$ - agg_by(agg_count("count"), by="X") + agg_by(agg_count("count"), by = "X") # count number of elements in each group when grouped by X and Y, name resulting column "CountingCol" th2 <- th$ - agg_by(agg_count("CountingCol"), by=c("X", "Y")) + agg_by(agg_count("CountingCol"), by = c("X", "Y")) client$close() } diff --git a/R/rdeephaven/man/agg_first.Rd b/R/rdeephaven/man/agg_first.Rd index fb914fcfcfa..2e2f6ffcff3 100644 --- a/R/rdeephaven/man/agg_first.Rd +++ b/R/rdeephaven/man/agg_first.Rd @@ -8,7 +8,7 @@ Default is to aggregate all non-grouping columns, which is only valid in the \code{agg_all_by()} operation.} } \value{ -\code{AggOp} to be used in a call to \code{agg_by()} or \code{agg_all_by()}. +\code{\link{AggOp}} to be used in a call to \code{agg_by()} or \code{agg_all_by()}. } \description{ Creates a First aggregation that computes the first value of each column in \code{cols} for each aggregation group. @@ -23,13 +23,16 @@ This function, like other Deephaven \code{agg} functions, is a generator functio function called an \code{\link{AggOp}} intended to be used in a call to \code{agg_by()} or \code{agg_all_by()}. This detail is typically hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of an \code{agg} function can otherwise seem unexpected. + +For more information, see the vignette on \code{agg} functions by running +\code{vignette("agg_by")}. } \examples{ \dontrun{ library(rdeephaven) # connecting to Deephaven server -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") # create data frame, push to server, retrieve TableHandle df <- data.frame( @@ -46,11 +49,11 @@ th1 <- th$ # get first elements of Y, Number1, and Number2 grouped by X th2 <- th$ - agg_by(agg_first(c("Y", "Number1", "Number2")), by="X") + agg_by(agg_first(c("Y", "Number1", "Number2")), by = "X") # get first elements of Number1 and Number2 grouped by X and Y th3 <- th - agg_by(agg_first(c("Number1", "Number2")), by=c("X", "Y")) +agg_by(agg_first(c("Number1", "Number2")), by = c("X", "Y")) client$close() } diff --git a/R/rdeephaven/man/agg_last.Rd b/R/rdeephaven/man/agg_last.Rd index 0cc4d5032ba..a96876670e9 100644 --- a/R/rdeephaven/man/agg_last.Rd +++ b/R/rdeephaven/man/agg_last.Rd @@ -8,7 +8,7 @@ Default is to aggregate all non-grouping columns, which is only valid in the \code{agg_all_by()} operation.} } \value{ -\code{AggOp} to be used in a call to \code{agg_by()} or \code{agg_all_by()}. +\code{\link{AggOp}} to be used in a call to \code{agg_by()} or \code{agg_all_by()}. } \description{ Creates a Last aggregation that computes the last value of each column in \code{cols} for each aggregation group. @@ -23,13 +23,16 @@ This function, like other Deephaven \code{agg} functions, is a generator functio function called an \code{\link{AggOp}} intended to be used in a call to \code{agg_by()} or \code{agg_all_by()}. This detail is typically hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of an \code{agg} function can otherwise seem unexpected. + +For more information, see the vignette on \code{agg} functions by running +\code{vignette("agg_by")}. } \examples{ \dontrun{ library(rdeephaven) # connecting to Deephaven server -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") # create data frame, push to server, retrieve TableHandle df <- data.frame( @@ -46,11 +49,11 @@ th1 <- th$ # get last elements of Y, Number1, and Number2 grouped by X th2 <- th$ - agg_by(agg_last(c("Y", "Number1", "Number2")), by="X") + agg_by(agg_last(c("Y", "Number1", "Number2")), by = "X") # get last elements of Number1 and Number2 grouped by X and Y th3 <- th$ - agg_by(agg_last(c("Number1", "Number2")), by=c("X", "Y")) + agg_by(agg_last(c("Number1", "Number2")), by = c("X", "Y")) client$close() } diff --git a/R/rdeephaven/man/agg_max.Rd b/R/rdeephaven/man/agg_max.Rd index c7bb7ebb13c..5a092d276cc 100644 --- a/R/rdeephaven/man/agg_max.Rd +++ b/R/rdeephaven/man/agg_max.Rd @@ -8,7 +8,7 @@ Default is to aggregate all non-grouping columns, which is only valid in the \code{agg_all_by()} operation.} } \value{ -\code{AggOp} to be used in a call to \code{agg_by()} or \code{agg_all_by()}. +\code{\link{AggOp}} to be used in a call to \code{agg_by()} or \code{agg_all_by()}. } \description{ Creates a Maximum aggregation that computes the maximum of each column in \code{cols} for each aggregation group. @@ -23,13 +23,16 @@ This function, like other Deephaven \code{agg} functions, is a generator functio function called an \code{\link{AggOp}} intended to be used in a call to \code{agg_by()} or \code{agg_all_by()}. This detail is typically hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of an \code{agg} function can otherwise seem unexpected. + +For more information, see the vignette on \code{agg} functions by running +\code{vignette("agg_by")}. } \examples{ \dontrun{ library(rdeephaven) # connecting to Deephaven server -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") # create data frame, push to server, retrieve TableHandle df <- data.frame( @@ -46,11 +49,11 @@ th1 <- th$ # get maximum elements of Number1 and Number2 grouped by X th2 <- th$ - agg_by(agg_max(c("Number1", "Number2")), by="X") + agg_by(agg_max(c("Number1", "Number2")), by = "X") # get maximum elements of Number1 and Number2 grouped by X and Y th3 <- th$ - agg_by(agg_max(c("Number1", "Number2")), by=c("X", "Y")) + agg_by(agg_max(c("Number1", "Number2")), by = c("X", "Y")) client$close() } diff --git a/R/rdeephaven/man/agg_median.Rd b/R/rdeephaven/man/agg_median.Rd index b64da3a26d2..3c08b9d4c02 100644 --- a/R/rdeephaven/man/agg_median.Rd +++ b/R/rdeephaven/man/agg_median.Rd @@ -8,7 +8,7 @@ Default is to aggregate all non-grouping columns, which is only valid in the \code{agg_all_by()} operation.} } \value{ -\code{AggOp} to be used in a call to \code{agg_by()} or \code{agg_all_by()}. +\code{\link{AggOp}} to be used in a call to \code{agg_by()} or \code{agg_all_by()}. } \description{ Creates a Median aggregation that computes the median of each column in \code{cols} for each aggregation group. @@ -23,13 +23,16 @@ This function, like other Deephaven \code{agg} functions, is a generator functio function called an \code{\link{AggOp}} intended to be used in a call to \code{agg_by()} or \code{agg_all_by()}. This detail is typically hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of an \code{agg} function can otherwise seem unexpected. + +For more information, see the vignette on \code{agg} functions by running +\code{vignette("agg_by")}. } \examples{ \dontrun{ library(rdeephaven) # connecting to Deephaven server -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") # create data frame, push to server, retrieve TableHandle df <- data.frame( @@ -46,11 +49,11 @@ th1 <- th$ # compute median of Number1 and Number2 grouped by X th2 <- th$ - agg_by(agg_median(c("Number1", "Number2")), by="X") + agg_by(agg_median(c("Number1", "Number2")), by = "X") # compute median of Number1 and Number2 grouped by X and Y th3 <- th$ - agg_by(agg_median(c("Number1", "Number2")), by=c("X", "Y")) + agg_by(agg_median(c("Number1", "Number2")), by = c("X", "Y")) client$close() } diff --git a/R/rdeephaven/man/agg_min.Rd b/R/rdeephaven/man/agg_min.Rd index 4d66d14fd78..fd9b603a0d2 100644 --- a/R/rdeephaven/man/agg_min.Rd +++ b/R/rdeephaven/man/agg_min.Rd @@ -8,7 +8,7 @@ Default is to aggregate all non-grouping columns, which is only valid in the \code{agg_all_by()} operation.} } \value{ -\code{AggOp} to be used in a call to \code{agg_by()} or \code{agg_all_by()}. +\code{\link{AggOp}} to be used in a call to \code{agg_by()} or \code{agg_all_by()}. } \description{ Creates a Minimum aggregation that computes the minimum of each column in \code{cols} for each aggregation group. @@ -23,13 +23,16 @@ This function, like other Deephaven \code{agg} functions, is a generator functio function called an \code{\link{AggOp}} intended to be used in a call to \code{agg_by()} or \code{agg_all_by()}. This detail is typically hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of an \code{agg} function can otherwise seem unexpected. + +For more information, see the vignette on \code{agg} functions by running +\code{vignette("agg_by")}. } \examples{ \dontrun{ library(rdeephaven) # connecting to Deephaven server -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") # create data frame, push to server, retrieve TableHandle df <- data.frame( @@ -46,11 +49,11 @@ th1 <- th$ # get minimum elements of Number1 and Number2 grouped by X th2 <- th$ - agg_by(agg_min(c("Number1", "Number2")), by="X") + agg_by(agg_min(c("Number1", "Number2")), by = "X") # get minimum elements of Number1 and Number2 grouped by X and Y th3 <- th$ - agg_by(agg_min(c("Number1", "Number2")), by=c("X", "Y")) + agg_by(agg_min(c("Number1", "Number2")), by = c("X", "Y")) client$close() } diff --git a/R/rdeephaven/man/agg_percentile.Rd b/R/rdeephaven/man/agg_percentile.Rd index 84f1f63d31a..4c76455d447 100644 --- a/R/rdeephaven/man/agg_percentile.Rd +++ b/R/rdeephaven/man/agg_percentile.Rd @@ -10,7 +10,7 @@ Default is to aggregate all non-grouping columns, which is only valid in the \code{agg_all_by()} operation.} } \value{ -\code{AggOp} to be used in a call to \code{agg_by()} or \code{agg_all_by()}. +\code{\link{AggOp}} to be used in a call to \code{agg_by()} or \code{agg_all_by()}. } \description{ Creates a Percentile aggregation that computes the given percentile of each column in \code{cols} for each aggregation group. @@ -25,13 +25,16 @@ This function, like other Deephaven \code{agg} functions, is a generator functio function called an \code{\link{AggOp}} intended to be used in a call to \code{agg_by()} or \code{agg_all_by()}. This detail is typically hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of an \code{agg} function can otherwise seem unexpected. + +For more information, see the vignette on \code{agg} functions by running +\code{vignette("agg_by")}. } \examples{ \dontrun{ library(rdeephaven) # connecting to Deephaven server -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") # create data frame, push to server, retrieve TableHandle df <- data.frame( @@ -44,15 +47,15 @@ th <- client$import_table(df) # compute 20th percentile of Number1 and Number2 th1 <- th$ - agg_by(agg_percentile(percentile=0.2, cols=c("Number1", "Number2"))) + agg_by(agg_percentile(percentile = 0.2, cols = c("Number1", "Number2"))) # compute 50th percentile of Number1 and Number2 grouped by X th2 <- th$ - agg_by(agg_percentile(percentile=0.5, cols=c("Number1", "Number2")), by="X") + agg_by(agg_percentile(percentile = 0.5, cols = c("Number1", "Number2")), by = "X") # compute 75th percentile of Number1 and Number2 grouped by X and Y th3 <- th$ - agg_by(agg_percentile(percentile=0.75, cols=c("Number1", "Number2")), by=c("X", "Y")) + agg_by(agg_percentile(percentile = 0.75, cols = c("Number1", "Number2")), by = c("X", "Y")) client$close() } diff --git a/R/rdeephaven/man/agg_std.Rd b/R/rdeephaven/man/agg_std.Rd index 843e1b78ff6..5101145707d 100644 --- a/R/rdeephaven/man/agg_std.Rd +++ b/R/rdeephaven/man/agg_std.Rd @@ -8,7 +8,7 @@ Default is to aggregate all non-grouping columns, which is only valid in the \code{agg_all_by()} operation.} } \value{ -\code{AggOp} to be used in a call to \code{agg_by()} or \code{agg_all_by()}. +\code{\link{AggOp}} to be used in a call to \code{agg_by()} or \code{agg_all_by()}. } \description{ Creates a Standard Deviation aggregation that computes the standard deviation of each column in \code{cols}, for each aggregation group. @@ -23,13 +23,16 @@ This function, like other Deephaven \code{agg} functions, is a generator functio function called an \code{\link{AggOp}} intended to be used in a call to \code{agg_by()} or \code{agg_all_by()}. This detail is typically hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of an \code{agg} function can otherwise seem unexpected. + +For more information, see the vignette on \code{agg} functions by running +\code{vignette("agg_by")}. } \examples{ \dontrun{ library(rdeephaven) # connecting to Deephaven server -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") # create data frame, push to server, retrieve TableHandle df <- data.frame( @@ -46,11 +49,11 @@ th1 <- th$ # compute standard deviation of Number1 and Number2 grouped by X th2 <- th$ - agg_by(agg_std(c("Number1", "Number2")), by="X") + agg_by(agg_std(c("Number1", "Number2")), by = "X") # compute standard deviation of Number1 and Number2 grouped by X and Y th3 <- th$ - agg_by(agg_std(c("Number1", "Number2")), by=c("X", "Y")) + agg_by(agg_std(c("Number1", "Number2")), by = c("X", "Y")) client$close() } diff --git a/R/rdeephaven/man/agg_sum.Rd b/R/rdeephaven/man/agg_sum.Rd index 76c270a6bf0..ac2de464289 100644 --- a/R/rdeephaven/man/agg_sum.Rd +++ b/R/rdeephaven/man/agg_sum.Rd @@ -8,7 +8,7 @@ Default is to aggregate all non-grouping columns, which is only valid in the \code{agg_all_by()} operation.} } \value{ -\code{AggOp} to be used in a call to \code{agg_by()} or \code{agg_all_by()}. +\code{\link{AggOp}} to be used in a call to \code{agg_by()} or \code{agg_all_by()}. } \description{ Creates a Sum aggregation that computes the sum of each column in \code{cols} for each aggregation group. @@ -23,13 +23,16 @@ This function, like other Deephaven \code{agg} functions, is a generator functio function called an \code{\link{AggOp}} intended to be used in a call to \code{agg_by()} or \code{agg_all_by()}. This detail is typically hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of an \code{agg} function can otherwise seem unexpected. + +For more information, see the vignette on \code{agg} functions by running +\code{vignette("agg_by")}. } \examples{ \dontrun{ library(rdeephaven) # connecting to Deephaven server -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") # create data frame, push to server, retrieve TableHandle df <- data.frame( @@ -46,11 +49,11 @@ th1 <- th$ # compute sum of Number1 and Number2 grouped by X th2 <- th$ - agg_by(agg_sum(c("Number1", "Number2")), by="X") + agg_by(agg_sum(c("Number1", "Number2")), by = "X") # compute sum of Number1 and Number2 grouped by X and Y th3 <- th$ - agg_by(agg_sum(c("Number1", "Number2")), by=c("X", "Y")) + agg_by(agg_sum(c("Number1", "Number2")), by = c("X", "Y")) client$close() } diff --git a/R/rdeephaven/man/agg_var.Rd b/R/rdeephaven/man/agg_var.Rd index 5f8c7ee9537..94d0b59c283 100644 --- a/R/rdeephaven/man/agg_var.Rd +++ b/R/rdeephaven/man/agg_var.Rd @@ -8,7 +8,7 @@ Default is to aggregate all non-grouping columns, which is only valid in the \code{agg_all_by()} operation.} } \value{ -\code{AggOp} to be used in a call to \code{agg_by()} or \code{agg_all_by()}. +\code{\link{AggOp}} to be used in a call to \code{agg_by()} or \code{agg_all_by()}. } \description{ Creates a Variance aggregation that computes the variance of each column in \code{cols} for each aggregation group. @@ -23,13 +23,16 @@ This function, like other Deephaven \code{agg} functions, is a generator functio function called an \code{\link{AggOp}} intended to be used in a call to \code{agg_by()} or \code{agg_all_by()}. This detail is typically hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of an \code{agg} function can otherwise seem unexpected. + +For more information, see the vignette on \code{agg} functions by running +\code{vignette("agg_by")}. } \examples{ \dontrun{ library(rdeephaven) # connecting to Deephaven server -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") # create data frame, push to server, retrieve TableHandle df <- data.frame( @@ -46,11 +49,11 @@ th1 <- th$ # compute variance of Number1 and Number2 grouped by X th2 <- th$ - agg_by(agg_var(c("Number1", "Number2")), by="X") + agg_by(agg_var(c("Number1", "Number2")), by = "X") # compute variance of Number1 and Number2 grouped by X and Y th3 <- th$ - agg_by(agg_var(c("Number1", "Number2")), by=c("X", "Y")) + agg_by(agg_var(c("Number1", "Number2")), by = c("X", "Y")) client$close() } diff --git a/R/rdeephaven/man/agg_w_avg.Rd b/R/rdeephaven/man/agg_w_avg.Rd index d9a27eec52c..575f3fba44c 100644 --- a/R/rdeephaven/man/agg_w_avg.Rd +++ b/R/rdeephaven/man/agg_w_avg.Rd @@ -10,7 +10,7 @@ Default is to aggregate all non-grouping columns, which is only valid in the \code{agg_all_by()} operation.} } \value{ -\code{AggOp} to be used in a call to \code{agg_by()} or \code{agg_all_by()}. +\code{\link{AggOp}} to be used in a call to \code{agg_by()} or \code{agg_all_by()}. } \description{ Creates a Weighted Average aggregation that computes the weighted average of each column in \code{cols} for each aggregation group. @@ -25,13 +25,16 @@ This function, like other Deephaven \code{agg} functions, is a generator functio function called an \code{\link{AggOp}} intended to be used in a call to \code{agg_by()} or \code{agg_all_by()}. This detail is typically hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of an \code{agg} function can otherwise seem unexpected. + +For more information, see the vignette on \code{agg} functions by running +\code{vignette("agg_by")}. } \examples{ \dontrun{ library(rdeephaven) # connecting to Deephaven server -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") # create data frame, push to server, retrieve TableHandle df <- data.frame( @@ -44,15 +47,15 @@ th <- client$import_table(df) # compute weighted average of Number1, weighted by Number2 th1 <- th$ - agg_by(agg_w_avg(wcol="Number2", cols="Number1")) + agg_by(agg_w_avg(wcol = "Number2", cols = "Number1")) # compute weighted average of Number1, weighted by Number2, grouped by X th2 <- th$ - agg_by(agg_w_avg(wcol="Number2", cols="Number1", by="X")) + agg_by(agg_w_avg(wcol = "Number2", cols = "Number1", by = "X")) # compute weighted average of Number1, weighted by Number2, grouped by X and Y th3 <- th$ - agg_by(agg_w_avg(wcol="Number2", cols="Number1", by=c("X", "Y"))) + agg_by(agg_w_avg(wcol = "Number2", cols = "Number1", by = c("X", "Y"))) client$close() } diff --git a/R/rdeephaven/man/rdeephaven.Rd b/R/rdeephaven/man/rdeephaven.Rd deleted file mode 100644 index 96dd3c1f33a..00000000000 --- a/R/rdeephaven/man/rdeephaven.Rd +++ /dev/null @@ -1,101 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/exports.R -\name{rdeephaven} -\alias{rdeephaven} -\title{The Deephaven Community R Client} -\description{ -The Deephaven Community R Client provides an R interface to Deephaven's powerful real-time data engine, \href{https://deephaven.io/community/}{\emph{Deephaven Core}}. -To use this package, you must have a Deephaven server running and be able to connect to it. For more information on -how to set up a Deephaven server, see the documentation \href{https://deephaven.io/core/docs/tutorials/quickstart/}{here}. -} -\section{Building blocks of the Deephaven R Client}{ - -There are two primary R classes that make up the Deephaven R Client, the \code{\link{Client}} class and the -\code{\link{TableHandle}} class. The \code{Client} class is used to establish a connection to the Deephaven server with -its constructor \code{Client$new()}, and to send server requests, such as running a script via \code{run_script()}, or pushing -local data to the server via \code{import_table()}. Basic usage of the \code{Client} class may look something like this: - -\if{html}{\out{<div class="sourceCode r">}}\preformatted{library(rdeephaven) - -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") -}\if{html}{\out{</div>}} - -Many of these server requests end up creating or modifying tables that live on the server. To keep track of these -tables, the R client retrieves references to them, and wraps these references in \code{TableHandle} objects. These -TableHandles have a host of methods that mirror server-side table operations, such as \code{head()}, \code{tail()}, \code{update()}, -and so on. So, you can typically use TableHandles \emph{as if} they are tables themselves, and all of the corresponding -methods that you call on them will be executed on the server. Here is a simple example of pushing data to the server, -retrieving a TableHandle to the resulting table, and applying some basic table operations to the table: - -\if{html}{\out{<div class="sourceCode r">}}\preformatted{df1 <- data.frame(x=1:10, y=11:20) -th1 <- client$import_table(df1) - -th2 <- th1$ - update("z = x + y")$ - where("z \% 4 == 0") -}\if{html}{\out{</div>}} - -TableHandles also support common functional methods for converting server-side Deephaven tables to R objects stored in -local memory such as \code{as.data.frame()}, \code{as_tibble()}, and \code{as_arrow_table()}. Here's an example of converting the -table created above to an R data frame and verifying that other functional methods work as expected: - -\if{html}{\out{<div class="sourceCode r">}}\preformatted{df2 <- as.data.frame(th2) - -print(nrow(th2) == nrow(df2)) -print(ncol(th2) == ncol(df2)) -print(dim(th2) == dim(df2)) -print(all(as.data.frame(head(th2, 2)) == head(df2, 2))) -print(all(as.data.frame(tail(th2, 2)) == tail(df2, 2))) -}\if{html}{\out{</div>}} - -For more information on these classes and all of their methods, see the reference documentation for \code{\link{Client}} -and \code{\link{TableHandle}} by clicking on their class names, or by running \code{?Client} or \code{?TableHandle}. -} - -\section{Real-time data analysis}{ - -Since TableHandles are references to tables living on the Deephaven server, they may refer to streaming tables, or -tables that are receiving new data periodically (typically once per second). Here's a simple example of creating a -table that adds a new row every second: - -\if{html}{\out{<div class="sourceCode r">}}\preformatted{th3 <- client$time_table("PT1s")$ - update(c("X = ii", "Y = sin(X)")) -}\if{html}{\out{</div>}} - -R objects like data frames or Dplyr tibbles do not have this streaming property - they are always static objects -stored in memory. However, a TableHandle referring to a streaming table may be converted to a data frame or tibble at -any time, and the resulting object will be a snapshot of the table at the time of conversion. This means that you can -use the Deephaven R Client to perform real-time data analysis on streaming data! Here, we make a simple plot of the -ticking table, and call it three times to demonstrate the dynamic nature of the table: - -\if{html}{\out{<div class="sourceCode r">}}\preformatted{plot(as.data.frame(th3)$X, as.data.frame(th3)$Y, type="l") -Sys.sleep(5) -plot(as.data.frame(th3)$X, as.data.frame(th3)$Y, type="l") -Sys.sleep(5) -plot(as.data.frame(th3)$X, as.data.frame(th3)$Y, type="l") -}\if{html}{\out{</div>}} - -There are performance and memory considerations when pulling data from the server, so it is best to use the provided -TableHandle methods to perform as much of your analysis as possible on the server, and to only pull the data when -something \emph{must} be done in R, like plotting or writing to a local file. -} - -\section{Powerful table operations}{ - -Much of the power of Deephaven's suite of table operations is achieved through the use of the \code{\link[=UpdateBy]{update_by()}} -and \code{\link[=AggBy]{agg_by()}} methods. These table methods are important enough to warrant their own documentation pages, accessible -by clicking on their names, or by running \code{?UpdateBy} or \code{?AggBy}. These methods come with their own suites of functions, -prefixed with \code{agg_} and \code{uby_} respectively, that are discoverable from their documentation pages. Running \code{ls("package:rdeephaven")} -will reveal that most of the functions included in this package are for these methods, so it is important to get acquainted -with them. -} - -\section{Getting help}{ - -While we've done our best to provide good documentation for this package, you may find you need more help than what -this documentation has to offer. Please visit the official Deephaven Community Core \href{https://deephaven.io/core/docs/tutorials/quickstart/}{documentation} -to learn more about Deephaven and to find comprehensive examples. Additionally, feel free to reach out to us on -the Deephaven \href{https://deephaven.io/slack}{Community Slack channel} with any questions. -We hope you find real-time data analysis in R to be as easy as possible. -} - diff --git a/R/rdeephaven/man/uby_cum_max.Rd b/R/rdeephaven/man/uby_cum_max.Rd index dfd209e3f38..2b940d46414 100644 --- a/R/rdeephaven/man/uby_cum_max.Rd +++ b/R/rdeephaven/man/uby_cum_max.Rd @@ -23,18 +23,21 @@ This function, like other Deephaven \code{uby} functions, is a generator functio function called an \code{\link{UpdateByOp}} intended to be used in a call to \code{update_by()}. This detail is typically hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of a \code{uby} function can otherwise seem unexpected. + +For more information, see the vignette on \code{uby} functions by running +\code{vignette("update_by")}. } \examples{ \dontrun{ library(rdeephaven) # connecting to Deephaven server -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") # create data frame, push to server, retrieve TableHandle df <- data.frame( timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], - boolCol = sample(c(TRUE,FALSE), 500, TRUE), + boolCol = sample(c(TRUE, FALSE), 500, TRUE), col1 = sample(10000, size = 500, replace = TRUE), col2 = sample(10000, size = 500, replace = TRUE), col3 = 1:500 @@ -47,12 +50,12 @@ th1 <- th$ # compute cumulative maximum of col1 and col2, grouped by boolCol th2 <- th$ - update_by(uby_cum_max(c("col1CumMax = col1", "col2CumMax = col2")), by="boolCol") + update_by(uby_cum_max(c("col1CumMax = col1", "col2CumMax = col2")), by = "boolCol") # compute cumulative maximum of col1 and col2, grouped by boolCol and parity of col3 th3 <- th$ update("col3Parity = col3 \% 2")$ - update_by(uby_cum_max(c("col1CumMax = col1", "col2CumMax = col2")), by=c("boolCol", "col3Parity")) + update_by(uby_cum_max(c("col1CumMax = col1", "col2CumMax = col2")), by = c("boolCol", "col3Parity")) client$close() } diff --git a/R/rdeephaven/man/uby_cum_min.Rd b/R/rdeephaven/man/uby_cum_min.Rd index c8b0c7d8040..ed576f7b170 100644 --- a/R/rdeephaven/man/uby_cum_min.Rd +++ b/R/rdeephaven/man/uby_cum_min.Rd @@ -23,18 +23,21 @@ This function, like other Deephaven \code{uby} functions, is a generator functio function called an \code{\link{UpdateByOp}} intended to be used in a call to \code{update_by()}. This detail is typically hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of a \code{uby} function can otherwise seem unexpected. + +For more information, see the vignette on \code{uby} functions by running +\code{vignette("update_by")}. } \examples{ \dontrun{ library(rdeephaven) # connecting to Deephaven server -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") # create data frame, push to server, retrieve TableHandle df <- data.frame( timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], - boolCol = sample(c(TRUE,FALSE), 500, TRUE), + boolCol = sample(c(TRUE, FALSE), 500, TRUE), col1 = sample(10000, size = 500, replace = TRUE), col2 = sample(10000, size = 500, replace = TRUE), col3 = 1:500 @@ -47,12 +50,12 @@ th1 <- th$ # compute cumulative minimum of col1 and col2, grouped by boolCol th2 <- th$ - update_by(uby_cum_min(c("col1CumMin = col1", "col2CumMin = col2")), by="boolCol") + update_by(uby_cum_min(c("col1CumMin = col1", "col2CumMin = col2")), by = "boolCol") # compute cumulative minimum of col1 and col2, grouped by boolCol and parity of col3 th3 <- th$ update("col3Parity = col3 \% 2")$ - update_by(uby_cum_min(c("col1CumMin = col1", "col2CumMin = col2")), by=c("boolCol", "col3Parity")) + update_by(uby_cum_min(c("col1CumMin = col1", "col2CumMin = col2")), by = c("boolCol", "col3Parity")) client$close() } diff --git a/R/rdeephaven/man/uby_cum_prod.Rd b/R/rdeephaven/man/uby_cum_prod.Rd index 872b9c59e18..e3710a95a5c 100644 --- a/R/rdeephaven/man/uby_cum_prod.Rd +++ b/R/rdeephaven/man/uby_cum_prod.Rd @@ -23,18 +23,21 @@ This function, like other Deephaven \code{uby} functions, is a generator functio function called an \code{\link{UpdateByOp}} intended to be used in a call to \code{update_by()}. This detail is typically hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of a \code{uby} function can otherwise seem unexpected. + +For more information, see the vignette on \code{uby} functions by running +\code{vignette("update_by")}. } \examples{ \dontrun{ library(rdeephaven) # connecting to Deephaven server -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") # create data frame, push to server, retrieve TableHandle df <- data.frame( timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], - boolCol = sample(c(TRUE,FALSE), 500, TRUE), + boolCol = sample(c(TRUE, FALSE), 500, TRUE), col1 = sample(10000, size = 500, replace = TRUE), col2 = sample(10000, size = 500, replace = TRUE), col3 = 1:500 @@ -47,12 +50,12 @@ th1 <- th$ # compute cumulative product of col1 and col2, grouped by boolCol th2 <- th$ - update_by(uby_cum_prod(c("col1CumProd = col1", "col2CumProd = col2")), by="boolCol") + update_by(uby_cum_prod(c("col1CumProd = col1", "col2CumProd = col2")), by = "boolCol") # compute cumulative product of col1 and col2, grouped by boolCol and parity of col3 th3 <- th$ update("col3Parity = col3 \% 2")$ - update_by(uby_cum_prod(c("col1CumProd = col1", "col2CumProd = col2")), by=c("boolCol", "col3Parity")) + update_by(uby_cum_prod(c("col1CumProd = col1", "col2CumProd = col2")), by = c("boolCol", "col3Parity")) client$close() } diff --git a/R/rdeephaven/man/uby_cum_sum.Rd b/R/rdeephaven/man/uby_cum_sum.Rd index d12ebde5eae..12d7e4f97ab 100644 --- a/R/rdeephaven/man/uby_cum_sum.Rd +++ b/R/rdeephaven/man/uby_cum_sum.Rd @@ -23,18 +23,21 @@ This function, like other Deephaven \code{uby} functions, is a generator functio function called an \code{\link{UpdateByOp}} intended to be used in a call to \code{update_by()}. This detail is typically hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of a \code{uby} function can otherwise seem unexpected. + +For more information, see the vignette on \code{uby} functions by running +\code{vignette("update_by")}. } \examples{ \dontrun{ library(rdeephaven) # connecting to Deephaven server -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") # create data frame, push to server, retrieve TableHandle df <- data.frame( timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], - boolCol = sample(c(TRUE,FALSE), 500, TRUE), + boolCol = sample(c(TRUE, FALSE), 500, TRUE), col1 = sample(10000, size = 500, replace = TRUE), col2 = sample(10000, size = 500, replace = TRUE), col3 = 1:500 @@ -47,12 +50,12 @@ th1 <- th$ # compute cumulative sum of col1 and col2, grouped by boolCol th2 <- th$ - update_by(uby_cum_sum(c("col1CumSum = col1", "col2CumSum = col2")), by="boolCol") + update_by(uby_cum_sum(c("col1CumSum = col1", "col2CumSum = col2")), by = "boolCol") # compute cumulative sum of col1 and col2, grouped by boolCol and parity of col3 th3 <- th$ update("col3Parity = col3 \% 2")$ - update_by(uby_cum_sum(c("col1CumSum = col1", "col2CumSum = col2")), by=c("boolCol", "col3Parity")) + update_by(uby_cum_sum(c("col1CumSum = col1", "col2CumSum = col2")), by = c("boolCol", "col3Parity")) client$close() } diff --git a/R/rdeephaven/man/uby_delta.Rd b/R/rdeephaven/man/uby_delta.Rd index 2679b3886a7..427d493ceed 100644 --- a/R/rdeephaven/man/uby_delta.Rd +++ b/R/rdeephaven/man/uby_delta.Rd @@ -34,18 +34,21 @@ This function, like other Deephaven \code{uby} functions, is a generator functio function called an \code{\link{UpdateByOp}} intended to be used in a call to \code{update_by()}. This detail is typically hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of a \code{uby} function can otherwise seem unexpected. + +For more information, see the vignette on \code{uby} functions by running +\code{vignette("update_by")}. } \examples{ \dontrun{ library(rdeephaven) # connecting to Deephaven server -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") # create data frame, push to server, retrieve TableHandle df <- data.frame( timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], - boolCol = sample(c(TRUE,FALSE), 500, TRUE), + boolCol = sample(c(TRUE, FALSE), 500, TRUE), col1 = sample(10000, size = 500, replace = TRUE), col2 = sample(10000, size = 500, replace = TRUE), col3 = 1:500 @@ -58,12 +61,12 @@ th1 <- th$ # compute consecutive differences of col1 and col2, grouped by boolCol th2 <- th$ - update_by(uby_delta(c("col1Delta = col1", "col2Delta = col2")), by="boolCol") + update_by(uby_delta(c("col1Delta = col1", "col2Delta = col2")), by = "boolCol") # compute consecutive differences of col1 and col2, grouped by boolCol and parity of col3 th3 <- th$ update("col3Parity = col3 \% 2")$ - update_by(uby_delta(c("col1Delta = col1", "col2Delta = col2")), by=c("boolCol", "col3Parity")) + update_by(uby_delta(c("col1Delta = col1", "col2Delta = col2")), by = c("boolCol", "col3Parity")) client$close() } diff --git a/R/rdeephaven/man/uby_ema_tick.Rd b/R/rdeephaven/man/uby_ema_tick.Rd index 9d680ddcc3a..ecbf3ff37b2 100644 --- a/R/rdeephaven/man/uby_ema_tick.Rd +++ b/R/rdeephaven/man/uby_ema_tick.Rd @@ -40,18 +40,21 @@ This function, like other Deephaven \code{uby} functions, is a generator functio function called an \code{\link{UpdateByOp}} intended to be used in a call to \code{update_by()}. This detail is typically hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of a \code{uby} function can otherwise seem unexpected. + +For more information, see the vignette on \code{uby} functions by running +\code{vignette("update_by")}. } \examples{ \dontrun{ library(rdeephaven) # connecting to Deephaven server -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") # create data frame, push to server, retrieve TableHandle df <- data.frame( timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], - boolCol = sample(c(TRUE,FALSE), 500, TRUE), + boolCol = sample(c(TRUE, FALSE), 500, TRUE), col1 = sample(10000, size = 500, replace = TRUE), col2 = sample(10000, size = 500, replace = TRUE), col3 = 1:500 @@ -60,16 +63,16 @@ th <- client$import_table(df) # compute 10-row exponential moving average of col1 and col2 th1 <- th$ - update_by(uby_ema_tick(decay_ticks=10, cols=c("col1Ema = col1", "col2Ema = col2"))) + update_by(uby_ema_tick(decay_ticks = 10, cols = c("col1Ema = col1", "col2Ema = col2"))) # compute 5-row exponential moving average of col1 and col2, grouped by boolCol th2 <- th$ - update_by(uby_ema_tick(decay_ticks=5, cols=c("col1Ema = col1", "col2Ema = col2")), by="boolCol") + update_by(uby_ema_tick(decay_ticks = 5, cols = c("col1Ema = col1", "col2Ema = col2")), by = "boolCol") # compute 20-row exponential moving average of col1 and col2, grouped by boolCol and parity of col3 th3 <- th$ update("col3Parity = col3 \% 2")$ - update_by(uby_ema_tick(decay_ticks=20, cols=c("col1Ema = col1", "col2Ema = col2")), by=c("boolCol", "col3Parity")) + update_by(uby_ema_tick(decay_ticks = 20, cols = c("col1Ema = col1", "col2Ema = col2")), by = c("boolCol", "col3Parity")) client$close() } diff --git a/R/rdeephaven/man/uby_ema_time.Rd b/R/rdeephaven/man/uby_ema_time.Rd index 862f1be69c3..e86dca08f4a 100644 --- a/R/rdeephaven/man/uby_ema_time.Rd +++ b/R/rdeephaven/man/uby_ema_time.Rd @@ -43,18 +43,21 @@ This function, like other Deephaven \code{uby} functions, is a generator functio function called an \code{\link{UpdateByOp}} intended to be used in a call to \code{update_by()}. This detail is typically hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of a \code{uby} function can otherwise seem unexpected. + +For more information, see the vignette on \code{uby} functions by running +\code{vignette("update_by")}. } \examples{ \dontrun{ library(rdeephaven) # connecting to Deephaven server -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") # create data frame, push to server, retrieve TableHandle df <- data.frame( timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], - boolCol = sample(c(TRUE,FALSE), 500, TRUE), + boolCol = sample(c(TRUE, FALSE), 500, TRUE), col1 = sample(10000, size = 500, replace = TRUE), col2 = sample(10000, size = 500, replace = TRUE), col3 = 1:500 @@ -63,16 +66,16 @@ th <- client$import_table(df) # compute 10-second exponential moving average of col1 and col2 th1 <- th$ - update_by(uby_ema_time(ts_col="timeCol", decay_time="PT10s", cols=c("col1Ema = col1", "col2Ema = col2"))) + update_by(uby_ema_time(ts_col = "timeCol", decay_time = "PT10s", cols = c("col1Ema = col1", "col2Ema = col2"))) # compute 5-second exponential moving average of col1 and col2, grouped by boolCol th2 <- th$ - update_by(uby_ema_time(ts_col="timeCol", decay_time="PT5s", cols=c("col1Ema = col1", "col2Ema = col2")), by="boolCol") + update_by(uby_ema_time(ts_col = "timeCol", decay_time = "PT5s", cols = c("col1Ema = col1", "col2Ema = col2")), by = "boolCol") # compute 20-second exponential moving average of col1 and col2, grouped by boolCol and parity of col3 th3 <- th$ update("col3Parity = col3 \% 2")$ - update_by(uby_ema_time(ts_col="timeCol", decay_time="PT20s", cols=c("col1Ema = col1", "col2Ema = col2")), by=c("boolCol", "col3Parity")) + update_by(uby_ema_time(ts_col = "timeCol", decay_time = "PT20s", cols = c("col1Ema = col1", "col2Ema = col2")), by = c("boolCol", "col3Parity")) client$close() } diff --git a/R/rdeephaven/man/uby_emmax_tick.Rd b/R/rdeephaven/man/uby_emmax_tick.Rd index db344db1c35..9f7f960ffde 100644 --- a/R/rdeephaven/man/uby_emmax_tick.Rd +++ b/R/rdeephaven/man/uby_emmax_tick.Rd @@ -40,18 +40,21 @@ This function, like other Deephaven \code{uby} functions, is a generator functio function called an \code{\link{UpdateByOp}} intended to be used in a call to \code{update_by()}. This detail is typically hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of a \code{uby} function can otherwise seem unexpected. + +For more information, see the vignette on \code{uby} functions by running +\code{vignette("update_by")}. } \examples{ \dontrun{ library(rdeephaven) # connecting to Deephaven server -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") # create data frame, push to server, retrieve TableHandle df <- data.frame( timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], - boolCol = sample(c(TRUE,FALSE), 500, TRUE), + boolCol = sample(c(TRUE, FALSE), 500, TRUE), col1 = sample(10000, size = 500, replace = TRUE), col2 = sample(10000, size = 500, replace = TRUE), col3 = 1:500 @@ -60,16 +63,16 @@ th <- client$import_table(df) # compute 10-row exponential moving maximum of col1 and col2 th1 <- th$ - update_by(uby_emmax_tick(decay_ticks=10, cols=c("col1Emmax = col1", "col2Emmax = col2"))) + update_by(uby_emmax_tick(decay_ticks = 10, cols = c("col1Emmax = col1", "col2Emmax = col2"))) # compute 5-row exponential moving maximum of col1 and col2, grouped by boolCol th2 <- th$ - update_by(uby_emmax_tick(decay_ticks=5, cols=c("col1Emmax = col1", "col2Emmax = col2")), by="boolCol") + update_by(uby_emmax_tick(decay_ticks = 5, cols = c("col1Emmax = col1", "col2Emmax = col2")), by = "boolCol") # compute 20-row exponential moving maximum of col1 and col2, grouped by boolCol and parity of col3 th3 <- th$ update("col3Parity = col3 \% 2")$ - update_by(uby_emmax_tick(decay_ticks=20, cols=c("col1Emmax = col1", "col2Emmax = col2")), by=c("boolCol", "col3Parity")) + update_by(uby_emmax_tick(decay_ticks = 20, cols = c("col1Emmax = col1", "col2Emmax = col2")), by = c("boolCol", "col3Parity")) client$close() } diff --git a/R/rdeephaven/man/uby_emmax_time.Rd b/R/rdeephaven/man/uby_emmax_time.Rd index 412c5e3239a..c845c45039b 100644 --- a/R/rdeephaven/man/uby_emmax_time.Rd +++ b/R/rdeephaven/man/uby_emmax_time.Rd @@ -41,18 +41,21 @@ This function, like other Deephaven \code{uby} functions, is a generator functio function called an \code{\link{UpdateByOp}} intended to be used in a call to \code{update_by()}. This detail is typically hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of a \code{uby} function can otherwise seem unexpected. + +For more information, see the vignette on \code{uby} functions by running +\code{vignette("update_by")}. } \examples{ \dontrun{ library(rdeephaven) # connecting to Deephaven server -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") # create data frame, push to server, retrieve TableHandle df <- data.frame( timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], - boolCol = sample(c(TRUE,FALSE), 500, TRUE), + boolCol = sample(c(TRUE, FALSE), 500, TRUE), col1 = sample(10000, size = 500, replace = TRUE), col2 = sample(10000, size = 500, replace = TRUE), col3 = 1:500 @@ -61,16 +64,16 @@ th <- client$import_table(df) # compute 10-second exponential moving maximum of col1 and col2 th1 <- th$ - update_by(uby_emmax_time(ts_col="timeCol", decay_time="PT10s", cols=c("col1Emmax = col1", "col2Emmax = col2"))) + update_by(uby_emmax_time(ts_col = "timeCol", decay_time = "PT10s", cols = c("col1Emmax = col1", "col2Emmax = col2"))) # compute 5-second exponential moving maximum of col1 and col2, grouped by boolCol th2 <- th$ - update_by(uby_emmax_time(ts_col="timeCol", decay_time="PT5s", cols=c("col1Emmax = col1", "col2Emmax = col2")), by="boolCol") + update_by(uby_emmax_time(ts_col = "timeCol", decay_time = "PT5s", cols = c("col1Emmax = col1", "col2Emmax = col2")), by = "boolCol") # compute 20-second exponential moving maximum of col1 and col2, grouped by boolCol and parity of col3 th3 <- th$ update("col3Parity = col3 \% 2")$ - update_by(uby_emmax_time(ts_col="timeCol", decay_time="PT20s", cols=c("col1Emmax = col1", "col2Emmax = col2")), by=c("boolCol", "col3Parity")) + update_by(uby_emmax_time(ts_col = "timeCol", decay_time = "PT20s", cols = c("col1Emmax = col1", "col2Emmax = col2")), by = c("boolCol", "col3Parity")) client$close() } diff --git a/R/rdeephaven/man/uby_emmin_tick.Rd b/R/rdeephaven/man/uby_emmin_tick.Rd index 0c9b8c9390c..20055b7891b 100644 --- a/R/rdeephaven/man/uby_emmin_tick.Rd +++ b/R/rdeephaven/man/uby_emmin_tick.Rd @@ -40,18 +40,21 @@ This function, like other Deephaven \code{uby} functions, is a generator functio function called an \code{\link{UpdateByOp}} intended to be used in a call to \code{update_by()}. This detail is typically hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of a \code{uby} function can otherwise seem unexpected. + +For more information, see the vignette on \code{uby} functions by running +\code{vignette("update_by")}. } \examples{ \dontrun{ library(rdeephaven) # connecting to Deephaven server -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") # create data frame, push to server, retrieve TableHandle df <- data.frame( timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], - boolCol = sample(c(TRUE,FALSE), 500, TRUE), + boolCol = sample(c(TRUE, FALSE), 500, TRUE), col1 = sample(10000, size = 500, replace = TRUE), col2 = sample(10000, size = 500, replace = TRUE), col3 = 1:500 @@ -60,16 +63,16 @@ th <- client$import_table(df) # compute 10-row exponential moving minimum of col1 and col2 th1 <- th$ - update_by(uby_emmin_tick(decay_ticks=10, cols=c("col1Emmin = col1", "col2Emmin = col2"))) + update_by(uby_emmin_tick(decay_ticks = 10, cols = c("col1Emmin = col1", "col2Emmin = col2"))) # compute 5-row exponential moving minimum of col1 and col2, grouped by boolCol th2 <- th$ - update_by(uby_emmin_tick(decay_ticks=5, cols=c("col1Emmin = col1", "col2Emmin = col2")), by="boolCol") + update_by(uby_emmin_tick(decay_ticks = 5, cols = c("col1Emmin = col1", "col2Emmin = col2")), by = "boolCol") # compute 20-row exponential moving minimum of col1 and col2, grouped by boolCol and parity of col3 th3 <- th$ update("col3Parity = col3 \% 2")$ - update_by(uby_emmin_tick(decay_ticks=20, cols=c("col1Emmin = col1", "col2Emmin = col2")), by=c("boolCol", "col3Parity")) + update_by(uby_emmin_tick(decay_ticks = 20, cols = c("col1Emmin = col1", "col2Emmin = col2")), by = c("boolCol", "col3Parity")) client$close() } diff --git a/R/rdeephaven/man/uby_emmin_time.Rd b/R/rdeephaven/man/uby_emmin_time.Rd index d1ee01a441b..ca01ed2117b 100644 --- a/R/rdeephaven/man/uby_emmin_time.Rd +++ b/R/rdeephaven/man/uby_emmin_time.Rd @@ -41,18 +41,21 @@ This function, like other Deephaven \code{uby} functions, is a generator functio function called an \code{\link{UpdateByOp}} intended to be used in a call to \code{update_by()}. This detail is typically hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of a \code{uby} function can otherwise seem unexpected. + +For more information, see the vignette on \code{uby} functions by running +\code{vignette("update_by")}. } \examples{ \dontrun{ library(rdeephaven) # connecting to Deephaven server -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") # create data frame, push to server, retrieve TableHandle df <- data.frame( timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], - boolCol = sample(c(TRUE,FALSE), 500, TRUE), + boolCol = sample(c(TRUE, FALSE), 500, TRUE), col1 = sample(10000, size = 500, replace = TRUE), col2 = sample(10000, size = 500, replace = TRUE), col3 = 1:500 @@ -61,16 +64,16 @@ th <- client$import_table(df) # compute 10-second exponential moving minimum of col1 and col2 th1 <- th$ - update_by(uby_emmin_time(ts_col="timeCol", decay_time="PT10s", cols=c("col1Emmin = col1", "col2Emmin = col2"))) + update_by(uby_emmin_time(ts_col = "timeCol", decay_time = "PT10s", cols = c("col1Emmin = col1", "col2Emmin = col2"))) # compute 5-second exponential moving minimum of col1 and col2, grouped by boolCol th2 <- th$ - update_by(uby_emmin_time(ts_col="timeCol", decay_time="PT5s", cols=c("col1Emmin = col1", "col2Emmin = col2")), by="boolCol") + update_by(uby_emmin_time(ts_col = "timeCol", decay_time = "PT5s", cols = c("col1Emmin = col1", "col2Emmin = col2")), by = "boolCol") # compute 20-second exponential moving minimum of col1 and col2, grouped by boolCol and parity of col3 th3 <- th$ update("col3Parity = col3 \% 2")$ - update_by(uby_emmin_time(ts_col="timeCol", decay_time="PT20s", cols=c("col1Emmin = col1", "col2Emmin = col2")), by=c("boolCol", "col3Parity")) + update_by(uby_emmin_time(ts_col = "timeCol", decay_time = "PT20s", cols = c("col1Emmin = col1", "col2Emmin = col2")), by = c("boolCol", "col3Parity")) client$close() } diff --git a/R/rdeephaven/man/uby_ems_tick.Rd b/R/rdeephaven/man/uby_ems_tick.Rd index 7e5a45e8c79..11536a6ac25 100644 --- a/R/rdeephaven/man/uby_ems_tick.Rd +++ b/R/rdeephaven/man/uby_ems_tick.Rd @@ -40,18 +40,21 @@ This function, like other Deephaven \code{uby} functions, is a generator functio function called an \code{\link{UpdateByOp}} intended to be used in a call to \code{update_by()}. This detail is typically hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of a \code{uby} function can otherwise seem unexpected. + +For more information, see the vignette on \code{uby} functions by running +\code{vignette("update_by")}. } \examples{ \dontrun{ library(rdeephaven) # connecting to Deephaven server -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") # create data frame, push to server, retrieve TableHandle df <- data.frame( timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], - boolCol = sample(c(TRUE,FALSE), 500, TRUE), + boolCol = sample(c(TRUE, FALSE), 500, TRUE), col1 = sample(10000, size = 500, replace = TRUE), col2 = sample(10000, size = 500, replace = TRUE), col3 = 1:500 @@ -60,16 +63,16 @@ th <- client$import_table(df) # compute 10-row exponential moving sum of col1 and col2 th1 <- th$ - update_by(uby_ems_tick(decay_ticks=10, cols=c("col1Ems = col1", "col2Ems = col2"))) + update_by(uby_ems_tick(decay_ticks = 10, cols = c("col1Ems = col1", "col2Ems = col2"))) # compute 5-row exponential moving sum of col1 and col2, grouped by boolCol th2 <- th$ - update_by(uby_ems_tick(decay_ticks=5, cols=c("col1Ems = col1", "col2Ems = col2")), by="boolCol") + update_by(uby_ems_tick(decay_ticks = 5, cols = c("col1Ems = col1", "col2Ems = col2")), by = "boolCol") # compute 20-row exponential moving sum of col1 and col2, grouped by boolCol and parity of col3 th3 <- th$ update("col3Parity = col3 \% 2")$ - update_by(uby_ems_tick(decay_ticks=20, cols=c("col1Ems = col1", "col2Ems = col2")), by=c("boolCol", "col3Parity")) + update_by(uby_ems_tick(decay_ticks = 20, cols = c("col1Ems = col1", "col2Ems = col2")), by = c("boolCol", "col3Parity")) client$close() } diff --git a/R/rdeephaven/man/uby_ems_time.Rd b/R/rdeephaven/man/uby_ems_time.Rd index 12788d09e62..823cb67fe19 100644 --- a/R/rdeephaven/man/uby_ems_time.Rd +++ b/R/rdeephaven/man/uby_ems_time.Rd @@ -41,18 +41,21 @@ This function, like other Deephaven \code{uby} functions, is a generator functio function called an \code{\link{UpdateByOp}} intended to be used in a call to \code{update_by()}. This detail is typically hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of a \code{uby} function can otherwise seem unexpected. + +For more information, see the vignette on \code{uby} functions by running +\code{vignette("update_by")}. } \examples{ \dontrun{ library(rdeephaven) # connecting to Deephaven server -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") # create data frame, push to server, retrieve TableHandle df <- data.frame( timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], - boolCol = sample(c(TRUE,FALSE), 500, TRUE), + boolCol = sample(c(TRUE, FALSE), 500, TRUE), col1 = sample(10000, size = 500, replace = TRUE), col2 = sample(10000, size = 500, replace = TRUE), col3 = 1:500 @@ -61,16 +64,16 @@ th <- client$import_table(df) # compute 10-second exponential moving sum of col1 and col2 th1 <- th$ - update_by(uby_ems_time(ts_col="timeCol", decay_time="PT10s", cols=c("col1Ems = col1", "col2Ems = col2"))) + update_by(uby_ems_time(ts_col = "timeCol", decay_time = "PT10s", cols = c("col1Ems = col1", "col2Ems = col2"))) # compute 5-second exponential moving sum of col1 and col2, grouped by boolCol th2 <- th$ - update_by(uby_ems_time(ts_col="timeCol", decay_time="PT5s", cols=c("col1Ems = col1", "col2Ems = col2")), by="boolCol") + update_by(uby_ems_time(ts_col = "timeCol", decay_time = "PT5s", cols = c("col1Ems = col1", "col2Ems = col2")), by = "boolCol") # compute 20-second exponential moving sum of col1 and col2, grouped by boolCol and parity of col3 th3 <- th$ update("col3Parity = col3 \% 2")$ - update_by(uby_ems_time(ts_col="timeCol", decay_time="PT20s", cols=c("col1Ems = col1", "col2Ems = col2")), by=c("boolCol", "col3Parity")) + update_by(uby_ems_time(ts_col = "timeCol", decay_time = "PT20s", cols = c("col1Ems = col1", "col2Ems = col2")), by = c("boolCol", "col3Parity")) client$close() } diff --git a/R/rdeephaven/man/uby_emstd_tick.Rd b/R/rdeephaven/man/uby_emstd_tick.Rd index 294eadbc46d..50e45858d35 100644 --- a/R/rdeephaven/man/uby_emstd_tick.Rd +++ b/R/rdeephaven/man/uby_emstd_tick.Rd @@ -45,18 +45,21 @@ This function, like other Deephaven \code{uby} functions, is a generator functio function called an \code{\link{UpdateByOp}} intended to be used in a call to \code{update_by()}. This detail is typically hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of a \code{uby} function can otherwise seem unexpected. + +For more information, see the vignette on \code{uby} functions by running +\code{vignette("update_by")}. } \examples{ \dontrun{ library(rdeephaven) # connecting to Deephaven server -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") # create data frame, push to server, retrieve TableHandle df <- data.frame( timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], - boolCol = sample(c(TRUE,FALSE), 500, TRUE), + boolCol = sample(c(TRUE, FALSE), 500, TRUE), col1 = sample(10000, size = 500, replace = TRUE), col2 = sample(10000, size = 500, replace = TRUE), col3 = 1:500 @@ -65,16 +68,16 @@ th <- client$import_table(df) # compute 10-row exponential moving standard deviation of col1 and col2 th1 <- th$ - update_by(uby_emstd_tick(decay_ticks=10, cols=c("col1Emstd = col1", "col2Emstd = col2"))) + update_by(uby_emstd_tick(decay_ticks = 10, cols = c("col1Emstd = col1", "col2Emstd = col2"))) # compute 5-row exponential moving standard deviation of col1 and col2, grouped by boolCol th2 <- th$ - update_by(uby_emstd_tick(decay_ticks=5, cols=c("col1Emstd = col1", "col2Emstd = col2")), by="boolCol") + update_by(uby_emstd_tick(decay_ticks = 5, cols = c("col1Emstd = col1", "col2Emstd = col2")), by = "boolCol") # compute 20-row exponential moving standard deviation of col1 and col2, grouped by boolCol and parity of col3 th3 <- th$ update("col3Parity = col3 \% 2")$ - update_by(uby_emstd_tick(decay_ticks=20, cols=c("col1Emstd = col1", "col2Emstd = col2")), by=c("boolCol", "col3Parity")) + update_by(uby_emstd_tick(decay_ticks = 20, cols = c("col1Emstd = col1", "col2Emstd = col2")), by = c("boolCol", "col3Parity")) client$close() } diff --git a/R/rdeephaven/man/uby_emstd_time.Rd b/R/rdeephaven/man/uby_emstd_time.Rd index e166d18869d..af605cacafa 100644 --- a/R/rdeephaven/man/uby_emstd_time.Rd +++ b/R/rdeephaven/man/uby_emstd_time.Rd @@ -46,18 +46,21 @@ This function, like other Deephaven \code{uby} functions, is a generator functio function called an \code{\link{UpdateByOp}} intended to be used in a call to \code{update_by()}. This detail is typically hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of a \code{uby} function can otherwise seem unexpected. + +For more information, see the vignette on \code{uby} functions by running +\code{vignette("update_by")}. } \examples{ \dontrun{ library(rdeephaven) # connecting to Deephaven server -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") # create data frame, push to server, retrieve TableHandle df <- data.frame( timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], - boolCol = sample(c(TRUE,FALSE), 500, TRUE), + boolCol = sample(c(TRUE, FALSE), 500, TRUE), col1 = sample(10000, size = 500, replace = TRUE), col2 = sample(10000, size = 500, replace = TRUE), col3 = 1:500 @@ -66,16 +69,16 @@ th <- client$import_table(df) # compute 10-second exponential moving standard deviation of col1 and col2 th1 <- th$ - update_by(uby_emstd_time(ts_col="timeCol", decay_time="PT10s", cols=c("col1Emstd = col1", "col2Emstd = col2"))) + update_by(uby_emstd_time(ts_col = "timeCol", decay_time = "PT10s", cols = c("col1Emstd = col1", "col2Emstd = col2"))) # compute 5-second exponential moving standard deviation of col1 and col2, grouped by boolCol th2 <- th$ - update_by(uby_emstd_time(ts_col="timeCol", decay_time="PT5s", cols=c("col1Emstd = col1", "col2Emstd = col2")), by="boolCol") + update_by(uby_emstd_time(ts_col = "timeCol", decay_time = "PT5s", cols = c("col1Emstd = col1", "col2Emstd = col2")), by = "boolCol") # compute 20-second exponential moving standard deviation of col1 and col2, grouped by boolCol and parity of col3 th3 <- th$ update("col3Parity = col3 \% 2")$ - update_by(uby_emstd_time(ts_col="timeCol", decay_time="PT20s", cols=c("col1Emstd = col1", "col2Emstd = col2")), by=c("boolCol", "col3Parity")) + update_by(uby_emstd_time(ts_col = "timeCol", decay_time = "PT20s", cols = c("col1Emstd = col1", "col2Emstd = col2")), by = c("boolCol", "col3Parity")) client$close() } diff --git a/R/rdeephaven/man/uby_forward_fill.Rd b/R/rdeephaven/man/uby_forward_fill.Rd index 71b074e89da..473941fafd9 100644 --- a/R/rdeephaven/man/uby_forward_fill.Rd +++ b/R/rdeephaven/man/uby_forward_fill.Rd @@ -24,18 +24,21 @@ This function, like other Deephaven \code{uby} functions, is a generator functio function called an \code{\link{UpdateByOp}} intended to be used in a call to \code{update_by()}. This detail is typically hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of a \code{uby} function can otherwise seem unexpected. + +For more information, see the vignette on \code{uby} functions by running +\code{vignette("update_by")}. } \examples{ \dontrun{ library(rdeephaven) # connecting to Deephaven server -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") # create data frame, push to server, retrieve TableHandle df <- data.frame( timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], - boolCol = sample(c(TRUE,FALSE), 500, TRUE), + boolCol = sample(c(TRUE, FALSE), 500, TRUE), col1 = replace(sample(10000, size = 500, replace = TRUE), sample(500, 100), NA), col2 = replace(sample(10000, size = 500, replace = TRUE), sample(500, 100), NA), col3 = replace(1:500, sample(500, 100), NA) @@ -48,13 +51,13 @@ th1 <- th$ # forward fill col1 and col2, grouped by boolCol th2 <- th$ - update_by(uby_forward_fill(c("col1", "col2")), by="boolCol") + update_by(uby_forward_fill(c("col1", "col2")), by = "boolCol") # forward fill col3, compute parity of col3, and forward fill col1 and col2, grouped by boolCol and parity of col3 th3 <- th$ update_by(uby_forward_fill("col3"))$ update("col3Parity = col3 \% 2")$ - update_by(uby_forward_fill(c("col1", "col2")), by=c("boolCol", "col3Parity")) + update_by(uby_forward_fill(c("col1", "col2")), by = c("boolCol", "col3Parity")) client$close() } diff --git a/R/rdeephaven/man/uby_rolling_avg_tick.Rd b/R/rdeephaven/man/uby_rolling_avg_tick.Rd index 04171aaa17e..131fff4e472 100644 --- a/R/rdeephaven/man/uby_rolling_avg_tick.Rd +++ b/R/rdeephaven/man/uby_rolling_avg_tick.Rd @@ -44,18 +44,21 @@ This function, like other Deephaven \code{uby} functions, is a generator functio function called an \code{\link{UpdateByOp}} intended to be used in a call to \code{update_by()}. This detail is typically hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of a \code{uby} function can otherwise seem unexpected. + +For more information, see the vignette on \code{uby} functions by running +\code{vignette("update_by")}. } \examples{ \dontrun{ library(rdeephaven) # connecting to Deephaven server -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") # create data frame, push to server, retrieve TableHandle df <- data.frame( timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], - boolCol = sample(c(TRUE,FALSE), 500, TRUE), + boolCol = sample(c(TRUE, FALSE), 500, TRUE), col1 = sample(10000, size = 500, replace = TRUE), col2 = sample(10000, size = 500, replace = TRUE), col3 = 1:500 @@ -64,16 +67,16 @@ th <- client$import_table(df) # compute rolling average of col1 and col2, using the previous 5 rows and current row th1 <- th$ - update_by(uby_rolling_avg_tick(cols=c("col1RollAvg = col1", "col2RollAvg = col2"), rev_ticks=6)) + update_by(uby_rolling_avg_tick(cols = c("col1RollAvg = col1", "col2RollAvg = col2"), rev_ticks = 6)) # compute rolling average of col1 and col2, grouped by boolCol, using previous 5 rows, current row, and following 5 rows th2 <- th$ - update_by(uby_rolling_avg_tick(cols=c("col1RollAvg = col1", "col2RollAvg = col2"), rev_ticks=6, fwd_ticks=5)), by="boolCol") + update_by(uby_rolling_avg_tick(cols = c("col1RollAvg = col1", "col2RollAvg = col2"), rev_ticks = 6, fwd_ticks = 5), by = "boolCol") # compute rolling average of col1 and col2, grouped by boolCol and parity of col3, using current row and following 10 rows th3 <- th$ update("col3Parity = col3 \% 2")$ - update_by(uby_rolling_avg_tick(cols=c("col1RollAvg = col1", "col2RollAvg = col2"), rev_ticks=1, fwd_ticks=10)), by=c("boolCol", "col3Parity")) + update_by(uby_rolling_avg_tick(cols = c("col1RollAvg = col1", "col2RollAvg = col2"), rev_ticks = 1, fwd_ticks = 10), by = c("boolCol", "col3Parity")) client$close() } diff --git a/R/rdeephaven/man/uby_rolling_avg_time.Rd b/R/rdeephaven/man/uby_rolling_avg_time.Rd index af048148d88..1361aa53b3f 100644 --- a/R/rdeephaven/man/uby_rolling_avg_time.Rd +++ b/R/rdeephaven/man/uby_rolling_avg_time.Rd @@ -43,18 +43,21 @@ This function, like other Deephaven \code{uby} functions, is a generator functio function called an \code{\link{UpdateByOp}} intended to be used in a call to \code{update_by()}. This detail is typically hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of a \code{uby} function can otherwise seem unexpected. + +For more information, see the vignette on \code{uby} functions by running +\code{vignette("update_by")}. } \examples{ \dontrun{ library(rdeephaven) # connecting to Deephaven server -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") # create data frame, push to server, retrieve TableHandle df <- data.frame( timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], - boolCol = sample(c(TRUE,FALSE), 500, TRUE), + boolCol = sample(c(TRUE, FALSE), 500, TRUE), col1 = sample(10000, size = 500, replace = TRUE), col2 = sample(10000, size = 500, replace = TRUE), col3 = 1:500 @@ -63,16 +66,16 @@ th <- client$import_table(df) # compute rolling average of col1 and col2, using the previous 5 seconds th1 <- th$ - update_by(uby_rolling_avg_time(ts_col="timeCol", cols=c("col1RollAvg = col1", "col2RollAvg = col2"), rev_time="PT5s")) + update_by(uby_rolling_avg_time(ts_col = "timeCol", cols = c("col1RollAvg = col1", "col2RollAvg = col2"), rev_time = "PT5s")) # compute rolling average of col1 and col2, grouped by boolCol, using previous 5 seconds, and following 5 seconds th2 <- th$ - update_by(uby_rolling_avg_time(ts_col="timeCol", cols=c("col1RollAvg = col1", "col2RollAvg = col2"), rev_time="PT5s", fwd_ticks="PT5s")), by="boolCol") + update_by(uby_rolling_avg_time(ts_col = "timeCol", cols = c("col1RollAvg = col1", "col2RollAvg = col2"), rev_time = "PT5s", fwd_ticks = "PT5s"), by = "boolCol") # compute rolling average of col1 and col2, grouped by boolCol and parity of col3, using following 10 seconds th3 <- th$ update("col3Parity = col3 \% 2")$ - update_by(uby_rolling_avg_time(ts_col="timeCol", cols=c("col1RollAvg = col1", "col2RollAvg = col2"), rev_time="PT0s", fwd_time="PT10s")), by=c("boolCol", "col3Parity")) + update_by(uby_rolling_avg_time(ts_col = "timeCol", cols = c("col1RollAvg = col1", "col2RollAvg = col2"), rev_time = "PT0s", fwd_time = "PT10s"), by = c("boolCol", "col3Parity")) client$close() } diff --git a/R/rdeephaven/man/uby_rolling_count_tick.Rd b/R/rdeephaven/man/uby_rolling_count_tick.Rd index f319e99b895..f97ec165ed2 100644 --- a/R/rdeephaven/man/uby_rolling_count_tick.Rd +++ b/R/rdeephaven/man/uby_rolling_count_tick.Rd @@ -44,18 +44,21 @@ This function, like other Deephaven \code{uby} functions, is a generator functio function called an \code{\link{UpdateByOp}} intended to be used in a call to \code{update_by()}. This detail is typically hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of a \code{uby} function can otherwise seem unexpected. + +For more information, see the vignette on \code{uby} functions by running +\code{vignette("update_by")}. } \examples{ \dontrun{ library(rdeephaven) # connecting to Deephaven server -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") # create data frame, push to server, retrieve TableHandle df <- data.frame( timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], - boolCol = sample(c(TRUE,FALSE), 500, TRUE), + boolCol = sample(c(TRUE, FALSE), 500, TRUE), col1 = sample(10000, size = 500, replace = TRUE), col2 = sample(10000, size = 500, replace = TRUE), col3 = 1:500 @@ -64,16 +67,16 @@ th <- client$import_table(df) # compute rolling count of col1 and col2, using the previous 5 rows and current row th1 <- th$ - update_by(uby_rolling_count_tick(cols=c("col1RollCount = col1", "col2RollCount = col2"), rev_ticks=6)) + update_by(uby_rolling_count_tick(cols = c("col1RollCount = col1", "col2RollCount = col2"), rev_ticks = 6)) # compute rolling count of col1 and col2, grouped by boolCol, using previous 5 rows, current row, and following 5 rows th2 <- th$ - update_by(uby_rolling_count_tick(cols=c("col1RollCount = col1", "col2RollCount = col2"), rev_ticks=6, fwd_ticks=5), by="boolCol") + update_by(uby_rolling_count_tick(cols = c("col1RollCount = col1", "col2RollCount = col2"), rev_ticks = 6, fwd_ticks = 5), by = "boolCol") # compute rolling count of col1 and col2, grouped by boolCol and parity of col3, using current row and following 10 rows th3 <- th$ update("col3Parity = col3 \% 2")$ - update_by(uby_rolling_count_tick(cols=c("col1RollCount = col1", "col2RollCount = col2"), rev_ticks=1, fwd_ticks=10), by=c("boolCol", "col3Parity")) + update_by(uby_rolling_count_tick(cols = c("col1RollCount = col1", "col2RollCount = col2"), rev_ticks = 1, fwd_ticks = 10), by = c("boolCol", "col3Parity")) client$close() } diff --git a/R/rdeephaven/man/uby_rolling_count_time.Rd b/R/rdeephaven/man/uby_rolling_count_time.Rd index ecaef05be59..b3b55749155 100644 --- a/R/rdeephaven/man/uby_rolling_count_time.Rd +++ b/R/rdeephaven/man/uby_rolling_count_time.Rd @@ -43,18 +43,21 @@ This function, like other Deephaven \code{uby} functions, is a generator functio function called an \code{\link{UpdateByOp}} intended to be used in a call to \code{update_by()}. This detail is typically hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of a \code{uby} function can otherwise seem unexpected. + +For more information, see the vignette on \code{uby} functions by running +\code{vignette("update_by")}. } \examples{ \dontrun{ library(rdeephaven) # connecting to Deephaven server -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") # create data frame, push to server, retrieve TableHandle df <- data.frame( timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], - boolCol = sample(c(TRUE,FALSE), 500, TRUE), + boolCol = sample(c(TRUE, FALSE), 500, TRUE), col1 = sample(10000, size = 500, replace = TRUE), col2 = sample(10000, size = 500, replace = TRUE), col3 = 1:500 @@ -63,16 +66,16 @@ th <- client$import_table(df) # compute rolling count of col1 and col2, using the previous 5 seconds th1 <- th$ - update_by(uby_rolling_count_time(ts_col="timeCol", cols=c("col1RollCount = col1", "col2RollCount = col2"), rev_time="PT5s")) + update_by(uby_rolling_count_time(ts_col = "timeCol", cols = c("col1RollCount = col1", "col2RollCount = col2"), rev_time = "PT5s")) # compute rolling count of col1 and col2, grouped by boolCol, using previous 5 seconds, and following 5 seconds th2 <- th$ - update_by(uby_rolling_count_time(ts_col="timeCol", cols=c("col1RollCount = col1", "col2RollCount = col2"), rev_time="PT5s", fwd_ticks="PT5s"), by="boolCol") + update_by(uby_rolling_count_time(ts_col = "timeCol", cols = c("col1RollCount = col1", "col2RollCount = col2"), rev_time = "PT5s", fwd_ticks = "PT5s"), by = "boolCol") # compute rolling count of col1 and col2, grouped by boolCol and parity of col3, using following 10 seconds th3 <- th$ update("col3Parity = col3 \% 2")$ - update_by(uby_rolling_count_time(ts_col="timeCol", cols=c("col1RollCount = col1", "col2RollCount = col2"), rev_time="PT0s", fwd_time="PT10s"), by=c("boolCol", "col3Parity")) + update_by(uby_rolling_count_time(ts_col = "timeCol", cols = c("col1RollCount = col1", "col2RollCount = col2"), rev_time = "PT0s", fwd_time = "PT10s"), by = c("boolCol", "col3Parity")) client$close() } diff --git a/R/rdeephaven/man/uby_rolling_group_tick.Rd b/R/rdeephaven/man/uby_rolling_group_tick.Rd index fde8d3aacfe..c036ef80405 100644 --- a/R/rdeephaven/man/uby_rolling_group_tick.Rd +++ b/R/rdeephaven/man/uby_rolling_group_tick.Rd @@ -44,18 +44,21 @@ This function, like other Deephaven \code{uby} functions, is a generator functio function called an \code{\link{UpdateByOp}} intended to be used in a call to \code{update_by()}. This detail is typically hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of a \code{uby} function can otherwise seem unexpected. + +For more information, see the vignette on \code{uby} functions by running +\code{vignette("update_by")}. } \examples{ \dontrun{ library(rdeephaven) # connecting to Deephaven server -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") # create data frame, push to server, retrieve TableHandle df <- data.frame( timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], - boolCol = sample(c(TRUE,FALSE), 500, TRUE), + boolCol = sample(c(TRUE, FALSE), 500, TRUE), col1 = sample(10000, size = 500, replace = TRUE), col2 = sample(10000, size = 500, replace = TRUE), col3 = 1:500 @@ -64,12 +67,12 @@ th <- client$import_table(df) # compute rolling group of col1 and col2, grouped by boolCol, using previous 5 rows, current row, and following 5 rows th1 <- th$ - update_by(uby_rolling_group_tick(cols=c("col1RollGroup = col1", "col2RollGroup = col2"), rev_ticks=6, fwd_ticks=5)), by="boolCol") + update_by(uby_rolling_group_tick(cols = c("col1RollGroup = col1", "col2RollGroup = col2"), rev_ticks = 6, fwd_ticks = 5), by = "boolCol") # compute rolling group of col1 and col2, grouped by boolCol and parity of col3, using current row and following 10 rows th2 <- th$ update("col3Parity = col3 \% 2")$ - update_by(uby_rolling_group_tick(cols=c("col1RollGroup = col1", "col2RollGroup = col2"), rev_ticks=1, fwd_ticks=10)), by=c("boolCol", "col3Parity")) + update_by(uby_rolling_group_tick(cols = c("col1RollGroup = col1", "col2RollGroup = col2"), rev_ticks = 1, fwd_ticks = 10), by = c("boolCol", "col3Parity")) client$close() } diff --git a/R/rdeephaven/man/uby_rolling_group_time.Rd b/R/rdeephaven/man/uby_rolling_group_time.Rd index 74b447c1816..62d578bdc2c 100644 --- a/R/rdeephaven/man/uby_rolling_group_time.Rd +++ b/R/rdeephaven/man/uby_rolling_group_time.Rd @@ -43,18 +43,21 @@ This function, like other Deephaven \code{uby} functions, is a generator functio function called an \code{\link{UpdateByOp}} intended to be used in a call to \code{update_by()}. This detail is typically hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of a \code{uby} function can otherwise seem unexpected. + +For more information, see the vignette on \code{uby} functions by running +\code{vignette("update_by")}. } \examples{ \dontrun{ library(rdeephaven) # connecting to Deephaven server -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") # create data frame, push to server, retrieve TableHandle df <- data.frame( timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], - boolCol = sample(c(TRUE,FALSE), 500, TRUE), + boolCol = sample(c(TRUE, FALSE), 500, TRUE), col1 = sample(10000, size = 500, replace = TRUE), col2 = sample(10000, size = 500, replace = TRUE), col3 = 1:500 @@ -63,12 +66,12 @@ th <- client$import_table(df) # compute rolling group of col1 and col2, grouped by boolCol, using previous 5 seconds, and following 5 seconds th1 <- th$ - update_by(uby_rolling_group_time(ts_col="timeCol", cols=c("col1RollGroup = col1", "col2RollGroup = col2"), rev_time="PT5s", fwd_ticks="PT5s")), by="boolCol") + update_by(uby_rolling_group_time(ts_col = "timeCol", cols = c("col1RollGroup = col1", "col2RollGroup = col2"), rev_time = "PT5s", fwd_ticks = "PT5s"), by = "boolCol") # compute rolling group of col1 and col2, grouped by boolCol and parity of col3, using following 10 seconds th2 <- th$ update("col3Parity = col3 \% 2")$ - update_by(uby_rolling_group_time(ts_col="timeCol", cols=c("col1RollGroup = col1", "col2RollGroup = col2"), rev_time="PT0s", fwd_time="PT10s")), by=c("boolCol", "col3Parity")) + update_by(uby_rolling_group_time(ts_col = "timeCol", cols = c("col1RollGroup = col1", "col2RollGroup = col2"), rev_time = "PT0s", fwd_time = "PT10s"), by = c("boolCol", "col3Parity")) client$close() } diff --git a/R/rdeephaven/man/uby_rolling_max_tick.Rd b/R/rdeephaven/man/uby_rolling_max_tick.Rd index cd90d3f9578..21c0d1a5ae0 100644 --- a/R/rdeephaven/man/uby_rolling_max_tick.Rd +++ b/R/rdeephaven/man/uby_rolling_max_tick.Rd @@ -44,18 +44,21 @@ This function, like other Deephaven \code{uby} functions, is a generator functio function called an \code{\link{UpdateByOp}} intended to be used in a call to \code{update_by()}. This detail is typically hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of a \code{uby} function can otherwise seem unexpected. + +For more information, see the vignette on \code{uby} functions by running +\code{vignette("update_by")}. } \examples{ \dontrun{ library(rdeephaven) # connecting to Deephaven server -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") # create data frame, push to server, retrieve TableHandle df <- data.frame( timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], - boolCol = sample(c(TRUE,FALSE), 500, TRUE), + boolCol = sample(c(TRUE, FALSE), 500, TRUE), col1 = sample(10000, size = 500, replace = TRUE), col2 = sample(10000, size = 500, replace = TRUE), col3 = 1:500 @@ -64,16 +67,16 @@ th <- client$import_table(df) # compute rolling maximum of col1 and col2, using the previous 5 rows and current row th1 <- th$ - update_by(uby_rolling_max_tick(cols=c("col1RollMax = col1", "col2RollMax = col2"), rev_ticks=6)) + update_by(uby_rolling_max_tick(cols = c("col1RollMax = col1", "col2RollMax = col2"), rev_ticks = 6)) # compute rolling maximum of col1 and col2, grouped by boolCol, using previous 5 rows, current row, and following 5 rows th2 <- th$ - update_by(uby_rolling_max_tick(cols=c("col1RollMax = col1", "col2RollMax = col2"), rev_ticks=6, fwd_ticks=5)), by="boolCol") + update_by(uby_rolling_max_tick(cols = c("col1RollMax = col1", "col2RollMax = col2"), rev_ticks = 6, fwd_ticks = 5), by = "boolCol") # compute rolling maximum of col1 and col2, grouped by boolCol and parity of col3, using current row and following 10 rows th3 <- th$ update("col3Parity = col3 \% 2")$ - update_by(uby_rolling_max_tick(cols=c("col1RollMax = col1", "col2RollMax = col2"), rev_ticks=1, fwd_ticks=10)), by=c("boolCol", "col3Parity")) + update_by(uby_rolling_max_tick(cols = c("col1RollMax = col1", "col2RollMax = col2"), rev_ticks = 1, fwd_ticks = 10), by = c("boolCol", "col3Parity")) client$close() } diff --git a/R/rdeephaven/man/uby_rolling_max_time.Rd b/R/rdeephaven/man/uby_rolling_max_time.Rd index d259bc28db8..71ae9e7389d 100644 --- a/R/rdeephaven/man/uby_rolling_max_time.Rd +++ b/R/rdeephaven/man/uby_rolling_max_time.Rd @@ -43,18 +43,21 @@ This function, like other Deephaven \code{uby} functions, is a generator functio function called an \code{\link{UpdateByOp}} intended to be used in a call to \code{update_by()}. This detail is typically hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of a \code{uby} function can otherwise seem unexpected. + +For more information, see the vignette on \code{uby} functions by running +\code{vignette("update_by")}. } \examples{ \dontrun{ library(rdeephaven) # connecting to Deephaven server -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") # create data frame, push to server, retrieve TableHandle df <- data.frame( timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], - boolCol = sample(c(TRUE,FALSE), 500, TRUE), + boolCol = sample(c(TRUE, FALSE), 500, TRUE), col1 = sample(10000, size = 500, replace = TRUE), col2 = sample(10000, size = 500, replace = TRUE), col3 = 1:500 @@ -63,16 +66,16 @@ th <- client$import_table(df) # compute rolling maximum of col1 and col2, using the previous 5 seconds th1 <- th$ - update_by(uby_rolling_max_time(ts_col="timeCol", cols=c("col1RollMax = col1", "col2RollMax = col2"), rev_time="PT5s")) + update_by(uby_rolling_max_time(ts_col = "timeCol", cols = c("col1RollMax = col1", "col2RollMax = col2"), rev_time = "PT5s")) # compute rolling maximum of col1 and col2, grouped by boolCol, using previous 5 seconds, and following 5 seconds th2 <- th$ - update_by(uby_rolling_max_time(ts_col="timeCol", cols=c("col1RollMax = col1", "col2RollMax = col2"), rev_time="PT5s", fwd_ticks="PT5s")), by="boolCol") + update_by(uby_rolling_max_time(ts_col = "timeCol", cols = c("col1RollMax = col1", "col2RollMax = col2"), rev_time = "PT5s", fwd_ticks = "PT5s"), by = "boolCol") # compute rolling maximum of col1 and col2, grouped by boolCol and parity of col3, using following 10 seconds th3 <- th$ update("col3Parity = col3 \% 2")$ - update_by(uby_rolling_max_time(ts_col="timeCol", cols=c("col1RollMax = col1", "col2RollMax = col2"), rev_time="PT0s", fwd_time="PT10s")), by=c("boolCol", "col3Parity")) + update_by(uby_rolling_max_time(ts_col = "timeCol", cols = c("col1RollMax = col1", "col2RollMax = col2"), rev_time = "PT0s", fwd_time = "PT10s"), by = c("boolCol", "col3Parity")) client$close() } diff --git a/R/rdeephaven/man/uby_rolling_min_tick.Rd b/R/rdeephaven/man/uby_rolling_min_tick.Rd index fb659d40d48..f765c36004a 100644 --- a/R/rdeephaven/man/uby_rolling_min_tick.Rd +++ b/R/rdeephaven/man/uby_rolling_min_tick.Rd @@ -44,18 +44,21 @@ This function, like other Deephaven \code{uby} functions, is a generator functio function called an \code{\link{UpdateByOp}} intended to be used in a call to \code{update_by()}. This detail is typically hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of a \code{uby} function can otherwise seem unexpected. + +For more information, see the vignette on \code{uby} functions by running +\code{vignette("update_by")}. } \examples{ \dontrun{ library(rdeephaven) # connecting to Deephaven server -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") # create data frame, push to server, retrieve TableHandle df <- data.frame( timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], - boolCol = sample(c(TRUE,FALSE), 500, TRUE), + boolCol = sample(c(TRUE, FALSE), 500, TRUE), col1 = sample(10000, size = 500, replace = TRUE), col2 = sample(10000, size = 500, replace = TRUE), col3 = 1:500 @@ -64,16 +67,16 @@ th <- client$import_table(df) # compute rolling minimum of col1 and col2, using the previous 5 rows and current row th1 <- th$ - update_by(uby_rolling_min_tick(cols=c("col1RollMin = col1", "col2RollMin = col2"), rev_ticks=6)) + update_by(uby_rolling_min_tick(cols = c("col1RollMin = col1", "col2RollMin = col2"), rev_ticks = 6)) # compute rolling minimum of col1 and col2, grouped by boolCol, using previous 5 rows, current row, and following 5 rows th2 <- th$ - update_by(uby_rolling_min_tick(cols=c("col1RollMin = col1", "col2RollMin = col2"), rev_ticks=6, fwd_ticks=5)), by="boolCol") + update_by(uby_rolling_min_tick(cols = c("col1RollMin = col1", "col2RollMin = col2"), rev_ticks = 6, fwd_ticks = 5), by = "boolCol") # compute rolling minimum of col1 and col2, grouped by boolCol and parity of col3, using current row and following 10 rows th3 <- th$ update("col3Parity = col3 \% 2")$ - update_by(uby_rolling_min_tick(cols=c("col1RollMin = col1", "col2RollMin = col2"), rev_ticks=1, fwd_ticks=10)), by=c("boolCol", "col3Parity")) + update_by(uby_rolling_min_tick(cols = c("col1RollMin = col1", "col2RollMin = col2"), rev_ticks = 1, fwd_ticks = 10), by = c("boolCol", "col3Parity")) client$close() } diff --git a/R/rdeephaven/man/uby_rolling_min_time.Rd b/R/rdeephaven/man/uby_rolling_min_time.Rd index 1fb73cefae3..49a12e1a989 100644 --- a/R/rdeephaven/man/uby_rolling_min_time.Rd +++ b/R/rdeephaven/man/uby_rolling_min_time.Rd @@ -43,18 +43,21 @@ This function, like other Deephaven \code{uby} functions, is a generator functio function called an \code{\link{UpdateByOp}} intended to be used in a call to \code{update_by()}. This detail is typically hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of a \code{uby} function can otherwise seem unexpected. + +For more information, see the vignette on \code{uby} functions by running +\code{vignette("update_by")}. } \examples{ \dontrun{ library(rdeephaven) # connecting to Deephaven server -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") # create data frame, push to server, retrieve TableHandle df <- data.frame( timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], - boolCol = sample(c(TRUE,FALSE), 500, TRUE), + boolCol = sample(c(TRUE, FALSE), 500, TRUE), col1 = sample(10000, size = 500, replace = TRUE), col2 = sample(10000, size = 500, replace = TRUE), col3 = 1:500 @@ -63,16 +66,16 @@ th <- client$import_table(df) # compute rolling minimum of col1 and col2, using the previous 5 seconds th1 <- th$ - update_by(uby_rolling_min_time(ts_col="timeCol", cols=c("col1RollMin = col1", "col2RollMin = col2"), rev_time="PT5s")) + update_by(uby_rolling_min_time(ts_col = "timeCol", cols = c("col1RollMin = col1", "col2RollMin = col2"), rev_time = "PT5s")) # compute rolling minimum of col1 and col2, grouped by boolCol, using previous 5 seconds, and following 5 seconds th2 <- th$ - update_by(uby_rolling_min_time(ts_col="timeCol", cols=c("col1RollMin = col1", "col2RollMin = col2"), rev_time="PT5s", fwd_ticks="PT5s")), by="boolCol") + update_by(uby_rolling_min_time(ts_col = "timeCol", cols = c("col1RollMin = col1", "col2RollMin = col2"), rev_time = "PT5s", fwd_ticks = "PT5s"), by = "boolCol") # compute rolling minimum of col1 and col2, grouped by boolCol and parity of col3, using following 10 seconds th3 <- th$ update("col3Parity = col3 \% 2")$ - update_by(uby_rolling_min_time(ts_col="timeCol", cols=c("col1RollMin = col1", "col2RollMin = col2"), rev_time="PT0s", fwd_time="PT10s")), by=c("boolCol", "col3Parity")) + update_by(uby_rolling_min_time(ts_col = "timeCol", cols = c("col1RollMin = col1", "col2RollMin = col2"), rev_time = "PT0s", fwd_time = "PT10s"), by = c("boolCol", "col3Parity")) client$close() } diff --git a/R/rdeephaven/man/uby_rolling_prod_tick.Rd b/R/rdeephaven/man/uby_rolling_prod_tick.Rd index 40afb461f45..f5b02b59e8b 100644 --- a/R/rdeephaven/man/uby_rolling_prod_tick.Rd +++ b/R/rdeephaven/man/uby_rolling_prod_tick.Rd @@ -44,18 +44,21 @@ This function, like other Deephaven \code{uby} functions, is a generator functio function called an \code{\link{UpdateByOp}} intended to be used in a call to \code{update_by()}. This detail is typically hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of a \code{uby} function can otherwise seem unexpected. + +For more information, see the vignette on \code{uby} functions by running +\code{vignette("update_by")}. } \examples{ \dontrun{ library(rdeephaven) # connecting to Deephaven server -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") # create data frame, push to server, retrieve TableHandle df <- data.frame( timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], - boolCol = sample(c(TRUE,FALSE), 500, TRUE), + boolCol = sample(c(TRUE, FALSE), 500, TRUE), col1 = sample(10000, size = 500, replace = TRUE), col2 = sample(10000, size = 500, replace = TRUE), col3 = 1:500 @@ -64,16 +67,16 @@ th <- client$import_table(df) # compute rolling product of col1 and col2, using the previous 5 rows and current row th1 <- th$ - update_by(uby_rolling_prod_tick(cols=c("col1RollProd = col1", "col2RollProd = col2"), rev_ticks=6)) + update_by(uby_rolling_prod_tick(cols = c("col1RollProd = col1", "col2RollProd = col2"), rev_ticks = 6)) # compute rolling product of col1 and col2, grouped by boolCol, using previous 5 rows, current row, and following 5 rows th2 <- th$ - update_by(uby_rolling_prod_tick(cols=c("col1RollProd = col1", "col2RollProd = col2"), rev_ticks=6, fwd_ticks=5)), by="boolCol") + update_by(uby_rolling_prod_tick(cols = c("col1RollProd = col1", "col2RollProd = col2"), rev_ticks = 6, fwd_ticks = 5), by = "boolCol") # compute rolling product of col1 and col2, grouped by boolCol and parity of col3, using current row and following 10 rows th3 <- th$ update("col3Parity = col3 \% 2")$ - update_by(uby_rolling_prod_tick(cols=c("col1RollProd = col1", "col2RollProd = col2"), rev_ticks=1, fwd_ticks=10)), by=c("boolCol", "col3Parity")) + update_by(uby_rolling_prod_tick(cols = c("col1RollProd = col1", "col2RollProd = col2"), rev_ticks = 1, fwd_ticks = 10), by = c("boolCol", "col3Parity")) client$close() } diff --git a/R/rdeephaven/man/uby_rolling_prod_time.Rd b/R/rdeephaven/man/uby_rolling_prod_time.Rd index 84af4a1e354..d0dfe2f92d3 100644 --- a/R/rdeephaven/man/uby_rolling_prod_time.Rd +++ b/R/rdeephaven/man/uby_rolling_prod_time.Rd @@ -43,18 +43,21 @@ This function, like other Deephaven \code{uby} functions, is a generator functio function called an \code{\link{UpdateByOp}} intended to be used in a call to \code{update_by()}. This detail is typically hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of a \code{uby} function can otherwise seem unexpected. + +For more information, see the vignette on \code{uby} functions by running +\code{vignette("update_by")}. } \examples{ \dontrun{ library(rdeephaven) # connecting to Deephaven server -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") # create data frame, push to server, retrieve TableHandle df <- data.frame( timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], - boolCol = sample(c(TRUE,FALSE), 500, TRUE), + boolCol = sample(c(TRUE, FALSE), 500, TRUE), col1 = sample(10000, size = 500, replace = TRUE), col2 = sample(10000, size = 500, replace = TRUE), col3 = 1:500 @@ -63,16 +66,16 @@ th <- client$import_table(df) # compute rolling product of col1 and col2, using the previous 5 seconds th1 <- th$ - update_by(uby_rolling_prod_time(ts_col="timeCol", cols=c("col1RollProd = col1", "col2RollProd = col2"), rev_time="PT5s")) + update_by(uby_rolling_prod_time(ts_col = "timeCol", cols = c("col1RollProd = col1", "col2RollProd = col2"), rev_time = "PT5s")) # compute rolling product of col1 and col2, grouped by boolCol, using previous 5 seconds, and following 5 seconds th2 <- th$ - update_by(uby_rolling_prod_time(ts_col="timeCol", cols=c("col1RollProd = col1", "col2RollProd = col2"), rev_time="PT5s", fwd_ticks="PT5s")), by="boolCol") + update_by(uby_rolling_prod_time(ts_col = "timeCol", cols = c("col1RollProd = col1", "col2RollProd = col2"), rev_time = "PT5s", fwd_ticks = "PT5s"), by = "boolCol") # compute rolling product of col1 and col2, grouped by boolCol and parity of col3, using following 10 seconds th3 <- th$ update("col3Parity = col3 \% 2")$ - update_by(uby_rolling_prod_time(ts_col="timeCol", cols=c("col1RollProd = col1", "col2RollProd = col2"), rev_time="PT0s", fwd_time="PT10s")), by=c("boolCol", "col3Parity")) + update_by(uby_rolling_prod_time(ts_col = "timeCol", cols = c("col1RollProd = col1", "col2RollProd = col2"), rev_time = "PT0s", fwd_time = "PT10s"), by = c("boolCol", "col3Parity")) client$close() } diff --git a/R/rdeephaven/man/uby_rolling_std_tick.Rd b/R/rdeephaven/man/uby_rolling_std_tick.Rd index b41c629f069..889d7047a8f 100644 --- a/R/rdeephaven/man/uby_rolling_std_tick.Rd +++ b/R/rdeephaven/man/uby_rolling_std_tick.Rd @@ -44,18 +44,21 @@ This function, like other Deephaven \code{uby} functions, is a generator functio function called an \code{\link{UpdateByOp}} intended to be used in a call to \code{update_by()}. This detail is typically hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of a \code{uby} function can otherwise seem unexpected. + +For more information, see the vignette on \code{uby} functions by running +\code{vignette("update_by")}. } \examples{ \dontrun{ library(rdeephaven) # connecting to Deephaven server -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") # create data frame, push to server, retrieve TableHandle df <- data.frame( timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], - boolCol = sample(c(TRUE,FALSE), 500, TRUE), + boolCol = sample(c(TRUE, FALSE), 500, TRUE), col1 = sample(10000, size = 500, replace = TRUE), col2 = sample(10000, size = 500, replace = TRUE), col3 = 1:500 @@ -64,16 +67,16 @@ th <- client$import_table(df) # compute rolling standard deviation of col1 and col2, using the previous 5 rows and current row th1 <- th$ - update_by(uby_rolling_std_tick(cols=c("col1RollStd = col1", "col2RollStd = col2"), rev_ticks=6)) + update_by(uby_rolling_std_tick(cols = c("col1RollStd = col1", "col2RollStd = col2"), rev_ticks = 6)) # compute rolling standard deviation of col1 and col2, grouped by boolCol, using previous 5 rows, current row, and following 5 rows th2 <- th$ - update_by(uby_rolling_std_tick(cols=c("col1RollStd = col1", "col2RollStd = col2"), rev_ticks=6, fwd_ticks=5), by="boolCol") + update_by(uby_rolling_std_tick(cols = c("col1RollStd = col1", "col2RollStd = col2"), rev_ticks = 6, fwd_ticks = 5), by = "boolCol") # compute rolling standard deviation of col1 and col2, grouped by boolCol and parity of col3, using current row and following 10 rows th3 <- th$ update("col3Parity = col3 \% 2")$ - update_by(uby_rolling_std_tick(cols=c("col1RollStd = col1", "col2RollStd = col2"), rev_ticks=1, fwd_ticks=10), by=c("boolCol", "col3Parity")) + update_by(uby_rolling_std_tick(cols = c("col1RollStd = col1", "col2RollStd = col2"), rev_ticks = 1, fwd_ticks = 10), by = c("boolCol", "col3Parity")) client$close() } diff --git a/R/rdeephaven/man/uby_rolling_std_time.Rd b/R/rdeephaven/man/uby_rolling_std_time.Rd index 4dab0224e20..88d1a0e105b 100644 --- a/R/rdeephaven/man/uby_rolling_std_time.Rd +++ b/R/rdeephaven/man/uby_rolling_std_time.Rd @@ -43,18 +43,21 @@ This function, like other Deephaven \code{uby} functions, is a generator functio function called an \code{\link{UpdateByOp}} intended to be used in a call to \code{update_by()}. This detail is typically hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of a \code{uby} function can otherwise seem unexpected. + +For more information, see the vignette on \code{uby} functions by running +\code{vignette("update_by")}. } \examples{ \dontrun{ library(rdeephaven) # connecting to Deephaven server -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") # create data frame, push to server, retrieve TableHandle df <- data.frame( timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], - boolCol = sample(c(TRUE,FALSE), 500, TRUE), + boolCol = sample(c(TRUE, FALSE), 500, TRUE), col1 = sample(10000, size = 500, replace = TRUE), col2 = sample(10000, size = 500, replace = TRUE), col3 = 1:500 @@ -63,16 +66,16 @@ th <- client$import_table(df) # compute rolling standard deviation of col1 and col2, using the previous 5 seconds th1 <- th$ - update_by(uby_rolling_std_time(ts_col="timeCol", cols=c("col1RollStd = col1", "col2RollStd = col2"), rev_time="PT5s")) + update_by(uby_rolling_std_time(ts_col = "timeCol", cols = c("col1RollStd = col1", "col2RollStd = col2"), rev_time = "PT5s")) # compute rolling standard deviation of col1 and col2, grouped by boolCol, using previous 5 seconds, and following 5 seconds th2 <- th$ - update_by(uby_rolling_std_time(ts_col="timeCol", cols=c("col1RollStd = col1", "col2RollStd = col2"), rev_time="PT5s", fwd_ticks="PT5s"), by="boolCol") + update_by(uby_rolling_std_time(ts_col = "timeCol", cols = c("col1RollStd = col1", "col2RollStd = col2"), rev_time = "PT5s", fwd_ticks = "PT5s"), by = "boolCol") # compute rolling standard deviation of col1 and col2, grouped by boolCol and parity of col3, using following 10 seconds th3 <- th$ update("col3Parity = col3 \% 2")$ - update_by(uby_rolling_std_time(ts_col="timeCol", cols=c("col1RollStd = col1", "col2RollStd = col2"), rev_time="PT0s", fwd_time="PT10s"), by=c("boolCol", "col3Parity")) + update_by(uby_rolling_std_time(ts_col = "timeCol", cols = c("col1RollStd = col1", "col2RollStd = col2"), rev_time = "PT0s", fwd_time = "PT10s"), by = c("boolCol", "col3Parity")) client$close() } diff --git a/R/rdeephaven/man/uby_rolling_sum_tick.Rd b/R/rdeephaven/man/uby_rolling_sum_tick.Rd index 31df03a4118..ccf14d79d31 100644 --- a/R/rdeephaven/man/uby_rolling_sum_tick.Rd +++ b/R/rdeephaven/man/uby_rolling_sum_tick.Rd @@ -44,18 +44,21 @@ This function, like other Deephaven \code{uby} functions, is a generator functio function called an \code{\link{UpdateByOp}} intended to be used in a call to \code{update_by()}. This detail is typically hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of a \code{uby} function can otherwise seem unexpected. + +For more information, see the vignette on \code{uby} functions by running +\code{vignette("update_by")}. } \examples{ \dontrun{ library(rdeephaven) # connecting to Deephaven server -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") # create data frame, push to server, retrieve TableHandle df <- data.frame( timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], - boolCol = sample(c(TRUE,FALSE), 500, TRUE), + boolCol = sample(c(TRUE, FALSE), 500, TRUE), col1 = sample(10000, size = 500, replace = TRUE), col2 = sample(10000, size = 500, replace = TRUE), col3 = 1:500 @@ -64,16 +67,16 @@ th <- client$import_table(df) # compute rolling sum of col1 and col2, using the previous 5 rows and current row th1 <- th$ - update_by(uby_rolling_sum_tick(cols=c("col1RollSum = col1", "col2RollSum = col2"), rev_ticks=6)) + update_by(uby_rolling_sum_tick(cols = c("col1RollSum = col1", "col2RollSum = col2"), rev_ticks = 6)) # compute rolling sum of col1 and col2, grouped by boolCol, using previous 5 rows, current row, and following 5 rows th2 <- th$ - update_by(uby_rolling_sum_tick(cols=c("col1RollSum = col1", "col2RollSum = col2"), rev_ticks=6, fwd_ticks=5)), by="boolCol") + update_by(uby_rolling_sum_tick(cols = c("col1RollSum = col1", "col2RollSum = col2"), rev_ticks = 6, fwd_ticks = 5), by = "boolCol") # compute rolling sum of col1 and col2, grouped by boolCol and parity of col3, using current row and following 10 rows th3 <- th$ update("col3Parity = col3 \% 2")$ - update_by(uby_rolling_sum_tick(cols=c("col1RollSum = col1", "col2RollSum = col2"), rev_ticks=1, fwd_ticks=10)), by=c("boolCol", "col3Parity")) + update_by(uby_rolling_sum_tick(cols = c("col1RollSum = col1", "col2RollSum = col2"), rev_ticks = 1, fwd_ticks = 10), by = c("boolCol", "col3Parity")) client$close() } diff --git a/R/rdeephaven/man/uby_rolling_sum_time.Rd b/R/rdeephaven/man/uby_rolling_sum_time.Rd index b8e028ebc5b..1111e4dd923 100644 --- a/R/rdeephaven/man/uby_rolling_sum_time.Rd +++ b/R/rdeephaven/man/uby_rolling_sum_time.Rd @@ -43,18 +43,21 @@ This function, like other Deephaven \code{uby} functions, is a generator functio function called an \code{\link{UpdateByOp}} intended to be used in a call to \code{update_by()}. This detail is typically hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of a \code{uby} function can otherwise seem unexpected. + +For more information, see the vignette on \code{uby} functions by running +\code{vignette("update_by")}. } \examples{ \dontrun{ library(rdeephaven) # connecting to Deephaven server -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") # create data frame, push to server, retrieve TableHandle df <- data.frame( timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], - boolCol = sample(c(TRUE,FALSE), 500, TRUE), + boolCol = sample(c(TRUE, FALSE), 500, TRUE), col1 = sample(10000, size = 500, replace = TRUE), col2 = sample(10000, size = 500, replace = TRUE), col3 = 1:500 @@ -63,16 +66,16 @@ th <- client$import_table(df) # compute rolling sum of col1 and col2, using the previous 5 seconds th1 <- th$ - update_by(uby_rolling_sum_time(ts_col="timeCol", cols=c("col1RollSum = col1", "col2RollSum = col2"), rev_time="PT5s")) + update_by(uby_rolling_sum_time(ts_col = "timeCol", cols = c("col1RollSum = col1", "col2RollSum = col2"), rev_time = "PT5s")) # compute rolling sum of col1 and col2, grouped by boolCol, using previous 5 seconds, and following 5 seconds th2 <- th$ - update_by(uby_rolling_sum_time(ts_col="timeCol", cols=c("col1RollSum = col1", "col2RollSum = col2"), rev_time="PT5s", fwd_ticks="PT5s")), by="boolCol") + update_by(uby_rolling_sum_time(ts_col = "timeCol", cols = c("col1RollSum = col1", "col2RollSum = col2"), rev_time = "PT5s", fwd_ticks = "PT5s"), by = "boolCol") # compute rolling sum of col1 and col2, grouped by boolCol and parity of col3, using following 10 seconds th3 <- th$ update("col3Parity = col3 \% 2")$ - update_by(uby_rolling_sum_time(ts_col="timeCol", cols=c("col1RollSum = col1", "col2RollSum = col2"), rev_time="PT0s", fwd_time="PT10s")), by=c("boolCol", "col3Parity")) + update_by(uby_rolling_sum_time(ts_col = "timeCol", cols = c("col1RollSum = col1", "col2RollSum = col2"), rev_time = "PT0s", fwd_time = "PT10s"), by = c("boolCol", "col3Parity")) client$close() } diff --git a/R/rdeephaven/man/uby_rolling_wavg_tick.Rd b/R/rdeephaven/man/uby_rolling_wavg_tick.Rd index b4c2df54117..98c72197788 100644 --- a/R/rdeephaven/man/uby_rolling_wavg_tick.Rd +++ b/R/rdeephaven/man/uby_rolling_wavg_tick.Rd @@ -46,18 +46,21 @@ This function, like other Deephaven \code{uby} functions, is a generator functio function called an \code{\link{UpdateByOp}} intended to be used in a call to \code{update_by()}. This detail is typically hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of a \code{uby} function can otherwise seem unexpected. + +For more information, see the vignette on \code{uby} functions by running +\code{vignette("update_by")}. } \examples{ \dontrun{ library(rdeephaven) # connecting to Deephaven server -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") # create data frame, push to server, retrieve TableHandle df <- data.frame( timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], - boolCol = sample(c(TRUE,FALSE), 500, TRUE), + boolCol = sample(c(TRUE, FALSE), 500, TRUE), col1 = sample(10000, size = 500, replace = TRUE), col2 = sample(10000, size = 500, replace = TRUE), col3 = 1:500 @@ -66,16 +69,16 @@ th <- client$import_table(df) # compute rolling weighted average of col1 and col2, weighted by col3, using the previous 5 rows and current row th1 <- th$ - update_by(uby_rolling_wavg_tick(wcol="col3", cols=c("col1RollWAvg = col1", "col2RollWAvg = col2"), rev_ticks=6)) + update_by(uby_rolling_wavg_tick(wcol = "col3", cols = c("col1RollWAvg = col1", "col2RollWAvg = col2"), rev_ticks = 6)) # compute rolling weighted average of col1 and col2, weighted by col3, grouped by boolCol, using previous 5 rows, current row, and following 5 rows th2 <- th$ - update_by(uby_rolling_wavg_tick(wcol="col3", cols=c("col1RollWAvg = col1", "col2RollWAvg = col2"), rev_ticks=6, fwd_ticks=5), by="boolCol") + update_by(uby_rolling_wavg_tick(wcol = "col3", cols = c("col1RollWAvg = col1", "col2RollWAvg = col2"), rev_ticks = 6, fwd_ticks = 5), by = "boolCol") # compute rolling weighted average of col1 and col2, weighted by col3, grouped by boolCol and parity of col3, using current row and following 10 rows th3 <- th$ update("col3Parity = col3 \% 2")$ - update_by(uby_rolling_wavg_tick(wcol="col3", cols=c("col1RollWAvg = col1", "col2RollWAvg = col2"), rev_ticks=1, fwd_ticks=10), by=c("boolCol", "col3Parity")) + update_by(uby_rolling_wavg_tick(wcol = "col3", cols = c("col1RollWAvg = col1", "col2RollWAvg = col2"), rev_ticks = 1, fwd_ticks = 10), by = c("boolCol", "col3Parity")) client$close() } diff --git a/R/rdeephaven/man/uby_rolling_wavg_time.Rd b/R/rdeephaven/man/uby_rolling_wavg_time.Rd index a8dcc5f98ae..09cb4269eda 100644 --- a/R/rdeephaven/man/uby_rolling_wavg_time.Rd +++ b/R/rdeephaven/man/uby_rolling_wavg_time.Rd @@ -45,18 +45,21 @@ This function, like other Deephaven \code{uby} functions, is a generator functio function called an \code{\link{UpdateByOp}} intended to be used in a call to \code{update_by()}. This detail is typically hidden from the user. However, it is important to understand this detail for debugging purposes, as the output of a \code{uby} function can otherwise seem unexpected. + +For more information, see the vignette on \code{uby} functions by running +\code{vignette("update_by")}. } \examples{ \dontrun{ library(rdeephaven) # connecting to Deephaven server -client <- Client$new("localhost:10000", auth_type="psk", auth_token="my_secret_token") +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") # create data frame, push to server, retrieve TableHandle df <- data.frame( timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], - boolCol = sample(c(TRUE,FALSE), 500, TRUE), + boolCol = sample(c(TRUE, FALSE), 500, TRUE), col1 = sample(10000, size = 500, replace = TRUE), col2 = sample(10000, size = 500, replace = TRUE), col3 = 1:500 @@ -65,16 +68,16 @@ th <- client$import_table(df) # compute rolling weighted average of col1 and col2, weighted by col3, using the previous 5 seconds th1 <- th$ - update_by(uby_rolling_wavg_time(ts_col="timeCol", wcol="col3", cols=c("col1RollWAvg = col1", "col2RollWAvg = col2"), rev_time="PT5s")) + update_by(uby_rolling_wavg_time(ts_col = "timeCol", wcol = "col3", cols = c("col1RollWAvg = col1", "col2RollWAvg = col2"), rev_time = "PT5s")) # compute rolling weighted average of col1 and col2, weighted by col3, grouped by boolCol, using previous 5 seconds, and following 5 seconds th2 <- th$ - update_by(uby_rolling_wavg_time(ts_col="timeCol", wcol="col3", cols=c("col1RollWAvg = col1", "col2RollWAvg = col2"), rev_time="PT5s", fwd_ticks="PT5s"), by="boolCol") + update_by(uby_rolling_wavg_time(ts_col = "timeCol", wcol = "col3", cols = c("col1RollWAvg = col1", "col2RollWAvg = col2"), rev_time = "PT5s", fwd_ticks = "PT5s"), by = "boolCol") # compute rolling weighted average of col1 and col2, weighted by col3, grouped by boolCol and parity of col3, using following 10 seconds th3 <- th$ update("col3Parity = col3 \% 2")$ - update_by(uby_rolling_wavg_time(ts_col="timeCol", wcol="col3", cols=c("col1RollWAvg = col1", "col2RollWAvg = col2"), rev_time="PT0s", fwd_time="PT10s"), by=c("boolCol", "col3Parity")) + update_by(uby_rolling_wavg_time(ts_col = "timeCol", wcol = "col3", cols = c("col1RollWAvg = col1", "col2RollWAvg = col2"), rev_time = "PT0s", fwd_time = "PT10s"), by = c("boolCol", "col3Parity")) client$close() } diff --git a/R/rdeephaven/pkgdown/_pkgdown.yml b/R/rdeephaven/pkgdown/_pkgdown.yml new file mode 100644 index 00000000000..14c104a8548 --- /dev/null +++ b/R/rdeephaven/pkgdown/_pkgdown.yml @@ -0,0 +1,47 @@ +--- +url: https://deephaven.io/core/rdoc/ + +template: + bootstrap: 5 + bootswatch: cosmo + +navbar: + structure: + left: [reference, articles] + right: [search, github] + components: + articles: + text: Articles + menu: + - text: Overview + href: articles/rdeephaven.html + - text: Aggregations with agg_by + href: articles/agg_by.html + - text: Moving Operations with update_by + href: articles/update_by.html + +reference: + - title: Core API + contents: + - Client + - TableHandle + - AggOp + - UpdateByOp + + - title: AggBy Operations + contents: + - starts_with("agg_") + + - title: UpdateBy Operations + contents: + - starts_with("uby_") + + - title: Utility Functions + contents: + - merge_tables + - op_control + + - title: Other Data Types + contents: + - OperationControl + diff --git a/R/rdeephaven/vignettes/.gitignore b/R/rdeephaven/vignettes/.gitignore new file mode 100644 index 00000000000..097b241637d --- /dev/null +++ b/R/rdeephaven/vignettes/.gitignore @@ -0,0 +1,2 @@ +*.html +*.R diff --git a/R/rdeephaven/vignettes/agg_by.Rmd b/R/rdeephaven/vignettes/agg_by.Rmd new file mode 100644 index 00000000000..0fd5bab3f38 --- /dev/null +++ b/R/rdeephaven/vignettes/agg_by.Rmd @@ -0,0 +1,120 @@ +--- +title: "Aggregations with agg_by" +output: rmarkdown::html_vignette +vignette: > + %\VignetteIndexEntry{agg_by} + %\VignetteEngine{knitr::rmarkdown} + %\VignetteEncoding{UTF-8} +--- + +```{r, include = FALSE} +knitr::opts_chunk$set( + collapse = TRUE, + comment = "#>" +) +``` + +Table aggregations are a quintessential feature of Deephaven. You can apply as +many aggregations as needed to static tables _or_ streaming tables, and if the +parent tables are streaming, the resulting aggregated tables will update +alongside their parent tables. It is also very easy to perform _grouped_ +aggregations, which allow you to aggregate tables on a per-group basis. + +## Applying aggregations to a table + +There are two methods for performing aggregations on a table, `agg_by()` and +`agg_all_by()`. `agg_by()` allows you to perform many aggregations on specified +columns, while `agg_all_by()` allows you to perform a single aggregation to +every non-grouping column in the table. Both methods have an optional `by` +parameter that is used to specify grouping columns. Here are some details on +each method: + +- `TableHandle$agg_by(aggs, by)`: Creates a new table containing grouping + columns and grouped data. + The resulting grouped data is defined by the aggregation(s) specified. +- `TableHandle$agg_all_by(agg, by)`: Creates a new table containing grouping + columns and grouped data. The resulting grouped data is defined by the + aggregation specified. This method applies the aggregation to all non-grouping + columns of the table, so it can only accept one aggregation at a time. + +The `agg_by()` and `agg_all_by()` methods themselves do not know anything about +the columns on which you want to perform aggregations. Rather, the desired +columns are passed to individual `agg` functions, enabling you to apply various +kinds of aggregations to different columns or groups of columns as needed. + +## `agg` functions + +`agg` functions are used to perform aggregation calculations on grouped data by +passing them to `agg_by()` or `agg_all_by()`. These functions are _generators_, +meaning they return _functions_ that the Deephaven engine knows how to +interpret. We call the functions that they return `AggOp`s. See `?AggOp` for +more information. These AggOps are not R-level functions, but +Deephaven-specific data types that perform all of the intensive calculations. +Here is a list of all `agg` functions available in Deephaven: + +- `agg_first()` +- `agg_last()` +- `agg_min()` +- `agg_max()` +- `agg_sum()` +- `agg_abs_sum()` +- `agg_avg()` +- `agg_w_avg()` +- `agg_median()` +- `agg_var()` +- `agg_std()` +- `agg_percentile()` +- `agg_count()` + +For more details on each aggregation function, see the reference documentation +by running `?agg_first`, `?agg_last`, etc. + +## An Example +```{r, eval=FALSE} +library(rdeephaven) + +# connecting to Deephaven server +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") + +# create data frame, push to server, retrieve TableHandle +df <- data.frame( + X = c("A", "B", "A", "C", "B", "A", "B", "B", "C"), + Y = c("M", "N", "O", "N", "P", "M", "O", "P", "M"), + Number1 = c(100, -44, 49, 11, -66, 50, 29, 18, -70), + Number2 = c(-55, 76, 20, 130, 230, -50, 73, 137, 214) +) +th <- client$import_table(df) + +# get first and last elements of each column +th1 <- th$ + agg_by( + agg_first(c("XFirst = X", "YFirst = Y", "Number1First = Number1", "Number2First = Number2")), + agg_last(c("XLast = X", "YLast = Y", "Number1Last = Number1", "Number2Last = Number2")) +) + +# compute mean and standard deviation of Number1 and Number2, grouped by X +th2 <- th$ + agg_by( + c( + agg_avg(c("Number1Avg = Number1", "Number2Avg = Number2")), + agg_std(c("Number1Std = Number1", "Number2Std = Number2")) + ), + by = "X" +) + +# compute maximum of all non-grouping columns, grouped by X and Y +th3 <- th$ + agg_all_by(agg_max(), by = c("X", "Y")) + +# compute minimum and maximum of Number1 and Number2 respectively grouped by Y +th4 <- th$ + agg_by( + c( + agg_min("Number1Min = Number1"), + agg_max("Number2Max = Number2") + ), + by = "Y" +) + +client$close() +``` diff --git a/R/rdeephaven/vignettes/rdeephaven.Rmd b/R/rdeephaven/vignettes/rdeephaven.Rmd new file mode 100644 index 00000000000..b19df258a6c --- /dev/null +++ b/R/rdeephaven/vignettes/rdeephaven.Rmd @@ -0,0 +1,130 @@ +--- +title: "Overview of the Deephaven Core R Client" +output: rmarkdown::html_vignette +vignette: > + %\VignetteIndexEntry{rdeephaven} + %\VignetteEngine{knitr::rmarkdown} + %\VignetteEncoding{UTF-8} +--- + +```{r, include = FALSE} +knitr::opts_chunk$set( + collapse = TRUE, + comment = "#>" +) +``` + +The Deephaven Core R Client provides an R interface to Deephaven's powerful +real-time data engine, [_Deephaven Core_](https://deephaven.io/community/). +To use this package, you must have a Deephaven server running and be able to +connect to it. For more information on how to set up a Deephaven server, see the +documentation [here](https://deephaven.io/core/docs/tutorials/quickstart/). + +## Building blocks of the Deephaven R Client + +There are two primary R classes that make up the Deephaven R Client, the `Client` +class and the `TableHandle` class. See `?Client` and `?TableHandle` for more +information. The Client class is used to establish a connection to the +Deephaven server with its constructor `Client$new()`, and to send server +requests, such as running a script via `run_script()`, or pushing local data to +the server via `import_table()`. Basic usage of the Client class may look +something like this: + +```{r, eval=FALSE} +library(rdeephaven) +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") +``` + +Many of these server requests end up creating or modifying tables that live on +the server. To keep track of these tables, the R client retrieves references to +them, and wraps these references in TableHandle objects. These TableHandles +have a host of methods that mirror server-side table operations, such as +`head()`, `tail()`, `update_by()`, and so on. So, you can typically use +TableHandles _as if_ they are tables themselves, and all of the corresponding +methods that you call on them will be executed on the server. Here is a simple +example of pushing data to the server, retrieving a TableHandle to the resulting +table, and applying some basic table operations to the table: + +```{r, eval=FALSE} +df1 <- data.frame(x = 1:10, y = 11:20) +th1 <- client$import_table(df1) + +th2 <- th1$ + update("z = x + y")$ + where("z % 4 == 0") +``` + +TableHandles also support common functional methods for converting server-side +Deephaven tables to R objects stored in local memory such as `as.data.frame()`, +`as_tibble()`, and `as_arrow_table()`. Here's an example of converting the table +created above to an R data frame and verifying that other functional methods +work as expected: + +```{r, eval=FALSE} +df2 <- as.data.frame(th2) + +print(nrow(th2) == nrow(df2)) +print(ncol(th2) == ncol(df2)) +print(dim(th2) == dim(df2)) +print(all(as.data.frame(head(th2, 2)) == head(df2, 2))) +print(all(as.data.frame(tail(th2, 2)) == tail(df2, 2))) +``` + +For more information on these classes and all of their methods, see the +reference documentation by running `?Client` or `?TableHandle`. + +## Real-time data analysis + +Since TableHandles are references to tables living on the Deephaven server, they +may refer to streaming tables, or tables that are receiving new data +periodically(typically once per second). Here's a simple example of creating a +table that adds a new row every second: + +```{r, eval=FALSE} +th3 <- client$time_table("PT1s")$ + update(c("X = ii", "Y = sin(X)")) +``` + +R objects like data frames or Dplyr tibbles do not have this streaming property +- they are always static objects stored in memory. However, a TableHandle +referring to a streaming table may be converted to a data frame or tibble at any +time, and the resulting object will be a snapshot of the table at the time of +conversion. This means that you can use the Deephaven R Client to perform +real-time data analysis on streaming data! Here, we make a simple plot of the +ticking table, and call it three times to demonstrate the dynamic nature of the +table: + +```{r, eval=FALSE} +plot(as.data.frame(th3)$X, as.data.frame(th3)$Y, type = "l") +Sys.sleep(5) +plot(as.data.frame(th3)$X, as.data.frame(th3)$Y, type = "l") +Sys.sleep(5) +plot(as.data.frame(th3)$X, as.data.frame(th3)$Y, type = "l") +``` + +There are performance and memory considerations when pulling data from the +server, so it is best to use the provided TableHandle methods to perform as much +of your analysis as possible on the server, and to only pull the data when +something _must_ be done in R, like plotting or writing to a local file. + +## Powerful table operations + +Much of the power of Deephaven's suite of table operations is achieved through +the use of the `update_by()` and `agg_by()` methods. These table methods are +important enough to warrant their own documentation pages, accessible by running +`vignette("update_by")` or `vignette("agg_by")`. These methods +come with their own suites of functions, prefixed with `agg_` and `uby_` +respectively, that are listed in their documentation pages. Running +`ls("package:rdeephaven")` will reveal that most of the functions included in +this package are for these methods, so it is important to get acquainted with +them. + +## Getting help +While we've done our best to provide good documentation for this package, you +may find you need more help than what this documentation has to offer. Please +visit the official Deephaven Community Core +[documentation](https://deephaven.io/core/docs/tutorials/quickstart/) to learn +more about Deephaven and to find comprehensive examples. Additionally, feel free +to reach out to us on the Deephaven +[Community Slack channel](https://deephaven.io/slack) with any questions. We +hope you find real-time data analysis in R to be as easy as possible. diff --git a/R/rdeephaven/vignettes/update_by.Rmd b/R/rdeephaven/vignettes/update_by.Rmd new file mode 100644 index 00000000000..2704b46fed0 --- /dev/null +++ b/R/rdeephaven/vignettes/update_by.Rmd @@ -0,0 +1,133 @@ +--- +title: "Moving Operations with update_by" +output: rmarkdown::html_vignette +vignette: > + %\VignetteIndexEntry{update_by} + %\VignetteEngine{knitr::rmarkdown} + %\VignetteEncoding{UTF-8} +--- + +```{r, include = FALSE} +knitr::opts_chunk$set( + collapse = TRUE, + comment = "#>" +) +``` + +Deephaven's `update_by()` table method and suite of `uby` functions enable +cumulative and moving calculations on static _and_ streaming tables. Complex +operations like cumulative minima and maxima, exponential moving averages, and +rolling standard deviations are all possible and effortless to execute. As +always in Deephaven, the results of these calculations will continue to update +as their parent tables are updated. Additionally, it's easy to group data by one +or more columns, enabling complex group-wise calculations with a single line of +code. + +## Applying UpdateBy operations to a table + +The table method `update_by()` is the entry point for UpdateBy operations. It +takes two arguments: the first is an `UpdateByOp` or a list of +`UpdateByOp`s denoting the calculations to perform on specific columns of the +table. Then, it takes a column name or a list of column names that define the +groups on which to perform the calculations. If you don't want grouped +calculations, omit this argument. + +To learn more about UpdateByOps, see the reference documentation with +`?UpdateByOp`. + +The `update_by()` method itself does not know anything about the columns on +which you want to perform calculations. Rather, the desired columns are passed +to individual `uby` functions, enabling a massive amount of flexibility. + +## `uby` functions + +`uby` functions are the workers that actually execute the complex UpdateBy +calculations. These functions are _generators_, meaning they return _functions_ +that the Deephaven engine knows how to interpret. We call the functions they +return `UpdateByOp`s. See `?UpdateByOp` for more information. These UpdateByOps +are not R-level functions, but Deephaven-specific data types that perform all of +the intensive calculations. Here is a list of all `uby` functions available in +Deephaven: + +- `uby_cum_min()` +- `uby_cum_max()` +- `uby_cum_sum()` +- `uby_cum_prod()` +- `uby_forward_fill()` +- `uby_delta()` +- `uby_emmin_tick()` +- `uby_emmin_time()` +- `uby_emmax_tick()` +- `uby_emmax_time()` +- `uby_ems_tick()` +- `uby_ems_time()` +- `uby_ema_tick()` +- `uby_ema_time()` +- `uby_emstd_tick()` +- `uby_emstd_time()` +- `uby_rolling_count_tick()` +- `uby_rolling_count_time()` +- `uby_rolling_group_tick()` +- `uby_rolling_group_time()` +- `uby_rolling_min_tick()` +- `uby_rolling_min_time()` +- `uby_rolling_max_tick()` +- `uby_rolling_max_time()` +- `uby_rolling_sum_tick()` +- `uby_rolling_sum_time()` +- `uby_rolling_prod_tick()` +- `uby_rolling_prod_time()` +- `uby_rolling_avg_tick()` +- `uby_rolling_avg_time()` +- `uby_rolling_wavg_tick()` +- `uby_rolling_wavg_time()` +- `uby_rolling_std_tick()` +- `uby_rolling_std_time()` + +For more details on each aggregation function, see the reference documentation +by running `?uby_cum_min`, `?uby_delta`, etc. + +## An Example +```{r, eval=FALSE} +library(rdeephaven) + +# connecting to Deephaven server +client <- Client$new("localhost:10000", auth_type = "psk", auth_token = "my_secret_token") + +# create data frame, push to server, retrieve TableHandle +df <- data.frame( + timeCol = seq.POSIXt(as.POSIXct(Sys.Date()), as.POSIXct(Sys.Date() + 0.01), by = "1 sec")[1:500], + boolCol = sample(c(TRUE, FALSE), 500, TRUE), + col1 = sample(10000, size = 500, replace = TRUE), + col2 = sample(10000, size = 500, replace = TRUE), + col3 = 1:500 +) +th <- client$import_table(df) + +# compute 10-row exponential weighted moving average of col1 and col2, grouped by boolCol +th1 <- th$ + update_by(uby_ema_tick(decay_ticks = 10, cols = c("col1Ema = col1", "col2Ema = col2")), by = "boolCol") + +# compute rolling 10-second weighted average and standard deviation of col1 and col2, weighted by col3 +th2 <- th$ + update_by( + c( + uby_rolling_wavg_time(ts_col = "timeCol", wcol = "col3", cols = c("col1WAvg = col1", "col2WAvg = col2"), rev_time = "PT10s"), + uby_rolling_std_time(ts_col = "timeCol", cols = c("col1Std = col1", "col2Std = col2"), rev_time = "PT10s") + ) +) + +# compute cumulative minimum and maximum of col1 and col2 respectively, and the rolling 20-row sum of col3, grouped by boolCol +th3 <- th$ + update_by( + c( + uby_cum_min(cols = "col1"), + uby_cum_max(cols = "col2"), + uby_rolling_sum_tick(cols = "col3", rev_ticks = 20) + ), + by = "boolCol" +) + +client$close() +} +``` \ No newline at end of file diff --git a/docker/registry/cpp-clients-multi-base/gradle.properties b/docker/registry/cpp-clients-multi-base/gradle.properties index 11c131793a6..0e9b923c556 100644 --- a/docker/registry/cpp-clients-multi-base/gradle.properties +++ b/docker/registry/cpp-clients-multi-base/gradle.properties @@ -1,4 +1,4 @@ io.deephaven.project.ProjectType=DOCKER_REGISTRY deephaven.registry.imageName=ghcr.io/deephaven/cpp-clients-multi-base:latest -deephaven.registry.imageId=ghcr.io/deephaven/cpp-clients-multi-base@sha256:e9d3cbd9cf5f95162e559a8e4b78fec20ddbc559048d8b0167db161f8b748d55 +deephaven.registry.imageId=ghcr.io/deephaven/cpp-clients-multi-base@sha256:f4797606e1a2e06349289f0cd9a73f310d37f4509b10b1637ec62589a8d05b12 deephaven.registry.platform=linux/amd64