From 4e44309a317a29397e8b6955547f4ce799293096 Mon Sep 17 00:00:00 2001 From: elaineran Date: Mon, 27 May 2024 16:22:55 -0400 Subject: [PATCH] added figure pipeline notebook --- .DS_Store | Bin 6148 -> 8196 bytes paper/.DS_Store | Bin 0 -> 6148 bytes paper/figures/figure_pipeline.ipynb | 717 ++++++++++++++++++++++++++++ 3 files changed, 717 insertions(+) create mode 100644 paper/.DS_Store create mode 100644 paper/figures/figure_pipeline.ipynb diff --git a/.DS_Store b/.DS_Store index 760e57709e980c4a11bc54be1508beed35a75a72..a20c94e22ec021313cf8b3458205357fb5122f0d 100644 GIT binary patch literal 8196 zcmeHM&1(}u6o1oZn+-+CL9qzJf*>A(HW;DOL$@*h1FraiO3b<;S-RPY*^L2XARdb7 z$&39HyeN3|Dxzlv!LtWX3Z*9x1;IBTNoSi)z>Bmv6J~z1^WK~H<~Pgiz6}77a@Q*Y zECGOtm0^Ano0P)jtWK0UIdTG#pgjbQqH~Y7+7p_3Kr^5j&Gy|G}gTeqlvsp2x zJoklEx0(UXz<{*`7N#v#1^Pq&46ZLk^z>xXW%R}z=v4P-;K?! z@2adtD-}1OE{>Vi-|_bQosa8Dxi?eZZti^>FrIuvQ^=0|LKC{+s@?&N$CDar48L|i zZLj~}G3=YCMfW0^uBFB!&#D}FP{&^zB6x_^hnCxm+H%!z-FDzd@$&LlGB=+w7P4m6 zTr}@EP14X6d8z^Nf%RvYf zV%!`Tk-`QNo* z#Q30IIOHzs~(p3E=f2nq!T TMv&KlfC&-|V6n~dJad=H1@V-^m;4Wg<&0T*E43hX&L&p$$qDprKhvt+--jT7}7np#A3 zem<@ulZcFPQ@L2!n>{z**++&mCkOWA81W14cNZlEfg7;MkzE(HCqgga^y>{tEnwC%0;vJ&^%eQ zLs35+`xjp>T0" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = plt.figure(figsize=(8, 6)) \n", + "\n", + "gs = gridspec.GridSpec(3, 4, width_ratios=[1, 1, 1, 0.05], height_ratios = [1,1,1])\n", + "\n", + "#norm_dT = Normalize(vmin=min(dT_map.min(), dT_map1.min(), dT_map2.min()), vmax=max(dT_map.max(), dT_map1.max(), dT_map2.max()))\n", + "#norm_conv_total = Normalize(vmin=min(conv_map.min(), total_map.min(), conv_map1.min(), total_map1.min(), conv_map2.min(), total_map2.min()),\n", + " #vmax=max(conv_map.max(), total_map.max(), conv_map1.max(), total_map1.max(), conv_map2.max(), total_map2.max()))\n", + "\n", + "vmin = min(dT_map.min(), conv_map.min(), total_map.min(),dT_map1.min(), conv_map1.min(), total_map1.min(), dT_map2.min(), conv_map2.min(), total_map2.min())\n", + "vmax = max(dT_map.max(), conv_map.max(), total_map.max(),dT_map1.max(), conv_map1.max(), total_map1.max(), dT_map2.max(), conv_map2.max(), total_map2.max())\n", + "\n", + "ax2 = plt.subplot(gs[0])\n", + "im2 = ax2.imshow(dT_map, vmin=vmin, vmax=vmax)\n", + "#cbar2 = plt.colorbar(im2, ax=ax2, fraction=0.046, pad=0.04)\n", + "im2.set_extent([-width, width, -width, width])\n", + "ax2.set_xticks([])\n", + "#ax2.set_yticks([])\n", + "ax2.set_title('Temperature map')\n", + "#ax2.set_ylabel('arcmin')\n", + "#ax2.set_xlabel('arcmin')\n", + "\n", + "ax3 = plt.subplot(gs[1])\n", + "im3 = ax3.imshow(conv_map, vmin=vmin, vmax=vmax)\n", + "#cbar3 = plt.colorbar(im3, ax=ax3, fraction=0.046, pad=0.04)\n", + "im3.set_extent([-width, width, -width, width])\n", + "ax3.set_xticks([])\n", + "ax3.set_yticks([])\n", + "ax3.set_title('Beam convolved \\n temperature map \\n with CMB')\n", + "#ax3.set_ylabel('arcmin')\n", + "#ax3.set_xlabel('arcmin')\n", + "\n", + "ax4 = plt.subplot(gs[2])\n", + "im4 = ax4.imshow(total_map, vmin=vmin, vmax=vmax)\n", + "#cbar4 = plt.colorbar(im4, ax=ax4, fraction=0.046, pad=0.04)\n", + "im4.set_extent([-width, width, -width, width])\n", + "ax4.set_xticks([])\n", + "ax4.set_yticks([])\n", + "ax4.set_title('Beam convolved \\n temperature map \\n with CMB + noise')\n", + "#ax4.set_ylabel('arcmin')\n", + "#ax4.set_xlabel('arcmin')\n", + "\n", + "ax2 = plt.subplot(gs[4])\n", + "im2 = ax2.imshow(dT_map1, vmin=vmin, vmax=vmax)\n", + "#cbar2 = plt.colorbar(im2, ax=ax2, fraction=0.046, pad=0.04)\n", + "im2.set_extent([-width, width, -width, width])\n", + "ax2.set_xticks([])\n", + "#ax2.set_yticks([])\n", + "#ax2.set_title('dT map')\n", + "#ax2.set_ylabel('arcmin')\n", + "#ax2.set_xlabel('arcmin')\n", + "\n", + "ax2 = plt.subplot(gs[5])\n", + "im2 = ax2.imshow(conv_map1, vmin=vmin, vmax=vmax)\n", + "#cbar2 = plt.colorbar(im2, ax=ax2, fraction=0.046, pad=0.04)\n", + "im2.set_extent([-width, width, -width, width])\n", + "ax2.set_xticks([])\n", + "ax2.set_yticks([])\n", + "#ax2.set_title('Beam convolved temperature \\n map with CMB')\n", + "#ax2.set_ylabel('arcmin')\n", + "#ax2.set_xlabel('arcmin')\n", + "\n", + "ax4 = plt.subplot(gs[6])\n", + "im4 = ax4.imshow(total_map1, vmin=vmin, vmax=vmax)\n", + "#cbar4 = plt.colorbar(im4, ax=ax4, fraction=0.046, pad=0.04)\n", + "im4.set_extent([-width, width, -width, width])\n", + "ax4.set_xticks([])\n", + "ax4.set_yticks([])\n", + "#ax4.set_title('Beam convolved temperature \\n map with CMB + noise')\n", + "#ax4.set_ylabel('arcmin')\n", + "#ax4.set_xlabel('arcmin')\n", + "\n", + "ax2 = plt.subplot(gs[8])\n", + "im2 = ax2.imshow(dT_map2, vmin=vmin, vmax=vmax)\n", + "#cbar2 = plt.colorbar(im2, ax=ax2, fraction=0.046, pad=0.04)\n", + "im2.set_extent([-width, width, -width, width])\n", + "#ax2.set_xticks([])\n", + "#ax2.set_yticks([])\n", + "#ax2.set_title('dT map')\n", + "#ax2.set_ylabel('arcmin')\n", + "#ax2.set_xlabel('arcmin')\n", + "\n", + "ax2 = plt.subplot(gs[9])\n", + "im2 = ax2.imshow(conv_map2, vmin=vmin, vmax=vmax)\n", + "#cbar2 = plt.colorbar(im2, ax=ax2, fraction=0.046, pad=0.04)\n", + "im2.set_extent([-width, width, -width, width])\n", + "#ax2.set_xticks([])\n", + "ax2.set_yticks([])\n", + "#ax2.set_title('Beam convolved temperature \\n map with CMB')\n", + "#ax2.set_ylabel('arcmin')\n", + "#ax2.set_xlabel('arcmin')\n", + "\n", + "ax4 = plt.subplot(gs[10])\n", + "im4 = ax4.imshow(total_map2, vmin=vmin, vmax=vmax)\n", + "#cbar4 = plt.colorbar(im4, ax=ax4, fraction=0.046, pad=0.04)\n", + "im4.set_extent([-width, width, -width, width])\n", + "#ax4.set_xticks([])\n", + "ax4.set_yticks([])\n", + "#ax4.set_title('Beam convolved temperature \\n map with CMB + noise')\n", + "#ax4.set_ylabel('arcmin')\n", + "#ax4.set_xlabel('arcmin')\n", + "\n", + "\n", + "fig.text(0.35, 0.5, 'arcmin', va='center', rotation='vertical', fontsize=12)\n", + "fig.text(0.8, 0.01, 'arcmin', va='center', rotation='horizontal', fontsize=12)\n", + "\n", + "fig.text(0.05, 0.8, '$M_{200}$='+'{:.2E}'.format(Decimal(M200))+', z='+str(z), ha='left', va='center', fontsize=12)\n", + "fig.text(0.05, 0.5, '$M_{200}$='+'{:.2E}'.format(Decimal(M2001))+', z='+str(z1), ha='left', va='center', fontsize=12)\n", + "fig.text(0.05, 0.2, '$M_{200}$='+'{:.2E}'.format(Decimal(M2002))+', z='+str(z2), ha='left', va='center', fontsize=12)\n", + "\n", + "cbar_ax = plt.subplot(gs[:, 3])\n", + "cbar = plt.colorbar(im4, cax=cbar_ax)\n", + "cbar.set_label('$\\mu$K', rotation=270, labelpad=15)\n", + "\n", + "#plt.suptitle('$M_{200}$='+'{:.2E}'.format(Decimal(M200))+', z='+str(z), y=1)\n", + "\n", + "#plt.tight_layout(pad = 0.5)\n", + "plt.subplots_adjust(left=0.4, right=1.3, top=0.9, bottom=0.1, wspace=0.01, hspace=0.1)\n", + "\n", + "plt.savefig(\"/Users/elaineran/Desktop/DeepSZSimfig\", bbox_inches='tight', pad_inches=0.1)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "90709e7b-380b-44a9-83de-c473dab6041d", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 255, + "id": "b8eacd68-61c9-418e-b71f-bf5379c8da29", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "784.1618329297877" + ] + }, + "execution_count": 255, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "R200" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4f918a07-56c3-42cc-a471-0e33b1f0398c", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 277, + "id": "89836f93-1bca-404d-970b-c2968bc279e3", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsIAAAJKCAYAAAAm8SNsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAADy8UlEQVR4nOzdd3gU1foH8O/sZkt6rxDSgNAJAsYgnVwCUkSvVKUoCiqINBV+KhDES1NE6VwVEFAQRfQqHVFQAgoapBsggVBSaAkJJJvdPb8/MENm5uxmsyTZlPfzPPs8mTNnZs7OTt6czL7njMAYYyCEEEIIIaSWUTm6AYQQQgghhDgCdYQJIYQQQkitRB1hQgghhBBSK1FHmBBCCCGE1ErUESaEEEIIIbUSdYQJIYQQQkitRB1hQgghhBBSK1FHmBBCCCGE1ErUESaEEEIIIbUSdYQJIYSQCiQIAsaOHevoZpAKkpeXh+effx5BQUEQBAHjx493dJPKjSAImDFjhqObUaGoI0wIIQQAsHTpUgiCgNjYWEc3BQBw4MABzJgxA7du3XJ0U6qUkydPYsaMGUhLS3N0U0p15coVzJgxA8nJyY5uSoX5z3/+g9WrV+Oll17C2rVrMXToUEc3iZQBdYQJIYQAANavX4/w8HD89ttvOHv2rKObgwMHDiAxMZE6wjInT55EYmJitekIJyYm1uiO8I8//ohHHnkE06dPxzPPPIPWrVs7ukmkDKgjTAghBKmpqThw4AAWLFgAf39/rF+/3mFtyc/Pr9b7J/a7c+eOo5tgE7PZjIKCAgBAVlYWvLy8ym3fRqMRBoOh3PZHrKOOMCGEEKxfvx7e3t7o1asXnnrqKW5HOC0tDYIg4L333sMHH3yAsLAwODs7o1OnTjh+/Lii/unTp/HUU0/Bx8cHer0ebdq0wXfffSeps3r1agiCgJ9//hkvv/wyAgICULduXcyYMQOvvfYaACAiIgKCIEAQBKSlpYntWL16teKY8pzGGTNmQBAEnDx5EkOGDIG3tzfat28vrl+3bh1at24NZ2dn+Pj4YNCgQUhPTy/1fBXv9/Tp0xgwYAA8PDzg6+uLV199VewgyW3ZsgXNmjWDTqdD06ZNsX37dkWdP//8Ez179oSHhwfc3NzQrVs3HDx4UHK++vfvDwDo0qWLeF5++uknsc7SpUvRtGlT6HQ6hISEYMyYMYq76p07d0azZs3w119/oVOnTnBxcUH9+vXx1VdfAQB+/vlnxMbGwtnZGdHR0di9e7eirZcvX8Zzzz2HwMBA8T19+umn4vqffvoJbdu2BQA8++yzYluLP7fiNhw5cgQdO3aEi4sL/u///g/Dhw+Hn58fioqKFMfs3r07oqOjuedX/t6OHDmCdu3awdnZGREREVi+fLmibmFhIaZPn4769etDp9MhNDQUr7/+OgoLCyX1ivO8169fL57b7du3QxAEpKam4ocffpBco8C9DvLIkSMRGBgIvV6Pli1bYs2aNZL9lvydWrhwIaKioqDT6cT0F0EQ8Pfff+OZZ56Bp6cn/P398fbbb4MxhvT0dDz++OPw8PBAUFAQ3n//fbvfX2FhISZMmAB/f3+4u7ujb9++uHTpktXzXGMwQgghtV6jRo3YyJEjGWOM7du3jwFgv/32m6ROamoqA8CaN2/OwsPD2dy5c1liYiLz8fFh/v7+LCMjQ6x7/Phx5unpyZo0acLmzp3LFi9ezDp27MgEQWCbN28W661atYoBYE2aNGGdOnViixYtYnPmzGFHjx5lgwcPZgDYBx98wNauXcvWrl3L8vLyxHasWrVK8T4AsOnTp4vL06dPF/f/+OOPs6VLl7IlS5YwxhibNWsWEwSBDRw4kC1dupQlJiYyPz8/Fh4ezm7evGn1fBXvt3nz5qxPnz5s8eLF7JlnnmEA2NChQxVtatmyJQsODmbvvPMOW7hwIYuMjGQuLi7s2rVrknPm6uoq1pszZw6LiIhgOp2OHTx4kDHG2Llz59i4ceMYAPZ///d/4nkpPvfF7YqPj2eLFi1iY8eOZWq1mrVt25YZDAbxWJ06dWIhISEsNDSUvfbaa2zRokWsSZMmTK1Wsw0bNrCgoCA2Y8YMtnDhQlanTh3m6enJcnNzxe0zMjJY3bp1WWhoKJs5cyZbtmwZ69u3r/h5FdeZOXMmA8BGjRoltvXcuXNiG4KCgpi/vz975ZVX2IoVK9iWLVvYrl27GAD2v//9T3Ier169ytRqNZs5c6bVz6b4vQUEBLCxY8eyjz76iLVv354BYJ988olYz2Qyse7duzMXFxc2fvx4tmLFCjZ27Fjm5OTEHn/8ccVn2LhxY+bv788SExPZkiVL2MGDB9natWuZn58fi4mJkVyjd+7cYY0bN2YajYZNmDCBffTRR6xDhw4MAFu4cKG43+JruUmTJiwyMpLNmTOHffDBB+zChQviZxkTE8MGDx7Mli5dynr16sUAsAULFrDo6Gj20ksvsaVLl7JHH32UAWA///yzXe+v+NodMmQIW7x4MXvyySdZixYtFL9PNRF1hAkhpJY7fPgwA8B27drFGGPMbDazunXrsldffVVSr/iPtrOzM7t06ZJYfujQIQaATZgwQSzr1q0ba968OSsoKBDLzGYza9euHWvQoIFYVtwRbt++PTMajZLjzZ8/nwFgqamp3HaUpSM8ePBgSb20tDSmVqvZu+++Kyk/duwYc3JyUpTLFe+3b9++kvKXX36ZAWBHjx6VtEmr1bKzZ8+KZUePHmUA2KJFi8Syfv36Ma1WK3YUGWPsypUrzN3dnXXs2FEs27RpEwPA9u7dKzl2VlYW02q1rHv37sxkMonlixcvZgDYp59+KpZ16tSJAWCff/65WHb69GkGgKlUKrHjzRhjO3bsUJzvkSNHsuDgYElHnjHGBg0axDw9PdmdO3cYY4z9/vvvFj+r4jYsX75cUm4ymVjdunXZwIEDJeULFixggiCw8+fPK/bF2+/7778vlhUWFrKYmBgWEBAg/kOwdu1aplKp2P79+yXbL1++nAFgv/76q1hWfF5OnDihOF5YWBjr1auXpGzhwoUMAFu3bp1YZjAYWFxcHHNzcxP/qSi+lj08PFhWVpZkH8XX2KhRo8Qyo9HI6tatywRBYHPmzBHLb968yZydndnw4cPFMlvfX3JyMgPAXn75ZUm9IUOG1IqOMKVGEEJILbd+/XoEBgaiS5cuAO59DTxw4EBs2LABJpNJUb9fv36oU6eOuPzwww8jNjYWW7duBQDcuHEDP/74IwYMGIDbt2/j2rVruHbtGq5fv46EhASkpKTg8uXLkn2+8MILUKvVFfYeX3zxRcny5s2bYTabMWDAALF9165dQ1BQEBo0aIC9e/fatN8xY8ZIll955RUAEM9Fsfj4eERFRYnLLVq0gIeHB86fPw8AMJlM2LlzJ/r164fIyEixXnBwMIYMGYJffvkFubm5Vtuye/duGAwGjB8/HirV/T/vL7zwAjw8PPDDDz9I6ru5uWHQoEHicnR0NLy8vNC4cWPJzCHFPxe3lTGGr7/+Gn369AFjTHL+EhISkJOTgz/++MNqW4vpdDo8++yzkjKVSoWnn34a3333HW7fvi2Wr1+/Hu3atUNERESp+3VycsLo0aPFZa1Wi9GjRyMrKwtHjhwBAGzatAmNGzdGo0aNJO+ha9euAKC4Bjp16oQmTZrY9L62bt2KoKAgDB48WCzTaDQYN24c8vLy8PPPP0vq//vf/4a/vz93X88//7z4s1qtRps2bcAYw8iRI8VyLy8vREdHi59RWd5f8bU6btw4yXFr0jRw1jg5ugGEEEIcx2QyYcOGDejSpQtSU1PF8tjYWLz//vvYs2cPunfvLtmmQYMGiv00bNgQX375JQDg7NmzYIzh7bffxttvv809blZWlqQzbUvn5kHI95+SkgLGGPe9APc6LbaQbx8VFQWVSqWY0aFevXqKbb29vXHz5k0AQHZ2Nu7cucPNf23cuDHMZjPS09PRtGlTi225cOECACj2odVqERkZKa4vVrduXQiCICnz9PREaGioogyApK23bt3CypUrsXLlSm5bsrKyLLazpDp16kCr1SrKhw0bhrlz5+Kbb77BsGHDcObMGRw5coSb58sTEhICV1dXSVnDhg0B3MvLfeSRR5CSkoJTp05Z7IDK30NZrtELFy6gQYMGkn9IgHufZfF6W/ctv3Y8PT2h1+vh5+enKL9+/bq4bOv7u3DhAlQqleQfNUB5HdVU1BEmhJBa7Mcff8TVq1exYcMGbNiwQbF+/fr1io5wacxmMwBg8uTJSEhI4NapX7++ZNnZ2dnm/cs7b8V4d68t7d9sNkMQBGzbto17J9rNzc3m9tjSNkt3uxljdh2nPFhqU2ltLf58n3nmGQwfPpxbt0WLFja1wdLn3qRJE7Ru3Rrr1q3DsGHDsG7dOmi1WgwYMMCm/drCbDajefPmWLBgAXe9/B+CslyjZWVt37zPw5brqazvr7aijjAhhNRi69evR0BAAJYsWaJYt3nzZnzzzTdYvny55A91SkqKou7ff/+N8PBwABC/2tdoNIiPj7e7bZY6ld7e3gCgmAlBfpfNmqioKDDGEBERId4ptEdKSorkbt7Zs2dhNpvFc2Erf39/uLi44MyZM4p1p0+fhkqlEjsuls5LWFgYAODMmTOS9AqDwYDU1NQH+izkbXV3d4fJZCp1n5baaothw4Zh4sSJuHr1Kj7//HP06tVL/OxLc+XKFeTn50vuCv/9998AIH42UVFROHr0KLp16/ZA7eQJCwvDX3/9BbPZLLkrfPr0aXF9RbP1/YWFhcFsNuPcuXOSu8C8a7EmohxhQgippe7evYvNmzejd+/eeOqppxSvsWPH4vbt24opz7Zs2SLJ8f3tt99w6NAh9OzZEwAQEBCAzp07Y8WKFbh69ariuNnZ2Ta1r7gTI+/wenh4wM/PD/v27ZOUL1261Kb9AsCTTz4JtVqNxMRExV1ZxpjkK2Zr5P9ALFq0CADEc2ErtVqN7t2749tvv5WkVWRmZuLzzz9H+/bt4eHhAcDyeYmPj4dWq8VHH30keU+ffPIJcnJy0KtXrzK1yVpb//3vf+Prr7/mTptX8vO11FZbDB48GIIg4NVXX8X58+fxzDPP2Lyt0WjEihUrxGWDwYAVK1bA399ffODFgAEDcPnyZfz3v/9VbH/37t0Hmm/6scceQ0ZGBjZu3Chp06JFi+Dm5oZOnTrZvW9b2fr+iq/Vjz76SFJn4cKFFd7GqoDuCBNCSC1VPBipb9++3PWPPPKI+HCNgQMHiuX169dH+/bt8dJLL6GwsBALFy6Er68vXn/9dbHOkiVL0L59ezRv3hwvvPACIiMjkZmZiaSkJFy6dAlHjx4ttX3FHZY333wTgwYNgkajQZ8+feDq6ornn38ec+bMwfPPP482bdpg37594h0/W0RFRWHWrFmYOnUq0tLS0K9fP7i7uyM1NRXffPMNRo0ahcmTJ5e6n9TUVPTt2xc9evRAUlIS1q1bhyFDhqBly5Y2t6XYrFmzsGvXLrRv3x4vv/wynJycsGLFChQWFmLevHlivZiYGKjVasydOxc5OTnQ6XTo2rUrAgICMHXqVCQmJqJHjx7o27cvzpw5g6VLl6Jt27Zl6kiWZs6cOdi7dy9iY2PxwgsvoEmTJrhx4wb++OMP7N69Gzdu3ABw7zx7eXlh+fLlcHd3h6urK2JjY23Kt/X390ePHj2wadMmeHl5lakjHxISgrlz5yItLQ0NGzbExo0bkZycjJUrV4r530OHDsWXX36JF198EXv37sWjjz4Kk8mE06dP48svv8SOHTvQpk0bu87PqFGjsGLFCowYMQJHjhxBeHg4vvrqK/z6669YuHAh3N3d7dpvWdj6/mJiYjB48GAsXboUOTk5aNeuHfbs2VMlni5ZKRwzWQUhhBBH69OnD9Pr9Sw/P99inREjRjCNRsOuXbsmTvU0f/589v7777PQ0FCm0+lYhw4dJNOFFTt37hwbNmwYCwoKYhqNhtWpU4f17t2bffXVV2Kd4unTfv/9d+7x33nnHVanTh2mUqkkU6nduXOHjRw5knl6ejJ3d3c2YMAAlpWVZXH6tOzsbO7+v/76a9a+fXvm6urKXF1dWaNGjdiYMWPYmTNnrJ674v2ePHmSPfXUU8zd3Z15e3uzsWPHsrt370rqAmBjxoxR7CMsLEwy3RVjjP3xxx8sISGBubm5MRcXF9alSxd24MABxbb//e9/WWRkJFOr1Yqp1BYvXswaNWrENBoNCwwMZC+99JJiXuROnTqxpk2bctsknwrM0nvIzMxkY8aMYaGhoUyj0bCgoCDWrVs3tnLlSkm9b7/9ljVp0oQ5OTlJplKz1IaSvvzyS8UUYqUp3u/hw4dZXFwc0+v1LCwsjC1evFhR12AwsLlz57KmTZsynU7HvL29WevWrVliYiLLycmx+v6LWTpnmZmZ7Nlnn2V+fn5Mq9Wy5s2bK6aRK/k7JWfp2h0+fDhzdXW1+L7teX93795l48aNY76+vszV1ZX16dOHpaen14rp0wTGHJipTwghpNpIS0tDREQE5s+fb9Pd0ppsxowZSExMRHZ2tmL0Pik/3377Lfr164d9+/ahQ4cONm3TuXNnXLt2jZu2QYgc5QgTQgghpEr673//i8jISMljsQkpT5QjTAghhJAqZcOGDfjrr7/www8/4MMPPyz3WR0IKUYdYUIIIYRUKYMHD4abmxtGjhyJl19+2dHNITUY5QgTQgghhJBaiXKECSGEEEJIrUQdYUIIIYQQUitRR5jYbMaMGTRggRBCaojVq1dDEATJk+wIqW2oI0zsUtwpLu3VuXNnRzeVEEJIKYo7xaW9wsPDHd1UQsoVzRpB7PLkk0+ifv364nJeXh5eeuklPPHEE3jyySfF8sDAQEc0jxBCSBl07NgRa9eulZQ9//zzePjhhzFq1CixzM3NrbKbRkiFoo4wsUuLFi3QokULcfnatWt46aWX0KJFi3J9nj0hhJCKFxkZicjISEnZiy++iMjISIrppEaj1AjC9csvv6Bt27bQ6/WIiorCihUryv0YxekVf//9N5555hl4enrC398fb7/9NhhjSE9Px+OPPw4PDw8EBQXh/fffl2xvMBgwbdo0tG7dGp6ennB1dUWHDh2wd+9eSb20tDQIgoD33nsPH3zwAcLCwuDs7IxOnTrRIzgJIQ6VlZWFkSNHIjAwEHq9Hi1btsSaNWskdUrGsJUrVyIqKgo6nQ5t27bF77//btNxTpw4ga5du8LZ2Rl169bFrFmzYDaby/W9FKdX/PLLLxg3bhz8/f3h5eWF0aNHw2Aw4NatWxg2bBi8vb3h7e2N119/HfIZXN977z20a9cOvr6+cHZ2RuvWrfHVV18pjiUIAsaOHYv169cjOjoaer0erVu3xr59+8r1PZGaj+4IE4Vjx46he/fu8Pf3x4wZM2A0GjF9+vQKS3MYOHAgGjdujDlz5uCHH37ArFmz4OPjgxUrVqBr166YO3cu1q9fj8mTJ6Nt27bo2LEjACA3Nxcff/wxBg8ejBdeeAG3b9/GJ598goSEBPz222+IiYmRHOezzz7D7du3MWbMGBQUFODDDz9E165dcezYMUrhIIRUurt376Jz5844e/Ysxo4di4iICGzatAkjRozArVu38Oqrr0rqf/7557h9+zZGjx4NQRAwb948PPnkkzh//jw0Go3F42RkZKBLly4wGo2YMmUKXF1dsXLlSjg7O1fI+3rllVcQFBSExMREHDx4ECtXroSXlxcOHDiAevXq4T//+Q+2bt2K+fPno1mzZhg2bJi47Ycffoi+ffvi6aefhsFgwIYNG9C/f398//336NWrl+Q4P//8MzZu3Ihx48ZBp9Nh6dKl6NGjB3777Tc0a9asQt4bqYEYITL9+vVjer2eXbhwQSw7efIkU6vVzNIlk52dzQCw6dOn23yc6dOnMwBs1KhRYpnRaGR169ZlgiCwOXPmiOU3b95kzs7ObPjw4ZK6hYWFkn3evHmTBQYGsueee04sS01NZQCYs7Mzu3Tpklh+6NAhBoBNmDDB5jYTQkh5WbhwIQPA1q1bJ5YZDAYWFxfH3NzcWG5uLmPsfgzz9fVlN27cEOt+++23DAD73//+Z/U448ePZwDYoUOHxLKsrCzm6enJALDU1FTudq6urpKYW5pVq1YxACwhIYGZzWaxPC4ujgmCwF588UWxrDjWd+rUSbKPO3fuSJYNBgNr1qwZ69q1q6QcAAPADh8+LJZduHCB6fV69sQTT9jcZkIoNYJImEwm7NixA/369UO9evXE8saNGyMhIaFCjvn888+LP6vVarRp0waMMYwcOVIs9/LyQnR0NM6fPy+pq9VqAQBmsxk3btyA0WhEmzZt8McffyiO069fP9SpU0dcfvjhhxEbG4utW7dWxNsihBCrtm7diqCgIAwePFgs02g0GDduHPLy8vDzzz9L6g8cOBDe3t7icocOHQBAEhctHeeRRx7Bww8/LJb5+/vj6aefLo+3oTBy5EjJVJuxsbGKmF4c6+VtL3mX+ubNm8jJyUGHDh24MT0uLg6tW7cWl+vVq4fHH38cO3bsgMlkKs+3RGow6ggTiezsbNy9excNGjRQrIuOjq6QY5bscAOAp6cn9Ho9/Pz8FOU3b96UlK1ZswYtWrSAXq+Hr68v/P398cMPPyAnJ0dxHN57atiwIc2hSQhxiAsXLqBBgwZQqaR/ihs3biyuL0keK4s7xfK4aOk4cpUZ0wEgNDRUUS5v+/fff49HHnkEer0ePj4+8Pf3x7Jly8oU0+/cuYPs7OwHfRuklqCOMHE4tVptUxkAycCKdevWYcSIEYiKisInn3yC7du3Y9euXejatWu5DwIhhBBHsyUuVgWW2skrL9n2/fv3o2/fvtDr9Vi6dCm2bt2KXbt2YciQIVXuPZKagwbLEQl/f384OzsjJSVFse7MmTMOaJFlX331FSIjI7F582bJ13DTp0/n1ue9p7///psmiCeEOERYWBj++usvmM1myV3h06dPi+vL6zjVIaZ//fXX0Ov12LFjB3Q6nVi+atUqbn1LMd3FxQX+/v4V1k5Ss9AdYSKhVquRkJCALVu24OLFi2L5qVOnsGPHDge2TKn47kLJOwWHDh1CUlISt/6WLVtw+fJlcfm3337DoUOH0LNnz4ptKCGEcDz22GPIyMjAxo0bxTKj0YhFixbBzc0NnTp1KrfjHDx4EL/99ptYlp2djfXr15fL/suLWq2GIAiS/N60tDRs2bKFWz8pKUmSO5yeno5vv/0W3bt3t3hXmhA5uiNMFBITE7F9+3Z06NABL7/8shiYmzZtir/++svRzRP17t0bmzdvxhNPPIFevXohNTUVy5cvR5MmTZCXl6eoX79+fbRv3x4vvfQSCgsLsXDhQvj6+uL11193QOsJIbXdqFGjsGLFCowYMQJHjhxBeHg4vvrqK/z6669YuHAh3N3dy+U4r7/+OtauXYsePXrg1VdfFadPK74jXVX06tULCxYsQI8ePTBkyBBkZWVhyZIlqF+/PredzZo1Q0JCgmT6NODe3zBCbEUdYaLQokUL7NixAxMnTsS0adNQt25dJCYm4urVq1UqaI4YMQIZGRlYsWIFduzYgSZNmmDdunXYtGkTfvrpJ0X9YcOGQaVSYeHChcjKysLDDz+MxYsXIzg4uPIbTwip9ZydnfHTTz9hypQpWLNmDXJzcxEdHY1Vq1ZhxIgR5Xac4OBg7N27F6+88grmzJkDX19fvPjiiwgJCZHM5OBoXbt2xSeffII5c+Zg/PjxiIiIwNy5c5GWlsb929OpUyfExcUhMTERFy9eRJMmTbB69WrJU08JKY3AKAOd1HBpaWmIiIjA/PnzMXnyZEc3hxBCyAMSBAFjxozB4sWLHd0UUs1RjjAhhBBCCKmVqCNMCCGEEEJqJeoIE0IIIYSQWqladYT37duHPn36ICQkBIIgKKZUYYxh2rRpCA4OhrOzM+Lj47nzDJLaJTw8HIwxyg8mpJxRTCaOwhij/GBSLqpVRzg/Px8tW7bEkiVLuOvnzZuHjz76CMuXL8ehQ4fg6uqKhIQEFBQUVHJLCSGk5qOYTAip7qrtrBGCIOCbb75Bv379ANz77zAkJASTJk0S7/zl5OQgMDAQq1evxqBBgxzYWkIIqdkoJhNCqqMaM49wamoqMjIyEB8fL5Z5enoiNjYWSUlJFoNuYWEhCgsLxWWz2YwbN27A19dX8theQmoyxhhu376NkJAQyaNeLSkoKIDBYCi1nlarhV6vL48mkmqGYjIh9itrTAZsi8sUk5VqTEc4IyMDABAYGCgpDwwMFNfxzJ49m55CQ8g/0tPTUbduXat1CgoKEBHmhowsk9V6ABAUFITU1FQKvLUQxWRCHpwtMRmwPS5TTFaqMR1he02dOhUTJ04Ul3NyclCvXj1c+CMcHm73/wv74raPZLuzBUGKfV0p8FSU3TC4SpZvF+oUde4UaRVlBUXSj6bIoHxuusmoLDObpHdMmJHzn6SJc1fFLC0TuHWURYrtOFXAS76xJyGHt3NOmWLXKs7BOKeFqWX1eNvJ6wAQnKQnRsWpo3ZSBieNVlqm1xgVdVw0yv/u3XWFkmUfbb6iTog+R1FWXy/tfAx2vyH+nJtnRthDaTY90tVgMCAjy4Szh0Ph4W75TkXubTPqt0mHwWCgoEtsRjG5eEOKyRSTbYvJgG1xmWIyX43pCAcF3QuCmZmZkkfmZmZmIiYmxuJ2Op0OOp0yEHq4qSQXkzOTniqdk0axjdZJGTw1hdIyJyflsdQG5XZqWdA1OSk/KsYJujA6OOjaGmArMujKyyo76Dop66g4QVetlQZZtUb5eTpplW9Qo5PuX6srUtTR6ZXXp7Neeg3xgmVZvnp2cxfg5m65vpn/J5jUEhST/0ExmWIyKicmA9bjMsVkvmo1a4Q1ERERCAoKwp49e8Sy3NxcHDp0CHFxcQ5sGSE1UxEzlfoitRfFZEIqH8XksqtWd4Tz8vJw9uxZcTk1NRXJycnw8fFBvXr1MH78eMyaNQsNGjRAREQE3n77bYSEhIijmMvii9s+kjsOp++GSNZfKvBSbHOtwE1Rllso/frhjkH5X2EBp6zIILv7wLmLwIo4/8fI7j7w7jTw7izIywTe74uZs538jgTnH3abv5orjS1fuXHqMRVnQ86dBaaW3bnh3GnglsnOuYlz98GsUbbBbJJ+fiaT8vM0cc650ayyugwAJsUtGMAsK/usxM9384wAziu2scYMBrOVD9LaOlIzUEyWophMMZm3DFROTAasx2WKyXzVqiN8+PBhdOnSRVwuziMbPnw4Vq9ejddffx35+fkYNWoUbt26hfbt22P79u2UC0NIBTCDwUQd4VqNYjIhVYu1uEwxma9adYQ7d+4Ma9MeC4KAmTNnYubMmZXYKkJqpyJmRpGVuFrEeAmMpCahmExI1WItLlNM5qtWHWFCSNVhBn+sTsn1hBBCKo+1uEwxmY86whacLQiSjEKW55/xcs9yCpVf9+UVSEckFxqUp9xYpCwzy3LNmMG2kcaCLDdKvmyxTJZ/xhtprMg9AxS/WQIvZ60Cv43hpF2ByXPNeKOROTlq8n3J89MAgHFyzeRlzMypw/msTLLRx4yXQ8Y5nyZZ/pm9p1dV4oMpLFCOci6NqZTUCGvrCCkrisnKw1FMppisaIuVuEwxmY86woQQuxQxlJIaUXltIYQQYj0uU0zmo44wIcQuZggwWZmXkuasJISQymUtLlNM5qOOMCHELmZ272VtPSGEkMpjLS5TTOajjjAhxC4GqGCw8kwe5YNICSGEVCRrcZliMh91hC24UuApeTynfCCGLYMwAOVADPmk7ABg5jyzHrKBGDYPsDCWXkfFmZhdMTCDMyCAN+RUPliDO3ijIv8L5Q7MkA144MUE7mAN2QALzsdi5gywkD+shzcIgzugQ3aOeRO1W5mZ6oGpSwzMMBSUPUSamaCYEF6+npDyQjGZYjLF5NJZi8sUk/moI0wIsYuplBxha+sIIYSUP2txmWIyH3WECSF2MTI1iri3dorXU9AlhJDKZC0uU0zmo44wIcQudEeYEEKqFrojXHbUESaE2MXEVDBZuSNsohHKhBBSqazFZYrJfNQRtuCGwRWawvsDM3JlAzFsGYQBAEWF0jLuIIwi5UUrFAlWlwFAxSmTD7BQGRVVIPCefiQfmMEbvGHLk414v2i87ez4heR+q2NDGS8mcJ9+JHtqEW9ghqBWNlz+pCH5QI17dZRl8vPCOKNFeNPd2DspuvwtO6nuN6rIoEFZFUGFInBOkriekPJDMZmzHcVkisnytliJyxST+agjTAixS+l3hOn2AyGEVCbrd4QpJvNQR5gQYhczBKtPKqKnGBFCSOWyFpcpJvNRR5gQYpci5gQD77tKcT0FXUIIqUzW4jLFZD7qCFtwu1AHJ6f7OWd3ZPk63NwzWyZm5+WeGUrPNePmo3FyzVSyydrlk7kD/FwzxYTunPwp3qTv8pwqWydvr8h8NMW3Qrx56HlxwlR6HXnOGqB8z2bORO28xsu/peLlnnFz1GTLnEuDS62Sbumkup9jaSwse4A0QwWzlSfLmSt01n5S21BMtqEOQDEZtTcm32uL5bhMMZmPOsKEELuYmACTlTsM1tYRQggpf9biMsVkPuoIE0LsUsScUESpEYQQUmVYi8sUk/moI0wIsYsJKpispEaY6Gs4QgipVNbiMsVkPst/xQghxAoz7n8Nx3vxUhPLy7vvvot27drBxcUFXl5e3DoXL15Er1694OLigoCAALz22mswGjkJmoQQUkNYi8sUk/nojrAFd4q0UBvuT95eIBuYYSyyYRAGoBiIwR2EwSuTD7DgzITNm7xdPliDOwk7b2CGfDvObwx3X/LRBLYOwrDnH1PeIAybJm/nDKbgDbqQ/1vI+e1gnPOiKDPzGqp8w0zRUOVm/HEu0obyDmfklBWopAdQl1g22TEjfBFzghOzHELsnWTeFgaDAf3790dcXBw++eQTxXqTyYRevXohKCgIBw4cwNWrVzFs2DBoNBr85z//qbiGkQpDMdm27Sgm196YDFiPyxST+agjTAixiyPnEU5MTAQArF69mrt+586dOHnyJHbv3o3AwEDExMTgnXfewRtvvIEZM2ZAq9VytyOEkOrMUfMIV+eYTKkRhBC7GJhTqS8AyM3NlbwKCwsrvG1JSUlo3rw5AgMDxbKEhATk5ubixIkTFX58QghxBIrJZUcdYUKIXcxMKPUFAKGhofD09BRfs2fPrvC2ZWRkSAIuAHE5IyOjwo9PCCGOQDG57Cg1ghBiF3Mps0YUT+qenp4ODw8PsVyn03HrT5kyBXPnzrV6zFOnTqFRo0Z2tJYQQmo+a3GZYjIfdYQtKChygrrE4Av5E4rMnKcRwcB5QpFs8AR/MAVvsIZsmbMd7wlF8gEWvCcd2TJYQzAps+q5TzGSjRzgDcLgPtmonCgGU4AzWEOlbJQtTyjitZs3PaNZ/lvEHZyi/PzMisEanPwt3hOYFOM5OE864rznIkHa0AL1/TdoKuJ9uNYVMTXUVucRvtcGDw8PSdC1ZNKkSRgxYoTVOpGRkTa1LSgoCL/99pukLDMzU1xHqh+KyRSTKSaXzlpcppjMRx1hQohdzEwFM++vXon1ZeHv7w9/f/8HbRYAIC4uDu+++y6ysrIQEBAAANi1axc8PDzQpEmTcjkGIYRUNdbiMsVkPuoIE0LsYgJgsjIK2b77Gba5ePEibty4gYsXL8JkMiE5ORkAUL9+fbi5uaF79+5o0qQJhg4dinnz5iEjIwNvvfUWxowZY/FrQEIIqe6sxWWKyXzUESaE2KXI7AS14jvIkusrbtLKadOmYc2aNeJyq1atAAB79+5F586doVar8f333+Oll15CXFwcXF1dMXz4cMycObPC2kQIIY5mLS5TTOajjrAFRQY1TE73T4/JKP1KgfFyzzh5ZfJ8NPnyvTLl8eX5Z7bknt3brvQ6grH0XDP+RO2cMvl2nEnKbZ7QvRS2TNR+r560kJcuxXt/TC1tFDdnzYl3QE67ZHgpeSpZ4xnnpAicNyjIi3hN4lyfJlmOmqFEjqXZUPan+7BS5hFWTE5fjlavXm1xvspiYWFh2Lp1a4W1gVQuismc7SgmU0yWH8dKXKaYzEcdYUKIXUxMBZOVnDNr6wghhJQ/a3GZYjIfdYQJIXYpYmqorM4aUZFPtieEECJnLS5TTOajjjAhxC4lJ2i3tJ4QQkjlsRaXKSbzUUeYEGIXM1TiBO2W1hNCCKk81uIyxWQ+6ghbYDKqwYz3v15g8snaTbzJ1DmTsMsnb+cOpih9YnZbBmHwylScQRjcQR42DMxQcSZ0lw/W4E7UzhmsUX4DM5SFTDYAgXHei1nN2U7edt7k7dyBJ/b9ly3fvYrzXviz4UvrmXkT2PPen+waNqnvX99mo+UUB0uKzCqoeAcvsZ6Q8kIxmVeHYjLFZClrcZliMh91hAkhdmGlPFCD0cAMQgipVNbiMsVkvhp1VmbMmAFBECSv6v4MbEKqKhOEUl+kdqOYTEjlophcdjXujnDTpk2xe/ducdnJqca9RUKqBKNZBRVvYk9xfUU+x4hUFxSTCak81uIyxWS+GheRnJycEBQU5OhmEFLjmUt5oIa1daT2oJhMSOWxFpcpJvPVuI5wSkoKQkJCoNfrERcXh9mzZ6NevXoW6xcWFqKwsFBczs3NBQCYTQJQcqCFbNAF94lFvCcGyf4BU/EGb9jwhCJbBmHc247ZUEdZJsgGXcgHavDq8OoJvEc48sYW2DGdITe9iTNwgalkAxd4TzHiHN+sGGSi/Kz4T6iUF9oZbHibqUofeMK97ngDM+TnpcS1aOYMNCqNiQkwWRmUYm0dqT0oJlNMpphcOTEZsB6XKSbz1agc4djYWKxevRrbt2/HsmXLkJqaig4dOuD27dsWt5k9ezY8PT3FV2hoaCW2mJDqy8jUMJqtvKw8bIPUDhSTCalcVuMyxWSuGtUR7tmzJ/r3748WLVogISEBW7duxa1bt/Dll19a3Gbq1KnIyckRX+np6ZXYYkKqr+Jn2lt6VeRz7Un1QDGZkMplLS5TTOarcakRJXl5eaFhw4Y4e/asxTo6nQ46na4SW0VIzUBPliNlRTGZkIpFT5YruxrdEc7Ly8O5c+cwdOjQMm/LjCowY4kb5iZb8tFKzzWzJWeNtx0/Z42TH6aYvN3G7eTt5OaelT4RPC8fzdYJ3UvFnaids2tZmcC5yuW5Z4Ay/8zMbaMtgaT0Cdd5u+K9F+5E+7J68jwzABA434DJJ3QveX1LrnUbGc1qCFZnjaCv4YgUxWSKyQDFZLFeOcdkwHpcppjMV6NSIyZPnoyff/4ZaWlpOHDgAJ544gmo1WoMHjzY0U0jpMaxlhZR2owSpHagmExI5aKYXHY16o7wpUuXMHjwYFy/fh3+/v5o3749Dh48CH9/f0c3jZAah1IjSGkoJhNSuSg1ouxqVEd4w4YNjm4CIbWG0ayCYOXZ9UZ6rn2tRzGZkMplLS5TTOarUR1hQkjloTvChBBStdAd4bKjjrAlJkEyGEOwYWAGf8Jz2XbcOqWXCZzBFNykfcWADt7gjdIHZvC24w3WkJdx6/AGQcgHPdgwBoLZOjBDPgCBMwk7b+CCWf7bYPPYEdnxeGMwOJPMCyobrg3eYA3ZNcUbMMN4A4ecZO0suR87Jm9nsP6kIjuG3hBiGcVkTpsoJvPVzpgMWI/LFJP5qCNMCLGL0awCKDWCEEKqDGtxmWIyH3WECSF2odQIQgipWig1ouyoI0wIsYuplMFyJrr7QAghlcpaXKaYzEcdYUKIXUqbl5LmrCSEkMplLS5TTOajjrAlZuHe6x/lNcCCN3iD96Qhm7bjHk+aDs9/ihGnrEi+HW8giHKEhXxQAHcACefJRuX3FCNOmWwAglnNq8Mb0aE4IKcNnM1kgy5UnDbxHl3D5J8x53OxZTvbr0UrA1Y4g1dKQ6kRpFJRTFbum2IyxWQZSo0oO+oIE0LsQqkRhBBStVBqRNlRR5gQYhfGBDArdxisrSOEEFL+rMVlisl81BEmhNiFlZIaQUGXEEIql7W4TDGZj+6TWyCYBNkL0hfjvMyC8iXbDmblS+C9TEz2gk0vleyl3A+DymjDq8iseKk5L5VB9ioyKV8GG16FRuXLlu24x5O2idtu3suG88I9n4pzbutLti/OdcC9XuT74V13vOtTcXzpNV5WJggwMSuvChqYkZaWhpEjRyIiIgLOzs6IiorC9OnTYTAYJPX++usvdOjQAXq9HqGhoZg3b16FtIdUDorJFJMpJpfOalymmMxFd4QJIXZxVGrE6dOnYTabsWLFCtSvXx/Hjx/HCy+8gPz8fLz33nsAgNzcXHTv3h3x8fFYvnw5jh07hueeew5eXl4YNWpUhbSLEEIczRGpEdU9JlNHmBBiFzMTIDhg1ogePXqgR48e4nJkZCTOnDmDZcuWiUF3/fr1MBgM+PTTT6HVatG0aVMkJydjwYIFDg+6hBBSUazFZYrJfJQaQQixi9kslPqqLDk5OfDx8RGXk5KS0LFjR2i1WrEsISEBZ86cwc2bNyutXYQQUpkoJpcd3REmhNjF1tSI3NxcSblOp4NOpyu3dpw9exaLFi0S7zwAQEZGBiIiIiT1AgMDxXXe3t7ldnxCCKkqbEmNoJgsRR1hS4oT4cVl2eTtynnMpfWL68kmBOdPuK4sk9fjHU8+cfq9fbEy1wGgmJhdxZmoXSjilMnqceuYOY3ntKFUnEnYoeJ8qaGR7Zsp6/C+CpHHDoGzb97nJ989r0mM03b5vuSTsls8nvy3lnfdca9PWRtKTqrPq18KW1MjQkNDJeXTp0/HjBkzFPWnTJmCuXPnWj3mqVOn0KhRI3H58uXL6NGjB/r3748XXnihDK0n1Q7FZGUdiskUk+W7tCE1gmKyFHWECSF2MZvvjY62th4A0tPT4eHhIZZbuvMwadIkjBgxwuoxIyMjxZ+vXLmCLl26oF27dli5cqWkXlBQEDIzMyVlxctBQUFWj0EIIdWVtbhMMZmPOsKEELvYmhrh4eEhCbqW+Pv7w9/f36ZjX758GV26dEHr1q2xatUqqGS3fOLi4vDmm2+iqKgIGo0GALBr1y5ER0dTWgQhpWCMwWQ2wMSMAGNQqZygVmmgEtSObhophS2pERSTpagjTAixC/vnZW19Rbh8+TI6d+6MsLAwvPfee8jOzhbXFd9ZGDJkCBITEzFy5Ei88cYbOH78OD788EN88MEHFdQqQqqv/IJryMm7jNy7V/95ZcLMiiR1BKjgpveHh3MQ3J2D4ekcDA+3OhAEekhDVWItLlNM5qOOMCHELswsgFlJjbC27kHs2rULZ8+exdmzZ1G3bl3pMdm9UO/p6YmdO3dizJgxaN26Nfz8/DBt2jSHT9NDSFVhMhuReesk0q8dRs6dywAAF60PPJyDEOARDb3GAyrVvTt3ZmaEwXgHt+9mIPfuVVy5eQwMZjhrvRHq1xohPi2hdXJx5Nsh/7AWlykm89nVETaZTFi9ejX27NmDrKwsmGWJ9z/++GO5NM6hzIIkkV2R6G5jMryijPMvmWDmFMq24w3e4A/WkNUxcrbjDIqQD+AQjKUP3gAAlUF2QN6ADhOn8SZZPcY7MbJfWjVnxINa+VWdINsXd8wB5y6GSiXdjnEHsPC2ky4zzreHvM8Psnrc64DzFZf8c7d5kJDiGhb4P9uqlNQIXtvLw4gRI0rNWwOAFi1aYP/+/RXShqqGYjIoJhdvV0pMNpoKkZr5Cy7dSkaR6S58XcMRU/dJ+OjrQaMukSvKi8nuLQHc60TnFFzBpdy/kHJ1L85e/QlBHo0R5d8ezs6+ynZSTK6cmAxYj8sUk7ns6gi/+uqrWL16NXr16oVmzZrRVyOE1EKM8f9WllxPKgfFZGKL67fP48Tl71FkvIu63jEI9W4FV90/HVf5zQkr1Con+LjUg497OBoFxuPSraO4eOMIMnNPo2FwPOr6PETXoINYi8sUk/ns6ghv2LABX375JR577LHybg8hpJpgZhWY2fIzeaytI+WLYjKxxmgqxN8Zu3Hpxp/wcQ1Hs7CecNZ6lcu+tU4uiPSLQz3vh3Amay9OXdmGjJyTaFq3N1y0NDC1slmLyxST+ezqCGu1WtSvX7+820IIqUbojnDVQTGZWHLXkIMjqetRaMxD45CeqOvzEFS8eYQfkJNah6bBPRDo1RgnLn2PgykfIyZ8AHxcw8r9WMQyuiNcdnZ1hCdNmoQPP/wQixcvrrFffwiQTbwuu4B48/Rx84IU25VeB/JjQ5ljZWlf8pwmXo4Tf/J22Xacr8l4E7PL888EQ5GiimDk5QjLyni5WCp5jjAn0ctJ2SYGjfT4vGtUvm8oc80ENec88coU+WGcffM+P3m+FjdXUVlmyzXFnUdS1oaS15hdv8WOmjaCKFBMppgsKhGT8wtv4Mj5tRAEFeLCRsBV6w0UGS3HZMbgZ8pDg8JMhBuuwdlsgADAIDjhksYbKbpAXNZ4gxVfY5yY7KcNxaNhz+HPK9/gj9QvEFPnCfh5R0vbTTH5n+3KOSYXt6Wyp42o5uzqCP/yyy/Yu3cvtm3bhqZNm4pzwhXbvHlzuTSOEFJ1MVbKrBEVNDCDKFFMJnIFhhwcSV0HtUqDNnUHQa9xt1g3uOgWet76E13zT8PXlA8AyFHpcVulBwDoWRH8/im/I2hxwCUK33u0xBnnOtxBbk5qHR6q8xSOXtmC5Mvf4CHtYLozXEmsxWWKyXx2dYS9vLzwxBNPlHdbCCHViK0P1CAVj2IyKclkLsKRtC8ACFY7wcFFtzD62o9oe+c88lU67HFtgqPOoUjRBuK64CLp5LqZClDfmIUmhVfxr7wTiL96CinaQKz064zjzqGKfatVTmgZ0g9/XP4Kf6ZtRFz95+Gi86mot0z+YcsDNYiUXR3hVatWlXc7CCHVDaVGVBkUk0lJZzN/xl3DTTxS/3noVcpOsMAY+uT+iWev78MttQsW+idgn3MDFKpKfJMgS+HIU+uRrAlDsnMYNng+jNZ3L2BQzm+Yf2Ujtng+hNU+7VGo0kq2Uauc0KrOEziQthonLn+PNhFDa2zqTpVBqRFlRg/UIITYhwnW56Wkuw+EVLpb+Zdw4dpBNAjqCje9PyAbt6E1F+H/Mr7FI3fO4X8eMfjUtyMKVFrluA0rzIIKv7tE4IhbJPrm/IERN37BQ3fS8GZIf2Q7eUnqOql0aFq3Nw6nrkP69cOo59e2PN4mscRaXKaYzGVzR/ihhx7Cnj174O3tjVatWln9r+6PP/4ol8Y5lOy/Kvm7lQ+cELcprcyGQRiAbZO+c4eA2pS0zyuTD8zgDUAo/WEZ3EEYnAF0rEhWZsNgOUGW9whYGFAgf/CGmlPLpJxGRj7owtZzp/yM7ZyEvaKvKWv7sedOAd0RdiiKyVIUk++lRBy/9B08nUMQ4d0WgskkickasxGJGZvRuOAKpvn1xe/OEYARAIrsislmjQZbXFrisCYUs7K3YP6lL/Ba3cG45iS9C+3rHIpQ74eQkvEj/F0j4Kz2V+6bYvKDx+Ti7eiOcJnY3BF+/PHHodPde+pMv379Kqo9hJDqgu4IOxTFZCJ36dofuGu4hVZRIyEI8serMbyWtRVNCq7gLb9+OK6vU37H1fhgckB/vJe1Ce9e2YRX6z5z7y5zCQ0DuyA77xxSsn5GC7enyu3YRIbuCJeZzR3h6dOnc38mhNROzHzvZW09qTgUk0lJjDGkXz+MQI9ouOn8FOu75Z1Eh/y/MSuwL45ry68TXOyakzve9H8CizM/x3PX92Gpf7xkvZNKizCfNvg7cy8Ki/Kg07iVexuI9bhMMZnvgR8zkpeXh9zcXMmLEFILFN95sPaqpjIzMx3dBLtRTK6dbuSl4k7hDdTzbq1Y52PMw+hrP2KPWxP86tawwtpwWeONT307ok9uMlreuahYX8erOQRBhcvX/6ywNtR6FJPLzK7BcqmpqRg7dix++uknFBQUiOWMMQiCAFMZku4JIdWTwCzk0JVYX12FhIQgICAALVu2RMuWLRETE4OYmBhER0dDpap6jymlmEzSrx2Gm94fXi51FeuG3vgVRYIay/26VHg7vvdohQ55f+PFa3vwUugIyRRsGrUzgj2b4tL1PxAe+ChU8vQN8sCsxWWKyXx2dYSfeeYZMMbw6aefIjAwsGZOhyJPOLfzAlI+jcjCscq4H4tligEdvKfn8AYOMOvLAMAZrAH50444f3AVgzAAoLBQVseoqCJopJcn7zQJ8oFxAGCSPe2I124bzoFN5wnKJwbZ+lkp923bdnYHM2sDOuzZp1m497K2vpo6ceIEjh07hmPHjuHw4cOYP38+AECv16NZs2aIiYkRA3L79u0d3FqKyWVRE2Oy0WRAds7fiA7u/s8gu/t13Qz56JJ3Ep97PoI83JsdoiJjMtQqrPeMxZzMr9HszkUc19eVxOS6Hi1w+dZR3Mq9AB+3cOvvj2Jy2VmLyxSTuezqCB89ehRHjhxBdHR06ZUJITVTDZ41olGjRmjUqBH69++PPn364JVXXsErr7yCK1eu4M8//0RycjL++9//4uTJkzAYDI5uLsXkWu52QQYYGLxd6ynW/SvvBFSMYYd7s0prz1F9KNKdvNE79+i9jnAJnvogqAQNcu9elXaESfmoobNGVGRMtqsj3LZtW6Snp1PQJaQ2M//zsra+Bti9ezeOHTuG+vXro379+ujYsaO4rip0ggGKybVd7t2rUAlOcNX7AUXSX7yO+X/joEsUctQuldcgQcAO92YYfvMANMwIA7QlVqng4RyI3LtXK689tYm1uEwxmcuuxIqPP/4Yc+fOxZo1a3DkyBH89ddfkpejLVmyBOHh4dDr9YiNjcVvv/3m6CYRUvPU4MFyJTVt2hQpKSncdVqtllte2Sgm1265d6/CXR8IlSBNC1MzEyIN2TipC6n0Np3QhUADE8IM1xXrPJyDkXs3o9LbVCtQTC7z/uy6I5ydnY1z587h2WefFcsEQagSAzM2btyIiRMnYvny5YiNjcXChQuRkJCAM2fOICAgwGHtqlJsyo2y8TsUeT3eJOycMnn+mTk/X1FH5eoqWRY0nAucdzxb2m5TndKr1GY1ebBcSZMnT8arr74KLy8vxMXFObo5XBSTq7kHjMm372bCqzgtokS9eoXXoIUJKZoAaayshJic6uQHEwQ0KMxECpOmR3g4B+Pi9d9hNBXCSa0r9f3db2TpVWq7mjpYrqTyjsl2dYSfe+45tGrVCl988UWVG5ixYMECvPDCC+IfhOXLl+OHH37Ap59+iilTpji4dYTUIDU4R7ikl156Cbm5uWjfvj1CQkLw0EMPoVWrVoiJiUGrVq0QFhbm6CZSTK7likwF0Dm5KspD/7kbm6b1rewmoVClwVUnL4QW3VCs0/7TVqO5REeYlI8amiNcUnnHZLs6whcuXMB3332H+vXr27N5hTEYDDhy5AimTp0qlqlUKsTHxyMpKYm7TWFhIQpLjJalOTcJsY2AUu4IV1pLKlbfvn0xbtw4aLVaJCcnIzk5Gfv378fixYtx48YNmDmPHq9sFJNrNxMrgkql/HOuN9+bHeKu4JgUnjsqDXRMOUOFSrjXVpNZOTMFeTDW4jLFZD67OsJdu3bF0aNHq1zQvXbtGkwmEwIDAyXlgYGBOH36NHeb2bNnIzExsTKaR0jNUksesbxmzRrx5+bNm2Po0KHicnp6uiOapEAxuXYTLHRxmIO7PgKz1IZ7PbWaESGqmFrwiOXyjsl2dYT79OmDCRMm4NixY2jevDk0Go1kfd++fe3ZrUNMnToVEydOFJdzc3MRGhrqwBYRUk3UklkjrKkqsYJicu2mEpxgMivvvBao7l0HbuZC5KqdK7tZcGWFKBA0inITu3cnmHcXmzygWjBrhDX2xAq7rsIXX3wRADBz5kzFOkcOzPDz84NarVY8ii8zMxNBQUHcbXQ6HXS6WpajZMs/hbbmGMrrqTjbccrkE7PLB2Hw6ti6b5vablOd0qvUZrVlsFzJAWjWrFq1qoJbYhnF5GruAWOy1skFhUW3FfXSdP4AgAjjNRzVlJhjuBJisou5EEHGHKRp/RRtv9dWAZqSnXOKyeWiNgyWK++YbNf0aWaz2eLLkaOTtVotWrdujT179kjaumfPnio72puQaovZ8KoBcnJyJK+TJ0/iiy++UJQ7EsXk2s3dOYg7HdllrQ/uCho0MGRytqpYUYZsqACc1QUq1uXevQpXnS/UKuXdYvKAKCaXOSbXuO8lJk6ciOHDh6NNmzZ4+OGHsXDhQuTn59v8HwQhxDaCmfP4WNn6mmDz5s3iz+np6ejcuTOKiorQsGFDzJkzx4Etqx4oJlc8D+dgXL11DGazESVnEjYLKpzVBqB5wWV85dm2UtvUrOASCgQnXNT4KNbl3s2Ah3NwpbantrAWlykm89l1R3jcuHH46KOPFOWLFy/G+PHj7dlluRk4cCDee+89TJs2DTExMUhOTsb27dsVgzUIIQ+oljxQo9ilS5fQuXNn1KlTB3v27MGyZcswb948RzcLAMXk2s7DORiMmXG7IEuxbq9bI7S+m4YAY+XNvqFiZvS4fRw/u0bDLEi7GWZmQl5BJnWEKwrF5DLvx647wl9//TW+++47RXm7du0wZ84cLFy40J7dlpuxY8di7NixD7YTAdJ8JDuvH/l1x70Obdg3bztumfxfG07eFePlYsnLeHXUvDLZAdVqRRVBo/z6S/4NDXdidln+GW8/vOMp22RjHrGszKbzBOU5t/WzUu7btu3sjmXy7R70+q4l8wgDwJUrV9ClSxeEhIRg27ZtcHV1xbfffotevXrBx8cHzz//vEPbRzHZdjUxJru7BkIQ1LhxJw1e3tJ/MPZ6NMXIm/vRM+841vh2uLerCo7JbfNTEWC6je+9Wt2L0SVi8q38SzAzEzzd6khjM8Xkcrm+a8M8wkD5xmS77ghfv34dnp6einIPDw9cu3bNnl0SQqqZ4q/grL1qgqtXr6Jz584IDAzE9u3b4frPIKLOnTvjiy++wCuvvIKvvvrKoW2kmFy7qVUaBHk1waXrf4LJntBWoNJil3sz9M5Nhq/xdsW3hZkw9MYBnNIF46xOOSAy/eYfcNH5wNOlToW3pTaimFz2mGxXR7h+/frYvn27onzbtm2IjIy0Z5eEkOqG3R+hzHtV5N2Hvn37ol69etDr9QgODsbQoUNx5coVSZ2//voLHTp0gF6vR2hoqN1pDF26dIG/vz927NghBtyS7VixYoVkHktHoJhMQv3a4K7hJq7ln1esW+/dDoWCE8Zl77TtUcYPYODNQwg3ZGOpfzfFukJjHjJzzyDUt02VevphjUIxucwx2a7UiIkTJ2Ls2LHIzs5G165dAQB79uzB+++/7/Cv4AghlcSBqRFdunTB//3f/yE4OBiXL1/G5MmT8dRTT+HAgQMA7s092717d8THx2P58uU4duwYnnvuOXh5eWHUqFFlOpavr6/kroPcsGHDcP369Qd+Tw+CYjLxdKkDd+dApN/4A/5uUZJ1eWo9PvLvjsSMb9Az9y9sc25SIW1oWJiBwTcPYqN3LPdu8KWbRyEIKoT4tKiQ4xM4LDWiOsdkuzrCzz33HAoLC/Huu+/inXfeAQCEh4dj2bJlGDZsmD27JIRUM46cNWLChAniz2FhYZgyZQr69euHoqIiaDQarF+/HgaDAZ9++im0Wi2aNm2K5ORkLFiwoMxBd8eOHXBzc7O5PY5AMZkIgoBQv7Y4mf49bt25DC9Z6sFvrlH4n0cMxlzbjVxfDX51aVCuxw8zXMPMa98iRReIL7yVU+MZjHdw8cZhBHs2hcap8h/uUVs4ataI6hyTy9wRNhqN+Pzzz/Hkk0/ipZdeQnZ2NpydnUttVLUjG5gh/0fK5gEW1pLhrexLOcCCt2/ewAFpSxX7sVgmG5TAG2Cm4mwoH6zmpPxN4zZdPqDNzPlXVT5ZO2dgHHPilMnqMU67ee9PcQ5sPHfKz5j3uZS+rwq/pqztpwK/pczNlY5WL+8HJty4cQPr169Hu3btxCeqJSUloWPHjtBq7w/4SUhIwNy5c3Hz5k14e3vbvP+qHtsoJv+zTDEZwX6tcOnaERy/uhWP1H8eapWTJCYvC/oX3Fkhpl7fhsUqI7a7Nxfb/CAxuendS5iWvQXZTu54O3QAitTSgXZMrcapy7thhhn1gzpTTC4us7YfiskWlXdsK3OOsJOTE1588UUUFBQAAPz9/WtewCWElM7GB2qEhobC09NTfM2ePbtcDv/GG2/A1dUVvr6+uHjxIr799ltxXUZGhmJ6ruLljAzlgweqM4rJpJhKUKFZ3b64Y7iJc1n7FOvNggrzgntju0cLvJq9E9MytsDbmGf38bTmIjx/7SfMu7IBF7R+eCNkIPLUekW9zJzTyMg5gcbBCdBp3O0+HrEBxeQys2uw3MMPP4w///yzvNtCCKlGBFbKCOV/gm56errkaT9Tp07l7m/KlCkQBMHq6/Tp02L91157DX/++Sd27twJtVqNYcOGKUbM1xYUk0kxN70/ogI6Ii07Cbfy0xXrzYIKi/3/hXcCH0ejwqtYkb4ag28klalDrDcb0PP2X1hy6TP0yf0Tn/p0xJSQAcjndIILjfk4dWUb/N0bIsir2QO9N1I6q3GZYjKXXTnCL7/8MiZNmoRLly6hdevWioTlFi0oEZ6QGs/GwXIeHh7w8PAodXeTJk3CiBEjrNYpOQOCn58f/Pz80LBhQzRu3BihoaE4ePAg4uLiEBQUhMxM6WNli5eDgpSDeKo7ismkpHD/OFy7nYI/L3yJh0OHwE3np6hzwK0BjjnXxfAbv2DArUMYcjMJB10icVQfihRdIFLVfjCo7nURVMyM0KIbaFCUhSaFV9Ax/2/oWRF+d4nEzKB+SNf6cttRZCrAkUtfAhDQpE5PmimiMtgwWI5ispRdHeFBgwYBuPc0IzlBEBz6bHtCSOUQp+Sxsr4s/P394e/vb1dbzOZ7eZCFhYUAgLi4OLz55pviQA0A2LVrF6Kjo8uUi1ZdUEwmJakEFVqFDcTv5z/D4Usb0abuQG5n+LbaGYv9/4VVPh3QLfc4uuWdwqgbP0ODe79PBcK9LoKGmaD+pxd1yckb//OIwTb35sjSWf5dKjIV4I9Lm3C3KBdto4ZRSkQlsRaXKSbz2dURTk1NLe92VDkMsuR2+dOIVMorSp7Yz9+OczAbEut5T9SxpQ3cwQW8QQlOsu3MnA01yuMJsq89GHhPGuLsyyQb5Mb7+kT+njn7kQ+MAwA4SesxDW87Tpn8HNgweINXxj3n3KdJyQpsGaDDqccfQMI7n5aPb8+XV46aNeLQoUP4/fff0b59e3h7e+PcuXN4++23ERUVhbi4e6PVhwwZgsTERIwcORJvvPEGjh8/jg8//BAffPBBxTTKwSgmU0wuVhyTNU6uaN1gKI6krMVv6V+gVfjA+zNJyOJfHjT4VheLb/1joTEbEW7IRnhBNlzMBghgKBSccEnrg3P6INxRlxhUZSEmFxTl4s9LG1FQlIvWEUPg7ia940cx2cJ2DxiTAcfMGlHdY7JdHeGwsDAAwMmTJ3Hx4kUYDAZxnSAI4npCSA3moHmEXVxcsHnzZkyfPh35+fkIDg5Gjx498NZbb4kjnz09PbFz506MGTMGrVu3hp+fH6ZNm1bmaXqqC4rJhEencUPbyGH4I20Dfj+3GhH+jyIyoD3UVqYkKFI5IUUfjBTOPMDc2RdKYIzh8s2jOHNlJ9QqLdpEDoW7PuBB3wYpCwfMI1zdY7JdHeHz58/jiSeewLFjxyAIgpgMXZz/Q1/DEVILOKgj3Lx5c/z444+l1mvRogX2799fMY2oYigmE0s0Ts5oGzUMqVm/4nzWL8jKPYNmIb3g6RxcrscpKLqNk1e3ITvvHIK9mqFRcALNF+wIDugIV/eYbNesEa+++ioiIiKQlZUFFxcXHD9+HPv27UObNm3w008/lXMTCSFVUWnPtK8pz7WvDigmE2tUghpRgR3xSP2REAQVDqWuQfKlb3Aj/8IDj+rPK7yGU1d34pdzK5FTkIGYsAFoHtqPOsEOQjG57Oy6I5yUlIQff/wRfn5+UKlUUKvVaN++PWbPno1x48bVjGl8VOze6x+KPCSbJ0WXFXBzjngTpctybzmpsIxzk8csqydwPmFmVh7PLMu9EpxsS46S/15xRwXzJoI32RF8uflhnLwyWf4Zcyo99wxQngN+3p6yWfJzzs8BVJbJryFb8hl5++fmrNlyLZa8xnj5a6Vx4COWiRTFZFBMLt5OtlwyJrtpQvBw4xdwOesw0q8dxu8XPoerzg91/VrD1yUCrjofCIL1+2OMMRQU5eLWnXRcuvknbuZdgNbJFfX8H0a4/yNw0roqH3ZCMblyYjLgkDvC1Z1dHWGTyQR393sjQP38/HDlyhVER0cjLCwMZ86cKdcGEkKqpvKeNYLYj2IysZVKUKOef1uE+rXBzbwLSL92GH9f3gkGBrVKA3d9EDycg6HXeEClcoIAAWZmhMGYj9y7Gci9m4Ei0x0AgJdrPTQPewKBno2hUt3rWdKvvWOV56wRtYVdHeFmzZrh6NGjiIiIQGxsLObNmwetVouVK1dK5pQjhNRcjpo1gihRTCZlJQgCfNzD4eMejiJjAXLzryD37lXk3s1A9u0UFBnvwMSKAMagUmngpNLB3TkQob6t4eEcDA/nIOj1no5+G0TGEbNGVHd2dYTfeust5OfnAwBmzpyJ3r17o0OHDvD19cXGjRvLtYGEkCqKUiOqDIrJ5EFonPTwdYuAr1uEo5tCHhSlRpSZXR3hhIQE8ef69evj9OnTuHHjBry9venJMYTUEpQaUXVQTCaEAJQaYQ+7OsI8Pj4+5bWrqkEFaXK7fKAEdzCFskg+Qbc8iR8ABE6ZYoAFdxCGsg3yrz7MnK9CeMeTD14wc35huEMo5H9keefFxDsxzPoyb9+8CdB5gyfU8oEZnEEY3MEasu04++adc3k9bh3OKVAM6LDhOgA4k77bOEhIMfhCZeFnW9Ed4SqNYjIoJgMUky3VqYkxGaA7wnYot44wIaR2oTvChBBStdAd4bKjjjAhxD4Myrma5OsJIYRUHmtxmWIyF3WECSF2oTvChBBStdAd4bKjjjAhxD6UI0wIIVUL5QiXGXWELWBqBqYu8RQj+RNuuE+XUV5liuR+zgAL/lNv5E/U4eyb8/WHfCCGwHtiEe9TV+yeM3CBNxZF9p4FI2ewCKft3IEYpeENzOAMBJEPxOAOlOAMzDDLt+MM6OAP1pDXUVSxUCb7jG19GpHiqUmca4N3fSraybg/24rmESaViWIyxWSKyaWjeYTLjjrChBC7UGoEIYRULZQaUXbUESaE2IdSIwghpGqh1Igyo44wIcQulBpBCCFVC6VGlB11hC1RMclk1/J8Hf6k4crdyMt4k3HzPgXFJOy87XgTs8vyz8y8vC/uf4XyidI5NVScHDWTLB+Nk9fE++UTFJO3l94kxs1HU26mzOWzMa9MkY+m3DevTDl5O2c7W64N3vFs2M72/Df55O2M/7Ot6I4wqUwUk5U1KCZTTFbsFHRHuIyoI0wIsYvAmPKPp2w9IYSQymMtLlNM5qOOMCHELpQaQQghVQulRpQddYQJIfah1AhCCKlaKDWizKgjTAixC02fRgghVQtNn1Z21BG2RM3uvf6hGJjhpLyizKbSJy7nDhLgfF2hSL7nTSTOyfcxK4o4Iyx45IMgOAMeVJyJ5+WTtds6MKP8Jm/n7Fo2oTvjDngofbAGf2BG6ZPh847H/fzKaYAFd/AG5/pUDMwouUwP1CBVHcVkBYrJFJPlKDWi7KgjTAixD6VGEEJI1UKpEWVGHWFCiN3oqzZCCKlaKC6XDXWECSF2EcwMgvJ7X8l6QgghlcdaXKaYzMfJ5qm+wsPDIQiC5DVnzhxHN4uQmonZ8CK1GsVkQioZxeQyq3F3hGfOnIkXXnhBXHZ3d7drP4KTGYLT/cxyZpQn+3MS3zkDF8yypwrxktV5AzMUgwJ4FzDjDbqw5UrnDBKQfZeiUtk2CEL+YCP+IAxOC8w2Dhgp5fi8cSfygRn8JwFxBlgoBkqUPggDAMwaeR0bt5MP6OAOsLBhO961yCmTD74oeX2X/NlWNFiO2IJiMsVkismVE5MBGixnjxrXEXZ3d0dQUJCjm0FIjUcdYWILismEVB7qCJddjUqNAIA5c+bA19cXrVq1wvz582E0Gh3dJEJqJsZKf1WwwsJCxMTEQBAEJCcnS9b99ddf6NChA/R6PUJDQzFv3rwKbw9RophMSCWimFxmNeqO8Lhx4/DQQw/Bx8cHBw4cwNSpU3H16lUsWLDA4jaFhYUoLCwUl3NzcyujqYRUe1XhgRqvv/46QkJCcPToUUl5bm4uunfvjvj4eCxfvhzHjh3Dc889By8vL4waNariG0YAUEwmpLI5+oEa1TEmV/mO8JQpUzB37lyrdU6dOoVGjRph4sSJYlmLFi2g1WoxevRozJ49Gzqdjrvt7NmzkZiYqChXqRlUJXJ6TLL8HsYZfck4k7fLc9TMvDwhXm6W3ResfF+cdnIOJ88/syX3DFDmUHHzzDj/hdrzC8lNv7NhQnfee+FP3i6vw2mDDRO6y/PTLJY5WV++V8abhL30NnHz0WRlJa/v6vhAjW3btmHnzp34+uuvsW3bNsm69evXw2Aw4NNPP4VWq0XTpk2RnJyMBQsWODzoVncUk8uKYjLF5MqJyYBjUyOqa0yu8h3hSZMmYcSIEVbrREZGcstjY2NhNBqRlpaG6Ohobp2pU6dKgnVubi5CQ0Ptbi8htUZpX7X9s05+R0+n01nsBNkqMzMTL7zwArZs2QIXFxfF+qSkJHTs2BFarVYsS0hIwNy5c3Hz5k14e3s/0PFrM4rJhFRh1uIyxWSuKt8R9vf3h7+/v13bJicnQ6VSISAgwGKd8rgACKmNbE2NkHdipk+fjhkzZth9XMYYRowYgRdffBFt2rRBWlqaok5GRgYiIiIkZYGBgeI66gjbj2IyIVWXLakRFJOlqnxH2FZJSUk4dOgQunTpAnd3dyQlJWHChAl45pln6I8eIRXA1tSI9PR0eHh4iOWWOjm2fuW+c+dO3L59G1OnTi1zm0nloZhMSOWzJTWCYrJUjekI63Q6bNiwATNmzEBhYSEiIiIwYcIEyVdshJByZGb3XtbWA/Dw8JAEXUts/cr9xx9/RFJSkiJ4t2nTBk8//TTWrFmDoKAgZGZmStYXL9NUXpWDYjIhDmAtLlNM5qoxHeGHHnoIBw8eLLf9qZ1MUDndH1Vh1sgGLvAGYXCS4c3y/8x4owu4Axdkyf5W2moVZ+CCwPveRD4JO3cQBmdfsoEnAi83ifOey29gBq+e7LPiDbCwYZAJf2BG6ROz2zII496+5Ntxrh/uZPGyQUI2TNQOAIJGehWpS1zfghPnyQOlKe1JRWX8jG39yv2jjz7CrFmzxOUrV64gISEBGzduRGxsLAAgLi4Ob775JoqKiqDR3PtAdu3ahejoaLobWUkoJltAMZli8j/KPSYD1uMyxWSuGtMRJoRULoFZfqZ98fqKUK9ePcmym5sbACAqKgp169YFAAwZMgSJiYkYOXIk3njjDRw/fhwffvghPvjggwppEyGEVAXW4jLFZD7qCBNC7FIV5hG2xNPTEzt37sSYMWPQunVr+Pn5Ydq0aQ6fpocQQiqSo+cRtqQqx2TqCBNC7CKYS7kjbC1/uByFh4eDce50tGjRAvv376+UNhBCSFVgLS5TTOajjjAhxD5mWE+UpOfaE0JI5bIWlykmc1FH2AKN1gS11igum03STH6TljMww4anEXHHLXBGF5hlFVW8OspdKXGaJKg4bZcPsDApG6ri5e7Ln2LEG4RRgb983AEW8iZwn2LE2U5tw4AOTpktTyPiPv1IPsCCM6CDcQZryMt4AzMErfKkq52kZdoS17fJWPaBGQJjVnPOKiofjdROFJMpJlNMLp21uEwxmY86woQQ+9g4fRohhJBKYsP0aUSKOsKEELtU5cFyhBBSG1XVwXJVGXWECSH2sfZM++L1hBBCKo+1uEwxmYs6whboNUaoNfeTj0yyfDTGybsycfLRmCwZivvNBPfalOVGcf6VU3EmZpfnn/HyteQTrgOAyiirw5moXZ6zBnBGoXLeC/e/UHt+H7kTtZdej/Hy72yY0J2bV2ZDjpotE64DyvwzM2/yfxvy0cDJPVNplGUarfRD1mtK5KNpjPLqpRJMjP8ggBLrCSkvFJMpJlNMLp21uEwxmY86woQQ+5Tzk+UIIYQ8oHJ8slxtQR1hQohdaNYIQgipWmjWiLKjjjAhxD5mBlj7qo1GKBNCSOWyFpcpJnNRR5gQYhe6I0wIIVUL3REuO+oIW+CiMcCpxATt8kEXZt4gDM41phy3oBwpwZ3bXJAv8gZhcA4oG4QgcPLtBc5gDUWzOI3iTt4uGxnBnajd1sEapbBlEAbAGYzCqcObvF1+DvgTvHPKFJO3cwZY8AZ5yAZYcAdhaDknSjboQqVVfjBOnIEWem2RZNlVaxB/NhYZ5NVLx1DKrBFl3yUhllBM5lShmEwxWdFAWJk1wr5d1nTUESaE2MdUymg5GqFMCCGVy1pcppjMRR1hQohdKDWCEEKqFkqNKDvqCBNC7EMP1CCEkKqFHqhRZtQRJoTYx2y2kIBYYj0hhJDKYy0uU0zmoo6wBe66Qmh09/97MpqlWfsmM290g1KR7B8w/rgFzmAN+cAM7qAEzuAQlfSAKu5TjEp/QhHvSUfyAQgA5/fNxicWVeTADFue5MTbl3zQBf+JRaUPuuBtZ8vTiBRPJwIUgzAA5UAM+dOJAEDHKXORDczw0BWIPxcZ7RiYYQb//JdcT0g5oZis3I5iMsVkBWtxmWIyF3WECSF2oRxhQgipWihHuOyoI0wIsY/JDKu3GEx0+4EQQiqVtbhMMZmLOsKEEPvQYDlCCKlaaLBcmVFH2AIfbT60uvv5O/J8NHsvpyLeROK83Ch5jhpvO16umSwNiamUG6o4cwnK888EXqM4/0zK89Fsnby93NgweTsvH42TAqjI5ePmlXEnb5dtx5uonTOhu6JMW3ruGaDMP+PlnrnpCxVlJfPPAMBXly/+bLBr8vZSOsI0ezspRxSTKSZTTLaFtbhMMZmHOsKEEPuYzACjWSMIIaTKsBaXKSZzUUeYEGIfVkpH2No6Qggh5c9aXKaYzEUdYUKIfShHmBBCqhbKES4z6ggTQuxDqRGEEFK1UGpEmVFH2IIQfQ50eo24bOLOHF4+jNxBF7Jkf4NyJAFTKzcUZGUCbyAB54CKgRmc/xy5gy4UAzM4+67Af0K5k7DLzh1/EEbp++JO3m7DAAteHXAmfRdkAzFUnInanTSlT8zOG4ThKRuEAQB++jzJch39LfHnQmMRyoyhlDvCZd8lIZZQTKaYTDHZBtbiMsVkLuoIE0LsQ6kRhBBStVBqRJlRR5gQYh+TSfkc2JLMVtYRQggpf9biMsVkLuoIE0LsQ3eECSGkaqE7wmXGm9aaEEJKZ2alvypIeHg4BEGQvObMmSOp89dff6FDhw7Q6/UIDQ3FvHnzKqw9hBBSJVBMLjO6I2xBfX0GnPX3T4/ZzoEZ8q3UKmXyfYF8IAGAIkH60Zg4dVgRZ7CG7KlF3MEbTryBGbIBHbxvUHiDLuRvhzegg7Mru5L2uU97Kr0e/ylGnPOpli/z6tgw6IIzMEPgDLpQO0nL5E8nAgC9VjlgwkVWJn86EaAchAEAdUsMxACAhvqr4s93jcpjl4aZTWBWUiOsrSsPM2fOxAsvvCAuu7u7iz/n5uaie/fuiI+Px/Lly3Hs2DE899xz8PLywqhRoyq0XaRiUExWVKGYbKGstsZkwHpcppjMRx1hQoh9GIPVv54V/DWcu7s7goKCuOvWr18Pg8GATz/9FFqtFk2bNkVycjIWLFjg8KBLCCEVxlpcppjMRakRhBD7mEylv3DvTkDJV2Ghcmohe8yZMwe+vr5o1aoV5s+fD2OJOyhJSUno2LEjtFqtWJaQkIAzZ87g5s2b5XJ8QgipcigmlxndESaE2IWZzWDciUz/Wf/PpO6hoaGS8unTp2PGjBkPdOxx48bhoYcego+PDw4cOICpU6fi6tWrWLBgAQAgIyMDERERkm0CAwPFdd7e3g90fEIIqYqsxWWKyXzUEbZgsPsNeLjfv2H+mWy9ijMjuZpT5iTLP3NS6ZXbcXKjCtTS7QwG5UdlUitnFzfLJmZnRk7OmkmZ2MXM8nw03ozynK9V5Nvxvnmxtaw0vMQ2Xo6avIxzfrkTusvzynjb8SZhl+WVqTj5aGonZW6WVpZ/pudM1O6qNSjK5Plnvrp8RZ06stwzQJp/BgDDPK6JP+cKZrys2KIUNqZGpKenw8PDQyzW6XTc6lOmTMHcuXOtHvLUqVNo1KgRJk6cKJa1aNECWq0Wo0ePxuzZsy3un1RvFJMpJlNMtoENqREUk6WqTUf43XffxQ8//IDk5GRotVrcunVLUefixYt46aWXsHfvXri5uWH48OGYPXs2nJyqzdskpPowmS2M4PnHP3cfPDw8JEHXkkmTJmHEiBFW60RGRnLLY2NjYTQakZaWhujoaAQFBSEzM1NSp3jZUg4bKRuKyYRUQdbiMsVkrmoTjQwGA/r374+4uDh88sknivUmkwm9evVCUFAQDhw4gKtXr2LYsGHQaDT4z3/+44AWE1KzMTMDs/KsVlbGgRn+/v7w9/e3qy3JyclQqVQICAgAAMTFxeHNN99EUVERNJp7j+XdtWsXoqOjKS2inFBMJqTqsRaXKSbzVZvBcomJiZgwYQKaN2/OXb9z506cPHkS69atQ0xMDHr27Il33nkHS5YsgcGg/CqDEPKAmLn0VwVISkrCwoULcfToUZw/fx7r16/HhAkT8Mwzz4gBdciQIdBqtRg5ciROnDiBjRs34sMPP5R8fUceDMVkQqogisllVm3uCJcmKSkJzZs3F5OvgXsjEl966SWcOHECrVq14m5XWFgoGTGZk5MDAMjNk14wd/OkuUKFBcq5BA0FyuBeZNBIlo2FygQqU5HyvzRTkfSrDbNBmatkNnLy0Uyl56OBm2tmSz6askixHadKpeejyQsqOR+NX0f5VZXJKC0zcfLRjEWca8ooLTNw6hQaldenfF7K3BIDKoqv97LcMSgyFYDBcmqEEco2lAedTocNGzZgxowZKCwsREREBCZMmCAJqJ6enti5cyfGjBmD1q1bw8/PD9OmTXP4ND21CcXkf8ooJlNMRuXEZMB6XKaYzFdjOsIZGRmSgAtIRyRaMnv2bCQmJirKwx5Kk5Wcf9AmElKl8AZiXL9+HZ6enla302q1CAoKwi8ZW0s9RlBQkGS6nPLw0EMP4eDBg6XWa9GiBfbv31+uxya2o5hMSNnYG5MB2+MyxWQlh3aEyzIisaJMnTpV8l/LrVu3EBYWhosXL9p08VUlubm5CA0NVYwIrS6qc/urc9uBe3fd6tWrBx8fn1Lr6vV6pKam2vT1tlarhV6vHJVPqiaKyeWruscFar/jlCUmA7bHZYrJSg7tCD/IiES5oKAg/Pbbb5IyW0Yk6nQ67tQenp6e1e4Xp5itI0Krqurc/urcdgBQqWwbNqDX6ymY1kAUkytGdY8L1H7HsTUmAxSX7eXQjvCDjEiUi4uLw7vvvousrCxxlOKuXbvg4eGBJk2alMsxCCGkJqOYTAipbapNjvDFixdx48YNXLx4ESaTCcnJyQCA+vXrw83NDd27d0eTJk0wdOhQzJs3DxkZGXjrrbcwZsyYKj+ZMyGEVDcUkwkhNQKrJoYPH178uBTJa+/evWKdtLQ01rNnT+bs7Mz8/PzYpEmTWFFRUZmOU1BQwKZPn84KCgrK+R1UvOrcdsaqd/urc9sZq/7tJ5WPYnLpqnPbGaP2O1J1bnt1IzBWxrk5CCGEEEIIqQGqzQM1CCGEEEIIKU/UESaEEEIIIbUSdYQJIYQQQkitRB1hQgghhBBSK1FH+B/vvvsu2rVrBxcXF3h5eXHrXLx4Eb169YKLiwsCAgLw2muvwWhUPou8KggPD4cgCJLXnDlzHN0si5YsWYLw8HDo9XrExsYqJuKvqmbMmKE4zxX51K0HtW/fPvTp0wchISEQBAFbtmyRrGeMYdq0aQgODoazszPi4+ORkpLimMaSWo/ismNVx7hMMZmUFXWE/2EwGNC/f3+89NJL3PUmkwm9evWCwWDAgQMHsGbNGqxevRrTpk2r5JbabubMmbh69ar4euWVVxzdJK6NGzdi4sSJmD59Ov744w+0bNkSCQkJyMrKcnTTbNK0aVPJef7ll18c3SSL8vPz0bJlSyxZsoS7ft68efjoo4+wfPlyHDp0CK6urkhISEBBQUElt5QQisuOVJ3jMsVkUiaOnb2t6lm1ahXz9PRUlG/dupWpVCqWkZEhli1btox5eHiwwsLCSmyhbcLCwtgHH3zg6GbY5OGHH2ZjxowRl00mEwsJCWGzZ892YKtsM336dNayZUtHN8MuANg333wjLpvNZhYUFMTmz58vlt26dYvpdDr2xRdfOKCFhNxDcbnyVde4TDGZlBXdEbZRUlISmjdvjsDAQLEsISEBubm5OHHihANbZtmcOXPg6+uLVq1aYf78+VXy60KDwYAjR44gPj5eLFOpVIiPj0dSUpIDW2a7lJQUhISEIDIyEk8//TQuXrzo6CbZJTU1FRkZGZLPwtPTE7GxsdXmsyC1C8XlilHd4zLFZFIW1eYRy46WkZEhCbYAxOWMjAxHNMmqcePG4aGHHoKPjw8OHDiAqVOn4urVq1iwYIGjmyZx7do1mEwm7rk9ffq0g1plu9jYWKxevRrR0dG4evUqEhMT0aFDBxw/fhzu7u6Obl6ZFF/HvM+iKl7jhFBcrhjVOS5TTCZlVaPvCE+ZMkWRNC9/VfVf6pLK8n4mTpyIzp07o0WLFnjxxRfx/vvvY9GiRSgsLHTwu6hZevbsif79+6NFixZISEjA1q1bcevWLXz55ZeObhohVRLFZYrLFYliMimrGn1HeNKkSRgxYoTVOpGRkTbtKygoSDFiNjMzU1xXGR7k/cTGxsJoNCItLQ3R0dEV0Dr7+Pn5Qa1Wi+eyWGZmZqWd1/Lk5eWFhg0b4uzZs45uSpkVn+/MzEwEBweL5ZmZmYiJiXFQq0hNQ3H5PorLFY9iMilNje4I+/v7w9/fv1z2FRcXh3fffRdZWVkICAgAAOzatQseHh5o0qRJuRyjNA/yfpKTk6FSqcS2VxVarRatW7fGnj170K9fPwCA2WzGnj17MHbsWMc2zg55eXk4d+4chg4d6uimlFlERASCgoKwZ88eMcjm5ubi0KFDFkftE1JWFJfvo7hc8Sgmk9LU6I5wWVy8eBE3btzAxYsXYTKZkJycDACoX78+3Nzc0L17dzRp0gRDhw7FvHnzkJGRgbfeegtjxoyBTqdzbONlkpKScOjQIXTp0gXu7u5ISkrChAkT8Mwzz8Db29vRzVOYOHEihg8fjjZt2uDhhx/GwoULkZ+fj2effdbRTSvV5MmT0adPH4SFheHKlSuYPn061Go1Bg8e7OimceXl5UnujKSmpiI5ORk+Pj6oV68exo8fj1mzZqFBgwaIiIjA22+/jZCQEPGPISGVieKy41TXuEwxmZSZo6etqCqGDx/OAChee/fuFeukpaWxnj17MmdnZ+bn58cmTZrEioqKHNdoC44cOcJiY2OZp6cn0+v1rHHjxuw///kPKygocHTTLFq0aBGrV68e02q17OGHH2YHDx50dJNsMnDgQBYcHMy0Wi2rU6cOGzhwIDt79qyjm2XR3r17udf58OHDGWP3put5++23WWBgINPpdKxbt27szJkzjm00qbUoLjtWdYzLFJNJWQmMMVa5XW9CCCGEEEIcr0bPGkEIIYQQQogl1BEmhBBCCCG1EnWECSGEEEJIrUQdYUIIIYQQUitRR5gQQgghhNRK1BEmhBBCCCG1EnWECSGEEEJIrUQdYUIIIYQQUitRR5hUazNmzBCfwU4IIcSxKCaT6oaeLEeqtby8PBQWFsLX19fRTSGEkFqPYjKpbqgjTCpFUVERNBqNo5tBCCEEFJMJKUapEcQu27dvR/v27eHl5QVfX1/07t0b586dAwCkpaVBEARs3LgRnTp1gl6vx/r16wEAn376KZo2bQqdTofg4GCMHTtW3KcgCFixYgV69+4NFxcXNG7cGElJSTh79iw6d+4MV1dXtGvXTjwOoPwabsSIEejXrx/ee+89BAcHw9fXF2PGjEFRUVHlnBhCCHEAismE2Ic6wsQu+fn5mDhxIg4fPow9e/ZApVLhiSeegNlsFutMmTIFr776Kk6dOoWEhAQsW7YMY8aMwahRo3Ds2DF89913qF+/vmS/77zzDoYNG4bk5GQ0atQIQ4YMwejRozF16lQcPnwYjDFJoObZu3cvzp07h71792LNmjVYvXo1Vq9eXRGngRBCqgSKyYTYiRFSDrKzsxkAduzYMZaamsoAsIULF0rqhISEsDfffNPiPgCwt956S1xOSkpiANgnn3wiln3xxRdMr9eLy9OnT2ctW7YUl4cPH87CwsKY0WgUy/r3788GDhz4IG+PEEKqFYrJhNiG7ggTu6SkpGDw4MGIjIyEh4cHwsPDAQAXL14U67Rp00b8OSsrC1euXEG3bt2s7rdFixbiz4GBgQCA5s2bS8oKCgqQm5trcR9NmzaFWq0Wl4ODg5GVlWXbGyOEkGqIYjIh9nFydANI9dSnTx+EhYXhv//9L0JCQmA2m9GsWTMYDAaxjqurq/izs7OzTfstOXhDEASLZSW/7rO2j+JtrNUnhJDqjmIyIfahO8KkzK5fv44zZ87grbfeQrdu3dC4cWPcvHnT6jbu7u4IDw/Hnj17KqmVhBBSO1BMJsR+dEeYlJm3tzd8fX2xcuVKBAcH4+LFi5gyZUqp282YMQMvvvgiAgIC0LNnT9y+fRu//vorXnnllUpoNSGE1EwUkwmxH90RJmWmUqmwYcMGHDlyBM2aNcOECRMwf/78UrcbPnw4Fi5ciKVLl6Jp06bo3bs3UlJSKqHFhBBSc1FMJsR+9EANQgghhBBSK9EdYUIIIYQQUitRR5gQQgghhNRK1BEmhBBCCCG1EnWECSGEEEJIrUQdYUIIIYQQUitRR5gQQgghhNRK1BEmhBBCCCG1EnWECSGEEEJIrUQdYUIIIYQQUitRR5gQQgghhNRK1BEmhBBCCCG1EnWECSGEEEJIrUQdYUIIIYQQUitRR5gQQgghhNRK1BEmhBBCCCG1EnWESZmtXr0agiAgLS2t0o/duXNndO7cudKPSwghVRXFZELsV2U7wsW/2CVfAQEB6NKlC7Zt2+bo5pEq7j//+Q+2bNni6GZUOVeuXMGMGTOQnJzs6KaQaoZiMnkQFJP5KCY7XpXtCBebOXMm1q5di88++wyvv/46srOz8dhjj+H77793dNNIFUZBl+/KlStITEykoEvsRjGZ2INiMh/FZMdzcnQDStOzZ0+0adNGXB45ciQCAwPxxRdfoHfv3g5sGSGOV1BQAK1WC5XKsf/TVpV2kIpHMZkQy6pKLKwq7agOqt0Z8vLygrOzM5ycpH14s9mMhQsXomnTptDr9QgMDMTo0aNx8+ZNSb1vv/0WvXr1QkhICHQ6HaKiovDOO+/AZDJJ6nXu3BnNmjXDX3/9hU6dOsHFxQX169fHV199BQD4+eefERsbC2dnZ0RHR2P37t02tb+goAAzZsxAw4YNodfrERwcjCeffBLnzp0T6+Tn52PSpEkIDQ2FTqdDdHQ03nvvPTDGJPsSBAFjx47Fli1b0KxZM+h0OjRt2hTbt28X63z11VcQBAE///yzoi0rVqyAIAg4fvy4WPbjjz+iQ4cOcHV1hZeXFx5//HGcOnXK6nvq3bs3IiMjuevi4uIkfzQBYN26dWjdujWcnZ3h4+ODQYMGIT09XbHtypUrERUVBWdnZzz88MPYv3+/1XYUEwQB+fn5WLNmjfgV7ogRI8T1ly9fxnPPPYfAwEDxnH366aeSffz0008QBAFffvklEhMTUadOHbi7u+Opp55CTk4OCgsLMX78eAQEBMDNzQ3PPvssCgsLFe0YO3Ys1q9fj+joaOj1erRu3Rr79u1TtLksbdqwYQPeeust1KlTBy4uLsjNzcWNGzcwefJkNG/eHG5ubvDw8EDPnj1x9OhRyfZt27YFADz77LPiuVm9ejUAIDw8XHKeislzAK21AwAOHTqEHj16wNPTEy4uLujUqRN+/fXXUj83Uj1RTL6PYjIfxWSKyVUaq6JWrVrFALDdu3ez7OxslpWVxY4fP85Gjx7NVCoV27lzp6T+888/z5ycnNgLL7zAli9fzt544w3m6urK2rZtywwGg1ivX79+bMCAAWz+/Pls2bJlrH///gwAmzx5smR/nTp1YiEhISw0NJS99tprbNGiRaxJkyZMrVazDRs2sKCgIDZjxgy2cOFCVqdOHebp6clyc3Otviej0ci6devGALBBgwaxxYsXs9mzZ7OuXbuyLVu2MMYYM5vNrGvXrkwQBPb888+zxYsXsz59+jAAbPz48ZL9AWAtW7ZkwcHB7J133mELFy5kkZGRzMXFhV27do0xxtidO3eYm5sbe/nllxXt6dKlC2vatKm4vGvXLubk5MQaNmzI5s2bxxITE5mfnx/z9vZmqampis+muOyzzz5jANhvv/0m2X9aWhoDwObPny+WzZo1iwmCwAYOHMiWLl0qHiM8PJzdvHlTrPfxxx8zAKxdu3bso48+YuPHj2deXl4sMjKSderUyep5Xrt2LdPpdKxDhw5s7dq1bO3atezAgQOMMcYyMjJY3bp1WWhoKJs5cyZbtmwZ69u3LwPAPvjgA3Efe/fuZQBYTEwMi4uLYx999BEbN24cEwSBDRo0iA0ZMoT17NmTLVmyhA0dOpQBYImJiYrPp1mzZszPz4/NnDmTzZ07l4WFhTFnZ2d27NgxsV5Z29SkSRMWExPDFixYwGbPns3y8/PZ77//zqKiotiUKVPYihUr2MyZM8Xr8vLly+JxZs6cyQCwUaNGiefm3LlzjDHGwsLC2PDhwxXns1OnTpJzbq0de/bsYVqtlsXFxbH333+fffDBB6xFixZMq9WyQ4cOWf3cSNVGMZliMsVkisk1UZXvCMtfOp2OrV69WlJ3//79DABbv369pHz79u2K8jt37iiONXr0aObi4sIKCgrEsk6dOjEA7PPPPxfLTp8+zQAwlUrFDh48KJbv2LGDAWCrVq2y+p4+/fRTBoAtWLBAsc5sNjPGGNuyZQsDwGbNmiVZ/9RTTzFBENjZs2fFMgBMq9VKyo4ePcoAsEWLFollgwcPZgEBAcxoNIplV69eZSqVis2cOVMsi4mJYQEBAez69euS/alUKjZs2DCxTB50c3JymE6nY5MmTZK0ed68eUwQBHbhwgXG2L0grFar2bvvviupd+zYMebk5CSWGwwGFhAQwGJiYlhhYaFYb+XKlQxAqUGXMcZcXV25AWTkyJEsODhY/KNUbNCgQczT01O8PooDS7NmzSR/tAcPHswEQWA9e/aUbB8XF8fCwsIkZcXX7OHDh8WyCxcuML1ez5544gm72xQZGam4jgsKCpjJZJKUpaamMp1OJ/mMf//9d4vXalmDrrwdZrOZNWjQgCUkJIjXM2P3fuciIiLYv/71L8W+SfVBMZliMsVkisk1UZVPjViyZAl27dqFXbt2Yd26dejSpQuef/55bN68WayzadMmeHp64l//+heuXbsmvlq3bg03Nzfs3btXrOvs7Cz+fPv2bVy7dg0dOnTAnTt3cPr0acmx3dzcMGjQIHE5OjoaXl5eaNy4MWJjY8Xy4p/Pnz9v9b18/fXX8PPzwyuvvKJYJwgCAGDr1q1Qq9UYN26cZP2kSZPAGFOMzo6Pj0dUVJS43KJFC3h4eEjaMnDgQGRlZeGnn34Sy7766iuYzWYMHDgQAHD16lUkJydjxIgR8PHxkezvX//6F7Zu3WrxfRV/5fPll19KvircuHEjHnnkEdSrVw8AsHnzZpjNZgwYMEDyOQUFBaFBgwbi53T48GFkZWXhxRdfhFarFfc3YsQIeHp6WmxHaRhj+Prrr9GnTx8wxiRtSEhIQE5ODv744w/JNsOGDYNGoxGXY2NjwRjDc889J6kXGxuL9PR0GI1GSXlcXBxat24tLterVw+PP/44duzYAZPJZFebhg8fLrmOAUCn04m5YCaTCdevX4ebmxuio6MV25cXeTuSk5ORkpKCIUOG4Pr16+L7yM/PR7du3bBv3z6YzeYKaQupPBST76GYTDG5GMXk6q3KD5Z7+OGHJflMgwcPRqtWrTB27Fj07t0bWq0WKSkpyMnJQUBAAHcfWVlZ4s8nTpzAW2+9hR9//FHMnymWk5MjWa5bt64YDIt5enoiNDRUUQZAkfsmd+7cOURHRyty6Uq6cOECQkJC4O7uLilv3LixuL6k4oBWkre3t6QtxblBGzduRLdu3QDcC4gxMTFo2LChZL/R0dGK/TVu3Bg7duxAfn4+XF1due0eOHAgtmzZgqSkJLRr1w7nzp3DkSNHsHDhQrFOSkoKGGNo0KABdx/Fwa24LfJ6Go3GYt6bLbKzs3Hr1i2sXLkSK1eu5NYpea0AyvNb/FnzrgGz2YycnBz4+vqK5bz32rBhQ9y5cwfZ2dlQqVRlblNERISijtlsxocffoilS5ciNTVVkl9Zsj3lSd6OlJQUAPeCsSU5OTnw9vaukPaQykEx+R6KyRSTi1FMrt6qfEdYTqVSoUuXLvjwww+RkpKCpk2bwmw2IyAgAOvXr+du4+/vDwC4desWOnXqBA8PD8ycORNRUVHQ6/X4448/8MYbbyj+M1Kr1dz9WSov+Z93ZbGlLTqdDv369cM333yDpUuXIjMzE7/++iv+85//lFs7+vTpAxcXF3z55Zdo164dvvzyS6hUKvTv31+sYzabIQgCtm3bxm23m5tbubWHp/jzfeaZZywGhhYtWkiWK/oasKdN8jsPwL2pid5++20899xzeOedd+Dj4wOVSoXx48fb/B+/vINRzGQycd+vvB3Fx5k/fz5iYmK4+6roz5hUPorJUhSTbUcx2TqKyZWj2nWEAYhfdeTl5QEAoqKisHv3bjz66KPcC7LYTz/9hOvXr2Pz5s3o2LGjWJ6amlqxDf5HVFQUDh06hKKiIslXOyWFhYVh9+7duH37tuQORPFXhGFhYXYde+DAgVizZg327NmDU6dOgTEmfgVXcr9nzpxRbHv69Gn4+flZvPMAAK6urujduzc2bdqEBQsWYOPGjejQoQNCQkLEOlFRUWCMISIiQrzrwVPclpSUFHTt2lUsLyoqQmpqKlq2bFnq++UFEH9/f7i7u8NkMiE+Pr7UfZSH4v/IS/r777/h4uIidgbKo01fffUVunTpgk8++URSfuvWLfj5+YnLlgIrcO+u1a1btxTlFy5csOmuT/HXwR4eHpV2fknVQDG57CgmU0wGKCZXBVU+R1iuqKgIO3fuhFarFb+aGjBgAEwmE9555x1FfaPRKF5Ixf9BlfwP0WAwYOnSpRXfcAD//ve/ce3aNSxevFixrrhNjz32GEwmk6LOBx98AEEQ0LNnT7uOHR8fDx8fH2zcuBEbN27Eww8/LPkaJTg4GDExMVizZo3kF+/48ePYuXMnHnvssVKPMXDgQFy5cgUff/wxjh49KgnqAPDkk09CrVYjMTFR8V86YwzXr18HALRp0wb+/v5Yvnw5DAaDWGf16tXcoMDj6uqqqKtWq/Hvf/8bX3/9tWR6omLZ2dk27bsskpKSJPlg6enp+Pbbb9G9e3eo1epya5NarVac002bNuHy5cuSsuI/nLzzGBUVhYMHD0rO+ffff8+dRomndevWiIqKwnvvvSd2iEqqiPNLHI9iMsVkW1BMpphcVVX5O8Lbtm0T//POysrC559/jpSUFEyZMgUeHh4AgE6dOmH06NGYPXs2kpOT0b17d2g0GqSkpGDTpk348MMP8dRTT6Fdu3bw9vbG8OHDMW7cOAiCgLVr11ba12fDhg3DZ599hokTJ+K3335Dhw4dkJ+fj927d+Pll1/G448/jj59+qBLly548803kZaWhpYtW2Lnzp349ttvMX78eMkgjLLQaDR48sknsWHDBuTn5+O9995T1Jk/fz569uyJuLg4jBw5Enfv3sWiRYvg6emJGTNmlHqMxx57DO7u7pg8ebIYTEqKiorCrFmzMHXqVKSlpaFfv35wd3dHamoqvvnmG4waNQqTJ0+GRqPBrFmzMHr0aHTt2hUDBw5EamoqVq1aZXM+WuvWrbF7924sWLAAISEhiIiIQGxsLObMmYO9e/ciNjYWL7zwApo0aYIbN27gjz/+wO7du3Hjxg2b9m+rZs2aISEhAePGjYNOpxP/wCcmJop1yqNNvXv3xsyZM/Hss8+iXbt2OHbsGNavX684X1FRUfDy8sLy5cvh7u4OV1dXxMbGIiIiAs8//zy++uor9OjRAwMGDMC5c+ewbt06m685lUqFjz/+GD179kTTpk3x7LPPok6dOrh8+TL27t0LDw8P/O9//yvD2SNVEcVkiskUkykm1ygVOSXFg+BN1aPX61lMTAxbtmyZZCqQYitXrmStW7dmzs7OzN3dnTVv3py9/vrr7MqVK2KdX3/9lT3yyCPM2dmZhYSEsNdff12camfv3r1ivU6dOknmcywWFhbGevXqpSgHwMaMGVPq+7pz5w578803WUREBNNoNCwoKIg99dRT4ryBjDF2+/ZtNmHCBBYSEsI0Gg1r0KABmz9/vuI9WzqmpSlXdu3axQAwQRBYeno6t327d+9mjz76KHN2dmYeHh6sT58+7OTJk5I68ql6Snr66acZABYfH2/xHHz99desffv2zNXVlbm6urJGjRqxMWPGsDNnzkjqLV26lEVERDCdTsfatGnD9u3bp5g2xpLTp0+zjh07MmdnZwZAcj4yMzPZmDFjWGhoqPgZdOvWja1cuVKsUzwdzaZNm7jv/ffff5eUT58+nQFg2dnZYlnx57Nu3TrWoEEDptPpWKtWrSTXWXm0ibF7U/VMmjSJBQcHM2dnZ/boo4+ypKQk7vn69ttvWZMmTZiTk5Ni2p7333+f1alTh+l0Ovboo4+yw4cPW5yqh9cOxhj7888/2ZNPPsl8fX2ZTqdjYWFhbMCAAWzPnj3c+qR6oJhMMZliMsXkmkhgzAGjCQipBQRBwJgxY7hfuxJCCKlcFJMJT7XLESaEEEIIIaQ8UEeYEEIIIYTUStQRJoQQQgghtRLlCBNCCCGEkFqJ7ggTQgghhJBaiTrCpMpYvXo1BEFAWlqazXUPHz5c8Q0jhJBKRLGw+vnpp58gCAJ++uknRzeFlBF1hEmVtnTpUqxevbrC9p+cnIxnnnkGoaGh0Ol08PHxQXx8PFatWgWTySTWEwQBgiDg+eef5+7nzTffFOtcu3ZNLB8xYoRYLggCnJycEBoaikGDBuHkyZMV9r4IITULxUJCKkaVf7IcqT2GDh2KQYMGQafTiWVLly6Fn58fRowYUe7H+/jjj/Hiiy8iMDAQQ4cORYMGDXD79m3s2bMHI0eOxNWrV/F///d/Yn29Xo+vv/4aS5cuhVarlezriy++gF6vR0FBgeI4Op0OH3/8MYB7j5c9d+4cli9fju3bt+PkyZMICQkp9/dGCKm+KBZWPx07dsTdu3cV54NUfdQRJlVG8XPeK8PBgwfx4osvIi4uDlu3boW7u7u4bvz48Th8+LDiOfM9evTAd999h23btuHxxx8Xyw8cOIDU1FTx+fRyTk5OeOaZZyRljzzyCHr37o0ffvgBL7zwQjm/O0JIdUax0DarV6/Gs88+W2mP5LZGpVJBr9c7uhnEDpQaUY0U5yB9+eWXSExMRJ06deDu7o6nnnoKOTk5KCwsxPjx4xEQEAA3Nzc8++yzKCwslOxj1apV6Nq1KwICAqDT6dCkSRMsW7ZMcazw8HD07t0bO3fuRExMDPR6PZo0aYLNmzeX2s6HHnoITz75pKSsefPmEAQBf/31l1i2ceNGCIKAU6dOAVDmxYWHh+PEiRP4+eefxa/TOnfuLNlvYWEhJk6cCH9/f7i6uuKJJ55AdnZ2qW1MTEyEIAhYv369JPAXa9OmjeLOS506ddCxY0d8/vnnkvL169ejefPmaNasWanHLRYUFATg3h8GQkjZUCykWPigBEHA2LFjsWXLFjRr1gw6nQ5NmzbF9u3bFXX//PNP9OzZEx4eHnBzc0O3bt1w8OBBSR1ejnBKSgr+/e9/IygoCHq9HnXr1sWgQYOQk5Mj2XbdunVo3bo1nJ2d4ePjg0GDBiE9Pb1C3jdRor/C1dDs2bPh7OyMKVOm4OzZs1i0aBE0Gg1UKhVu3ryJGTNm4ODBg1i9ejUiIiIwbdo0cdtly5ahadOm6Nu3L5ycnPC///0PL7/8MsxmM8aMGSM5TkpKCgYOHIgXX3wRw4cPx6pVq9C/f39s374d//rXvyy2r0OHDvjiiy/E5Rs3buDEiRNQqVTYv38/WrRoAQDYv38//P390bhxY+5+Fi5ciFdeeQVubm548803AQCBgYGSOq+88gq8vb0xffp0pKWlYeHChRg7diw2btxosX137tzBnj170LFjR9SrV89iPZ4hQ4bg1VdfRV5eHtzc3GA0GrFp0yZMnDiR+1VgseJcOZPJhPPnz+ONN96Ar68vevfuXabjE0Luo1h4H8XCsvvll1+wefNmvPzyy3B3d8dHH32Ef//737h48SJ8fX0BACdOnECHDh3g4eGB119/HRqNBitWrEDnzp3x888/IzY2lrtvg8GAhIQEFBYW4pVXXkFQUBAuX76M77//Hrdu3YKnpycA4N1338Xbb7+NAQMG4Pnnn0d2djYWLVqEjh074s8//4SXl1dlnY7ai5FqY+/evQwAa9asGTMYDGL54MGDmSAIrGfPnpL6cXFxLCwsTFJ2584dxX4TEhJYZGSkpCwsLIwBYF9//bVYlpOTw4KDg1mrVq2stnPTpk0MADt58iRjjLHvvvuO6XQ61rdvXzZw4ECxXosWLdgTTzwhLq9atYoBYKmpqWJZ06ZNWadOnRTHKK4bHx/PzGazWD5hwgSmVqvZrVu3LLbv6NGjDAB79dVXrb6PkgCwMWPGsBs3bjCtVsvWrl3LGGPshx9+YIIgsLS0NDZ9+nQGgGVnZ4vbDR8+nAFQvOrUqcOOHDli8/EJIfdRLGSKurUxFha/d3sAYFqtlp09e1YsKz4fixYtEsv69evHtFotO3funFh25coV5u7uzjp27CiWFV+Te/fuZYwx9ueffzIAbNOmTRbbkJaWxtRqNXv33Xcl5ceOHWNOTk6KclIxKDWiGho2bBg0Go24HBsbC8YYnnvuOUm92NhYpKenw2g0imXOzs7izzk5Obh27Ro6deqE8+fPK76uCQkJwRNPPCEue3h4YNiwYfjzzz+RkZFhsX0dOnQAAOzbtw/Avbsdbdu2xb/+9S/s378fAHDr1i0cP35crGuvUaNGQRAEybFNJhMuXLhgcZvc3FwA4H4NWBpvb2/06NFDvMvz+eefo127dggLC7O4jV6vx65du7Br1y7s2LEDK1asgJubGx577DH8/fffZW4DIeQeioX31YZYePPmTVy7dk185eXlAYCk7Nq1a7hz545N7yE+Ph5RUVHicosWLeDh4YHz588DuHfXeufOnejXrx8iIyPFesHBwRgyZAh++eUX8RzKFd/x3bFjh8X2bN68GWazGQMGDJC0PygoCA0aNMDevXtteh/kwVBHuBqSf4VV/AsXGhqqKDebzZKg/uuvvyI+Ph6urq7w8vKCv7+/OBpYHvzr168vCawA0LBhQwCwOr9lYGAgGjRoIAb6/fv3o0OHDujYsSOuXLmC8+fP49dff4XZbH7g4C8/F97e3gDuBUxLPDw8AAC3b9+265hDhgzBrl27cPHiRWzZsgVDhgyxWl+tViM+Ph7x8fHo3r07Ro0ahd27dyMnJwdTp061qw2EEIqFJdWGWNiqVSv4+/uLr1deeQUAJGX+/v6YN2+eTe3npYN4e3uL5yw7Oxt37txBdHS0ol7jxo1hNpst5vJGRERg4sSJ+Pjjj+Hn54eEhAQsWbJEcm2lpKSAMYYGDRoo3sOpU6eQlZVl0/sgD4ZyhKshS6OJLZWzf0bUnjt3Dt26dUOjRo2wYMEChIaGQqvVYuvWrfjggw9gNpvLrY3t27fHnj17cPfuXRw5cgTTpk1Ds2bN4OXlhf379+PUqVNwc3NDq1atHug4pb1nnvr168PJyQnHjh2z65h9+/aFTqfD8OHDUVhYiAEDBpR5H3Xr1kV0dLR4p4gQUnYUC++rDbFw/fr1uHv3rri8c+dOzJ8/H7t27ZLUK3n31hp7zllZvP/++xgxYgS+/fZb7Ny5E+PGjcPs2bNx8OBB1K1bF2azGYIgYNu2bdy2uLm5lUs7iHXUEa5F/ve//6GwsBDfffed5D9hS1+/nD17FowxyZ2Q4q+vwsPDrR6rQ4cOWLVqFTZs2ACTyYR27dpBpVKhffv2YvBv165dqVMEye/ClAcXFxd07doVP/74I9LT0xV3j0rj7OyMfv36Yd26dejZsyf8/PzsaofRaBS/2iOEVB6KhfdUt1j46KOPSpYvXboE4F6KQ0Xw9/eHi4sLzpw5o1h3+vRpqFSqUs9Z8+bN0bx5c7z11ls4cOAAHn30USxfvhyzZs1CVFQUGGOIiIgQv2EglY9SI2qR4kBb8r/dnJwcrFq1ilv/ypUr+Oabb8Tl3NxcfPbZZ4iJiRGnvLGk+Gu+uXPnokWLFuJXlh06dMCePXtw+PBhm74KdHV1xa1bt0qtV1bTp08HYwxDhw7lBuAjR45gzZo1FrefPHkypk+fjrffftuu4//99984c+YMWrZsadf2hBD7USy8j2KhZWq1Gt27d8e3334rSYHJzMzE559/jvbt24vpJXK5ubmSnHTgXqdYpVKJU/k9+eSTUKvVSExMVNyFZozh+vXr5fuGCBfdEa5FunfvDq1Wiz59+mD06NHIy8vDf//7XwQEBODq1auK+g0bNsTIkSPx+++/IzAwEJ9++ikyMzMt/rEoqX79+ggKCsKZM2fEPC7g3tN33njjDQCwKfi3bt0ay5Ytw6xZs1C/fn0EBASga9euZXjXfO3atcOSJUvw8ssvo1GjRpKnKf3000/47rvvMGvWLIvbt2zZ0ubAbTQasW7dOgCA2WxGWloali9fDrPZjOnTpz/weyGElA3FwvsoFlo3a9Ys7Nq1C+3bt8fLL78MJycnrFixAoWFhVZzkX/88UeMHTsW/fv3R8OGDWE0GrF27Vqo1Wr8+9//BgBERUVh1qxZmDp1KtLS0tCvXz+4u7sjNTUV33zzDUaNGoXJkydX1luttagjXItER0fjq6++wltvvYXJkycjKCgIL730Evz9/RWjrAGgQYMGWLRoEV577TWcOXMGERER2LhxIxISEmw6XocOHbBp0ya0b99eLGvdujVcXFxgNBotzr9Y0rRp03DhwgXMmzcPt2/fRqdOncol+APA6NGj0bZtW7z//vv47LPPkJ2dDTc3Nzz00ENYtWqV4glI9iosLMTQoUPFZQ8PD7Rt2xZr165Ft27dyuUYhBDbUSyUolhoWdOmTbF//35MnToVs2fPhtlsRmxsLNatW2f1c2vZsiUSEhLwv//9D5cvX4aLiwtatmyJbdu24ZFHHhHrTZkyBQ0bNsQHH3yAxMREAPcGe3bv3h19+/at8PdHAIGVV1Y4qVHCw8PRrFkzfP/9945uCiGEOAzFQkJqNsoRJoQQQgghtRJ1hAkhhBBCSK1EHWFCCCGEEFIrVauO8L59+9CnTx+EhIRAEARs2bJFsp4xhmnTpiE4OBjOzs6Ij49HSkqKYxpbzaWlpVFOHCHEqtoQkykWElKzVauOcH5+Plq2bIklS5Zw18+bNw8fffQRli9fjkOHDsHV1RUJCQkoKCio5JYSQkjNRzGZEFLdVdtZIwRBwDfffIN+/foBuHfnISQkBJMmTRLn3cvJyUFgYCBWr16NQYMGObC1hBBSs1FMJoRURzVmHuHU1FRkZGRIHrXo6emJ2NhYJCUlWQy6hYWF4lNegHuTfN+4cQO+vr4V8khLQqoixhhu376NkJAQqFSlf1FUUFAAg8FQaj2tVgu9Xl8eTSTVDMVkQuxX1pgM2BaXKSYr1ZiOcEZGBgAgMDBQUh4YGCiu45k9e7Y4iTUhtV16ejrq1q1rtU5BQQEiwtyQkWUqdX9BQUFITU2lwFsLUUwm5MHZEpMB2+MyxWSlGtMRttfUqVMxceJEcTknJwf16tXDX78HwN3t/n9ht5lZsl2eWa3YVwFTlhUy6Sku4tQxcMqYLH3bBOWdEBMr/b9Es41p4Lbsi9cG+f7N3HaWvp1tx1fWMXP2bQuVoMwIUkP6GasFs6KORlAGGR2MsjpGZR2hSFGmV0nr6Tl1XDj70svaoOWcAj3nzpmzoJHuW6UVf87NMyPsoTS4u7srdyZjMBiQkWVC6pEweLhb/txyb5sR0foCDAYDBV1iM0sx+ekfnoDW9f41/Ir/T5LtDhSEK/YVpclSlB0tCJMs8+Lasdt1FGV9fJIly3/draeoc+6Ov6LsCd8jkuUVlzop6rwbsUVR9v7V7tLj+yYr6my70UJRlnXXTbJc1+WWoo639o6iTB7brhR6KuqoII2bF/O8FXVa+VxSlMW4XpQs/3Y7UlEn2+CmKNOrpDFxWWiSos60rOaKsmM3QyTLAS63FXW6eZ9SlMnfX6A6R1FnW47ynLd3/1uyfKYwWFHHVV2oKGuolT7O+/Cd++elMN+I9+J/tCkmA7bFZYrJfDWmIxwUFAQAyMzMRHDw/YswMzMTMTExFrfT6XTQ6XSKcnc3FdxLXkzyfpNZeaE5cTpz8jJeR1jDKVN0FKtqR5jJ26ncT83qCCuPp5ftS8PZt56zL73KLKujfH+unDL58XQ2doRdZPty4XzdVpavnl3d7r0sMVXL0QekvJR3TNa6aqB1u//Pm5vsj72zk/LPmauW8/sjq8eLa1qmVZS5uEvjtE6tUdTRCKVv5+SqfG/y9wIAmlzpvuT7AQBNofJ4Tirp/rWuyjo6rfKfbo0sPmiclNupZbHHiSnfi85NeV5cXKVt1zLOueO8F61a+tnwOni6O8p9ORmk7dK4KDuhzm7K60X+N8DVSXnOdSbO+5N9NnqNso6zWnkTxVUn206l3K6s6UDW4jLFZL5qNWuENREREQgKCsKePXvEstzcXBw6dAhxcXEObBkhNZMRplJfpPaimExI5aOYXHbV6o5wXl4ezp49Ky6npqYiOTkZPj4+qFevHsaPH49Zs2ahQYMGiIiIwNtvv42QkBBxFDMhpPyYGIPJyqQz1taRmoFiMiFVi7W4TDGZr1p1hA8fPowuXbqIy8V5ZMOHD8fq1avx+uuvIz8/H6NGjcKtW7fQvn17bN++3a5cmFtmM0wlviW5YZZ+bXPbrNxnAefrHnlZgVlZh5cjLE8dMDDlR8VLC5CnD8hTFyyRfz3I286m1AjOdrx0EHkuMW87+fsrz9QIHnm6BC8fmFcmz2PTqTj5wNwcYWmZi0r59Z0rp0y+L1dBOUrYhdMGd1k9d3a/zm2TMnWjNEaYoTyKdD2p2SozJqsgzeF8Pytesj5Mf12xzf5bDRVlES7XJMtfnm+lqNPEP1NRtiErVrLsrFZe/U/4/aEo+0/KY5Ll+JAzijoz03sryhq5S9twpUiZj+vqpIwP7fyyFWVy2y41UZS5aKTvJ7dAmfZQ30d67pxUyt/xLadbKsoKG0r/fv18qb6ijrfLXUVZhIf0M21y4BlFHbVa2YbBUdK87L3ZyuvgG6Pyc+/pd1yyvPlma0Wd3l7JirIzhdKc5CyDMq9XpVO2M9QpV7Jc4HJB/PmOyb67t9biMsVkvmrVEe7cuTOsTXssCAJmzpyJmTNnVmKrCKmdzGAwK5LnpetJzUYxmZCqxVpcppjMV606woSQqoNSIwghpGqh1Iiyo44wIcQuRWAosnKHwdo6Qggh5c9aXKaYzEcdYQtyzRqYS0yRdsvsLFl/W7YM8PN/bckRLuLk/8rzam3JzwWUubb8eX1Lz+O1Jf+YV4+XD2zkzLksb1cRr45s3zbPUWxDXrSKM52ZfGog+ZySAOCk4swjLJsPWL5sqcxFJc3ZdeHMMymvAyjzhnl5xC5mZdkdVYFkuQj3l/PsSB0zMevT8dBUPaQ89fRKhmuJaaq+vtFGsp4XezILlLmahWZpvO0ZppxPtrHzFUXZhittJcuR7sqc5K2ceX09ddLfu69TYhR1ekcdV5RF6KS5vpcMPoo6dzlTeaXe8ZUsG8zKvy8hbrmKssu3pfMG+7vmK+o4yeJmRq7y/Datc1VR9ssV5bzBcn7OeYoyeQwO9b6lqNPMS/lZXSiQniveVJjNPZTbrbskzQPvHJCiqPPn3XBFWUtn6TzJkTpljvknVzooyvSyeeIzizzEnwvziwAor83SWIvLFJP5qCNMCLGL+Z+XtfWEEEIqj7W4TDGZjzrChBC7GJmAIiuzdhjLcUYPQgghpbMWlykm89WYB2oQQiqXCUKpr7LYt28f+vTpg5CQEAiCgC1btkjWM8Ywbdo0BAcHw9nZGfHx8UhJkX51eePGDTz99NPw8PCAl5cXRo4cibw85VeuhBBSE5VnTK4tqCNMCLFLeXeE8/Pz0bJlSyxZsoS7ft68efjoo4+wfPlyHDp0CK6urkhISEBBwf0czKeffhonTpzArl278P3332Pfvn0YNWrUA71PQgipLqgjXHaUGmFBjlkvGeR1y+QqWZ9vVj4X/Y5ZOQG5fCBcAW9gHGcwg2IwGWcgiC0PoeA+zMKGgXC2DHADlIPcjLyBeJx9yevx2mQ0y9pk43ux9yEb8gdqyAeGAPzBcvJJ5bXcwXLK7ZzVBtmychp03mA5+aA6d9kguHvbcQbLqaXXZ8mgmG/HAzWKmApFVgYmFpVxYEbPnj3Rs2dP7jrGGBYuXIi33noLjz/+OADgs88+Q2BgILZs2YJBgwbh1KlT2L59O37//Xe0aXNvINWiRYvw2GOP4b333kNISAh336R6SCvyh7Phfqz010rv9GcUeso3QVa+m6LMRycdBHYqN0hRJ/lGXUVZC+/LkmVvpzuKOhrO7/7529LBa6Ob7FfU+Sr9IUXZAURIlkPdbynq3DEq/w6dSA+WLLeNuKCoc/a6n6JMLYtjWXnKc5d+00uy3KbORWWdPOWDP8K9bkiWU677K+pczFVuF+R2W7rd6TqKOq7NlbEu7ZZ0sJynszJGygdNAkDHgLOl1vHkfO67cppKlv+6pWzn+1GbFGVf50gf2NHGNVX8+Y7ZvgdqWIvLZY3JtQXdESaE2MUEVakvAMjNzZW8CguVf7hKk5qaioyMDMTH33+amKenJ2JjY5GUlAQASEpKgpeXl9gJBoD4+HioVCocOnToAd8tIYRUfbbEZCJFZ4UQYhfGBJitvNg/d+ZDQ0Ph6ekpvmbPnl3mY2VkZAAAAgMDJeWBgYHiuoyMDAQEBEjWOzk5wcfHR6xDCCE1mbW4zGiwHBelRhBC7GJgamispEYY/gm66enp8PC4Pz+mTqdMISKEEPLgrMVlA3WEuagjTAixixkCzFa+VCp+rr2Hh4ekI2yPoKB7eZyZmZkIDr6fA5mZmYmYmBixTlZWlmQ7o9GIGzduiNsTQkhNZi0um+nJclzUEbbgtlkPk2SwnItkPW9gnC0D4XiD12wp4w0As2UgHG+AGe9pbPLBcbYMjLu3f+kvnMHEq8N72px0O+6+ZXV4X+vI6wBQ/KrbOnhOPliOt5V8YBwAaNTSQQ0azsA4LadM7yQdHMcbLMcrc5UNlstT6/+/vT8Ps6q69r3x7+539UU1VKO0ooAoraEuvuhB5UiMmmi8vmrUYMzVoxc0ocjJgSdGkMSD0RNDNEbOzY2S+/vZJffm5uQkhsSgaS1JxJQiCqEprEKooimK6ne73j+QqppzjNq197b6+n6eZz9PzbHmnGuutdcaa9ba4zuHqJPtkeIQ7Zrt2hZLXZjRlwq5PxXKU6ZMQWlpKbZt29Y18W1ubsb27dtx7733AgAWLVqEpqYm7NixAwsWnBahvPrqq4jH46ioqOitazJCKfCaorfdLSWizpVn7Ra2iQEzI9zRiPwn7XAoX9h+vvdCoxzplP5+4bSDwtYRMbO/HeyUQrXp+UeF7S9HJhrl1qC8f090ZArbpdNMwVdV7WRRZ9r448JmowkN7WfHn3bMFHUcj5xslc02lzns6JAiv9Ymma1VkCXFiBrluWbmPO08/eKDWcK2oPSQUX6rXoom7z7vT8L25wYzc95VZ70n6mw+tkTYFuYcMMp7Q93XcGc4uWO1SeSXuWqEDifChJC0iDge9Z+x7u2p9dfa2op9+7of4jU1NaiurkZBQQEmTpyIL3/5y/jmN7+Jc889F1OmTMHXv/51lJeX47rrrgMAzJw5E5/85Cdx1113YfPmzYhEIli5ciVuvvlmrhhBCBkTJPLLXDVChxNhQkhaxPtQIaf6M9ybb76Jyy67rKtcWVkJAFi+fDm2bNmCr371q2hra8Pdd9+NpqYmLF68GFu3bkUw2P1G/LnnnsPKlStxxRVXwO1244YbbsATTzyR4pERQsjIJJFfZmiEDifChJC0iDludS3r7u2pOd0lS5bASdDG5XJhw4YN2LBhQ691CgoK8Pzzz6e0X0IIGS0k8sup+uSxAifCvXAqnoFwrPv0tMTNOMzWmIzL1H6O6Iyb8WHJxvqmG7MrE2rIG0JLlmHH+mqxt+nG+kaUuOGI1S6m7C8Ss5JuKHW0eGc7ljjdJWNcLuk07DhiAPDaMcIeLRGHtAW8ZgxYwCNjwjK9MqFG0IoJzvLKdXmzPTKesN3be4xwRzT1eLT+Do0gJBEno1noiHb70wsy6oztB4IyScPZ/kZh+8XR2Ub5SIuMEc4Nyhj7iUUnjXK7FfsLALuOSlHmZ6bsNMqtMXkfHmrLF7aLyszje/uoDO8pzmoTtr83mefB55Px/+8fkuNcNLXGKO86IJNCuP1mX/kTm0SdTL/UNRxqzTfKsSYZI4xg3/oLNMspS/WBicKWky+TXth4FF/++93nGeXMXHkdfP/9S4WtMNvc35a/XizqfGJGjbA1ZVraox7XRiiW3uq2DI1IHU6ECSFp0dcC7TH+DEcIIYNKIr9Mn6zDiTAhJC3ijhvxBKERcf4MRwghg0oiv0yfrMOJMCEkLSJwI5woNIJvHwghZFBJ5Jfpk3U4ESaEpEUc7j4SajCDOyGEDCaJ/DJ9sg4nwr3QHMsyxHIno1nG9vaYDPZPRvSWrHjNFsclI4wD+k/0ponXwkkI4bT92aI3rV1MqWPb4nFFGKcl1BBiOVFFZt0ARAYNl6ax0wR0lhDOoywo71EEdLYQJOCTgrV2r7zObFFdqyKCa1FEdh1+RaDyEaGIFLj0Rd+rRtDpkv5jZ8tZ8MW7r+GTUZkkwebJ95cI27yyD43yUbdMHDEx+6Sw/eVDU5QVjUp/eNU0mUih6vgUo7yoSIqmToWk+LrRSgLR1iHv89Y22c4fMP1D29EsUceVKX3NO0fLTENIuX8tsVxTbb6o0iRbSX/rlT6yoLhZ2BoaTSGjt1iK15w6eR0UnX3MKH/YmCfbKc9Pt8/0023HZN++E8q0aYEplps6WSZIyVJ88hM7LjfK557V3S7aJkXQyZB41Qj6ZA1OhAkhaRFxPPAmXDWCP8MRQshgksgv0yfr8N8DQkhanFEnJ/oQQggZPPrTJ//hD3/Atddei/LycrhcLvzsZz8ztjuOgwcffBBlZWXIyMjA0qVLsXevmU67sbERt956K3Jzc5Gfn48vfvGLaG1t/biH2a/wSUUISYu44+rzQwghZPDoT5/c1taGOXPm4KmnnlK3P/roo3jiiSewefNmbN++HVlZWVi2bBk6O7tDWG699Vbs2rULr7zyCn7xi1/gD3/4A+6+++6PdYz9DUMjCCFpEXW8iDi9u5Aof4UjhJBBJZFfTtUnX3XVVbjqqqvUbY7jYNOmTXjggQfwmc98BgDwv/7X/0JJSQl+9rOf4eabb8b777+PrVu34q9//SsuuugiAMCTTz6JT33qU/i3f/s3lJfLJDFDASfCvXAymolAjyxGp6IZxvaOmMwqpInebHFcMsK40/UsoZgqjEtP9GYL6gApXrMzvwFAVMkQF7UEbVoWOVUIF3X3WceJWaI3LdNOTPkP19al9eebSbf0JDHLFlHEcm6vFMuFrHqdSgaodkVAF/BaIjuvrJPhk8I4TezYtS0shRx9EYMLMeXa7bmdkP5iUmYjAlndfrcxbIrAtr0/Q7T55KxdwtYaNe+NvIAUYE3OOCFsb8QnG+XH5v9vWad1mrB5Xea9/3z1QlHHCUvf5sky7+vzyhtEnZrjhcKWn9lhlF0lis9SfGlu0BRntWZIoZjX8lGRbOl7HEVkN/Ucc+wH35UToFN/L5B92S6rU/qUWJb0rQf2mZnzgoUdok64U05/nE5zh6UTZWbCk+PkefnwvRKjfNOS10WdJkXcec5Zpqjv4qIDXX+HghH8TrTom0R++Yy9udkUJgYCAQQCvWce1aipqUF9fT2WLl3aZcvLy0NFRQWqqqpw8803o6qqCvn5+V2TYABYunQp3G43tm/fjuuvvz6lfQ4UDI0ghKRFxHF3pfPUP3QvhBAymCT2y6d98oQJE5CXl9f12bhxY8r7qa+vBwCUlJj/BJSUlHRtq6+vx/jx443tXq8XBQUFXXWGA3wjTAhJi74zy3EiTAghg0nizHKn7XV1dcjN7V6aLtW3waMNToQJIWnBdYQJIWR4kcw6wrm5ucZEOB1KS0+HnzQ0NKCsrHsN6oaGBsydO7erztGj5prK0WgUjY2NXe2HA5wI90JTNBP+njHCkWRihOXFZ8f2anG9avyvHeurXNhaOzsmWIv11eKG7aQXycb62ovKa3XiUSX+17ZFlZgmK/7XpdRxJREj7JIhZMnFDSvJM1T/YtkcJUY4riwgH7fqRX3ynId98hYNWXF6PiW2uENpp32nXdtCqccIRz/6ua337dqJJyQ93j55Frzh7jdX9vW8ePpeuwn+2jBR2C4/6+9GWdNt5Hhk3PCCs+qM8pO1V4g6Pre8F/cdLjbK50yQyRZqqs8StkChmaThg8Zxok7niQxhKy87bJSPvDde1InnytheOxrWjpcFgHiDGV/tPluep5iS+OjgO2ZMsKP4Q9WV5JqJfrx/lwlE1Lwqtv6iVWomcse1C1uzlTirLaRoLTrls9+xzuevD8l49cZD+cK2aLZ5zf689oKuv2PtIQC/Em36IpFf7k+fPGXKFJSWlmLbtm1dE9/m5mZs374d9957LwBg0aJFaGpqwo4dO7BgwQIAwKuvvop4PI6Kiop+G8vHhRNhQkha9LUcD5dPI4SQwSWRX07VJ7e2tmLfvn1d5ZqaGlRXV6OgoAATJ07El7/8ZXzzm9/EueeeiylTpuDrX/86ysvLcd111wEAZs6ciU9+8pO46667sHnzZkQiEaxcuRI333zzsFkxAuBEmBCSJn0t0M6EGoQQMrgk8sup+uQ333wTl112WVe5srISALB8+XJs2bIFX/3qV9HW1oa7774bTU1NWLx4MbZu3YpgsPvN/XPPPYeVK1fiiiuugNvtxg033IAnnngijSMbODgRJoSkRdTxwMPQCEIIGTYk8sup+uQlS5bASZCW2eVyYcOGDdiwYUOvdQoKCvD888+ntN/BhhNhQkhaxBwXYgl+aku0jRBCSP+TyC/TJ+twItwLpyJB+CPdgfInQ2ZEvpacQBOh2ckykhG4afW0C1hrZ9vshBeALuqzRW5RReAWV8RWcUvAJkRwABCRNlv4pgrhIlYdqUOBok0R9VyKeAPJZNhxyXaaH3GshBqOV2mnnJa4z2rnU865Tw40bInqon55Euw6gEyI4uohBowqi8v3BWOEyWBS35wLT7RbLJdtJYDI9YbsJvAryWZ+vu9CozypUCZNqG45W9j+/J6ZLGPB9IOizt4TxcLmscSs9c05ok7JLCmga2g0Vf1ZmfL4PG3SZ+xrLDLKgROyTsgt7/d4rnm/Zo1vk+2azDF590mxnitD+iz/SbPv9knye/EfU56pBWZfObVKsiJNBGy9EQ2Pk+3aG6QQzlVqioZbjmXLOoq/tYXdfq9SR+FEpynOC0e7v5dYNLk+bPozRniswIkwISQtoo4HboZGEELIsCGRX6ZP1hlVapb169fD5XIZnxkz5DImhJCPT9zpfvugf4Z6hGSooU8mZHBJ7JeHenTDk1H3RnjWrFn47W9/21X2ekfdIRIyLGBmOZIM9MmEDB7JZJYjJqPOI3m93mGVsYSQ0UrEccOVwLFG6HQJ6JMJGUwS+WX6ZJ1RNxHeu3cvysvLEQwGsWjRImzcuBETJ8rsQmcIhUIIhbpFCM3NzQCApnAmfD2yyrREzFzcauY1JRDdDk53kqgDyOw8cU3gpvVlZ6RTxHIxTQhntbNFcADgKKI3WH2porewtLktIZxbaidEX+6IUkcTy9mZ5bQ62k9Etk0Txmk2j/UdK6fJUe60uM8uK9+n1s5vfVcBTWSnCBut79jd4yTEOlJ3kHwjTJKhv3xy+7FMuDO61ycN55k3x8vHZ4m+8vMVwVeHeeMdaCgSdQ58IMd34aIao/zukTJRJyMgndRZhaeMcm19gaijPRcyLXGcKqoulhkhTzZYqXMnK45Tycjp7DGFYRHF18UzrWyYRbLv4CEpQotZAjpvs/RP9jMBAHzvmGK8lklyTJqfzjpk7i9DahFx8nxp8x4xx+5rlp13lMqxu/LN76HhWJ6o48uXYsf91rXn9Phe4u3pxTHwjXDqjKqzUlFRgS1btmDr1q14+umnUVNTg0suuQQtLS29ttm4cSPy8vK6PhMmTBjEERMycokjUXywS6yYQsYe9MmEDC4J/TJ9ssqomghfddVVuPHGGzF79mwsW7YML7/8MpqamvDjH/+41zZr167FqVOnuj51dXW91iWEdBNz3Igm+MT49mHMQ59MyOCSyC/TJ+uMutCInuTn5+O8884zcmXbBAIBBAKBXrcTQnQYGkFShT6ZkIGFoRGpM6onwq2trdi/fz9uv/32lNs2hwPw+rqdcVvYjB3SElUkE/+rhqaqsb59xwjbdQAgbo1Lq6MlvXDs2F6lTjJJL9xaPLAS/2vX0+J/7XZqjLDWd9Q8y3bMcG+2ZNBjhO1ykrG+VkywHg8sbTFrjhAPK/HAgb7jztt6xAinE4/GhBokVT6OT7YpLWg2ynW1MtY3L6NT2MZldhjlmg9lu6zpp4QtFDVv0FCbvDl9PilI+MDuv0Xe6GGvdEj5ue1G+VS1HKcrS963vjbzvguXSseZUesTtkiO2Zfmb+NZ5vEFDst+AjI/iUhq5IrJcUdknhF4rK+vpUyeJ0+79DPNU81yZoMSfyzDx9E53nygeNvkdxVolM/GTisZScYB+Y9cLCiPOZ5rHU9e90l30gxjYEKN1BlV/x585Stfwe9//3scPHgQr7/+Oq6//np4PB7ccsstQz00QkYdicIiznzI2IY+mZDBhT45dUbVG+FDhw7hlltuwYkTJ1BcXIzFixfjjTfeQHGxTHtJCPl48I0w6Qv6ZEIGF74RTp1RNRF+8cUXh3oIhIwZOBEmfUGfTMjgwolw6oyqiTAhZPCIOa6ECTW0da4JIYQMHIn8Mn2yDifCvdAe8cPTQyDXHjKFEVqiCg3HscuKeE3RKTmWOE5tpwi+HGtcQgQH6EI4a4F1WwTXm80WVHg0sZxc8120S6aOJyJPVDJJNtyKMEMVyyWhF1OTZVg2WzwHADGpKUkqoYYtjAOk0DCu1FETqViClYinewDxTiXrSB/wjTAZTFzBGFzB7us0bCU18mRJZ5Dnl2K5t/eYyTJKJ0h1V0NDvrDVhMzHZfH4ZlGnrVMK6Fwe09m4C2VihWhEOo0TJ80EF25NTJup3LeWwMt7QhHGZUtnl2EJykIFss7Zvzb9Skeh3L32QAs0m7a2EumfWqdI5fPEl81yJFueBK8iepNCa+XZEVKSmNSZ/Wd/KNudmKOcu/2mEw7nyweMv0kec06NaWv5x+6Bx2OKEjwJ+EY4dTgRJoSkBSfChBAyvOBEOHU4ESaEpEU07gaUZf2M7YQQQgaNRH6ZPlmHE2FCSFo4jksN2em5nRBCyOCRyC/TJ+twIkwISYs4EueuZ157QggZXBL5ZfpkHU6Ee6E95IfH0y18CFtCCS3TmyZ6k5UUk/ZfmiVscpQMcYglYdOyqkXk2KW4QBPLyb5scZwmevNoQriQXUeeGLudJnhQBXR2ZjlFc+CKa1+ENMnOlWZuO0OckllOE8JZGpaYkkVOO3cxK2ucpqnQsgDa14Lj7RbouDoUhV8fxOJuuBL81Bbjz3CkH3FiLjiaz/sIbcvb708StuySVqN84m/jRR13QMl8lmXeIy0eWSe2L1vYXD6znpZhTBNu5e82bc3niCqAMobwOFNAN/4NeW8fn6/4UmsMeX+Xu2sbb97TmujYrej37ExywZOyYfGL8gHTPDFolL3tooq6P1+rlSUvKo+3s0ie8+AJW90u+86qU8Tm1uFk18m+jy+QAw2fbz4InQ8zu/6Od6bnPxP5ZfpkHU6ECSFpQbEcIYQMLyiWSx1OhAkhacEYYUIIGV4wRjh1+J6cEJIWcceFWLz3T6pvH9avXw+Xy2V8ZsyY0bW9s7MTK1asQGFhIbKzs3HDDTegoaGhvw+LEEJGLIn8Mt8I6/CNcC+EO71wu7uDOGNhM85KjdlNM0YYaoxw33XsJBgAACsMSYsVdWs2O8GFljxDi/W1bB65Vjw8ob7jf/U6Tp913BEZa2bHErtjSiCblmQjmYQa2tfutZKYeLQYYSXBhR3r69cSaijfe9Qua9eGHKcdRdlz3K404tHicMHVz2K5WbNm4be//W1X2evtdlGrVq3CL3/5S/zkJz9BXl4eVq5cic9+9rP485//nPJ+yMijpLQJnqzuxAUNe4uM7a5x0kG5O+R17XWb/sCZIRNjtLcoWWqsZ0DoaKao4p4oE3hk7sgwyq1zZR33Ybm/E/PMmzhYLx/XnjopLAjnmscXyRJVkF2jaFwsU0eJvH891tCDjdK3Zn8ov4e2MnOc/lbZLjROJv4Y95753TTNzBF1vJ3SccctHxzOUXyk8ljIajDP+Ynz5Tn3tQqTSI6kxR8X/1We88ZZ5rURz+welKPEfydDIr9MsZwOJ8KEkLSI9bGOcDrCDK/Xi9LSUmE/deoUfvjDH+L555/H5ZdfDgB49tlnMXPmTLzxxhv4L//lv6S8L0IIGW0k8ssUy+nwrBBC0sJx+v4AQHNzs/EJhZSfDT5i7969KC8vx9SpU3HrrbeitrYWALBjxw5EIhEsXbq0q+6MGTMwceJEVFVVDehxEkLISCEZn0xMOBEmhKTFGVFGog8ATJgwAXl5eV2fjRs3qv1VVFRgy5Yt2Lp1K55++mnU1NTgkksuQUtLC+rr6+H3+5Gfn2+0KSkpQX19/UAfKiGEjAiS8cnEhKERhJC0SDY0oq6uDrm5uV32QECJvwRw1VVXdf09e/ZsVFRUYNKkSfjxj3+MjIwMtQ0hhJBuGBqROpwI90Is4oHTQxzhhKwLSFVNJdGxUseVjFhOEedpgihbQKcubq4kxrDFcbZ4DuhNCGeXtYXaZTtvyBbCSeWCpzPeZx13WB6gENBFZTtXTDkxinhCDkp+D47bEsspwjjHJxe1d1viG3dAS3TSd/KTqPYda8fishJ/9NSvSP1On/T1U9uZbbm5ucZEOFny8/Nx3nnnYd++ffjHf/xHhMNhNDU1GW+FGxoa1JhiMvo4tq8I7mCPBAsFpijLrYiLXJ3yfm3Zl2+Ux01vFHUiQXm/+nJMR6YJ6mItUvDVMs28YTPfD4o6kTxFCJxjOmHlUJC/Sz7CbYGtJnrLPdC3OLllgvQ9OXWms3EpDqB9vBTw+dpMh+RrkU5LSzrUPsFU+jkuRYis5AKKBs16wSbpEAt2SafXOd78Tgt2y3F2FMrzklXTt8iuZaLyBbrN8+c71d13ugk1EvnlVEMj1q9fj4ceesiwTZ8+Hbt37wZweiWf1atX48UXX0QoFMKyZcvw/e9/HyUlJekMfcjgvweEkLQ47XAT/Qz38fpvbW3F/v37UVZWhgULFsDn82Hbtm1d2/fs2YPa2losWrToYx4JIYSMDhL75dT7mzVrFo4cOdL1+dOf/tS1bdWqVfjP//xP/OQnP8Hvf/97HD58GJ/97Gf78WgGB74RJoSkRdxx6b9m9NieCl/5yldw7bXXYtKkSTh8+DDWrVsHj8eDW265BXl5efjiF7+IyspKFBQUIDc3F/fddx8WLVrEFSMIIeQjEvnldNYRHgsr+XAiTAhJi/7OLHfo0CHccsstOHHiBIqLi7F48WK88cYbKC4uBgB85zvfgdvtxg033GD8DEcIIeQ0yWSWa24212cOBAK9ajfOrOQTDAaxaNEibNy4ERMnTuxzJR9OhAkhox8HiePiU/wZ7sUXX0y4PRgM4qmnnsJTTz2VWseEEDJWSOSXP7JPmDDBMK9btw7r168X1c+s5DN9+nQcOXIEDz30EC655BK8++67o2oln7QmwrFYDFu2bMG2bdtw9OhRxONmIPqrr77aL4MbSpywG46nR+atiBVOrYmRkngDpmYv0wR06YrlrHZqhjhNLGcJsLQscqpYzsrqY4vgAD3zj7fDEsJ1amI58wDdoaio4wortoh1YiJKHS3bXDIBVG5FCOexbD55W2liOVfErOeOyHbumNLOVv7aKaFO11LGaZY9PUU1odR/MnPiLsS1DIs9tpPBYSz45GC9G54egtL4MVN01jFFySwXUERoYfO6PH4oX9QpOrtJ2Fo7zDdmTru8X/2N8n4NNJr7ay+XviejQd7DkZC5UkpMOZawokG1H0PBo7JOTGr6EMo3x1DyphSTNU8yz0GgWREwK1k7bSFcJEeep45CacurMR86ng65v1hQEfXVdFiDkr4oVCjfgGbVmG9KT8wfJ+potBeZY7cz8AFARos8L7be0tPRPc5YGj4ZSOyXz/hkruRjktZE+Etf+hK2bNmCq6++GhdccAFcipKTEDK66e/QCJI+9MmEECC50Aiu5GOS1kT4xRdfxI9//GN86lOf6u/xEEJGCo4r8a8gnAgPGvTJhBAAif3yx/TJZ1byuf32242VfG644QYAI3cln7Qmwn6/H9OmTevvsRBCRhBO/PQn0XYyONAnE0KAxH45VZ88VlbySWsivHr1anz3u9/F9773vVH7E5wr4obL2yNG2IorUxMWJIPyH5kaNxzvu44WI+yOWuOU4bEiHhiQMcF68gwl1teyJRMPDMhYL0+nHJS7w7S5QzK42dWpBDPbMcFR2bcTV75AO8mGS4m9VWLNXHbcsF8JwFNsHivRhyuufMlq3HISt60ydnvheXdG97E4ymnsC4ZGDB/Ggk/uOCsGd0b3PepvNK9xV0jGmGZ9KO+D1knmfe5T4nqbjxcKWzTLvBczjyr32PwWYWuPmP3nvJ4p6kSyhQkZDVY/5bJO8ITmM8zvX/PbGY3S/0WsjB12PDAAxKxcGVpyiYL3OoTNd+iEUQ5PkOc367d7hc2ZMdkouwPS92UckOc8nm3Gr2qJP/wn5X1ixwQXbT8u6rRPzhe2cJ75HUczZd++NmUMTeb5i/d4TKQ7x0gmNCJZxspKPmlNhP/0pz/htddew69+9SvMmjULPp/5kP/pT3/aL4MjhAxzPmbSDNI/0CcTQrroJ788VlbySWsinJ+fj+uvv76/x0IIGUE4cVfClSG4asTgQZ9MCAES+2X6ZJ20JsLPPvtsf4+DEDLicEFbps3cTgYD+mRCyGkS+WX6ZA0m1CCEpEc/J9QghBDyMUkioQYxSXoiPH/+fGzbtg3jxo3DvHnzEgoy3nrrrX4Z3JASdZ3+fIQtQtMSaqT9v1YSCTXU5BkxRbhlJ8bQBHVaQo2IXZaD8iiCKrudJsxwh7RkGZYQrkMRy1lCOFUY1ylVfU7EGpQmltMSamgCOjEoRUDntW6jqDzpWgIPxxJwaGkxoN1nHtPmKAI+x6N8f9ai9sb3mYZYDnGXmujF2E4GjLHmkwMNHngC3aKkaLZ5jWvXfHuptLms69LbIc+blrwinm/6lQ6/fHy66rKErfQNs9w4U1SBT+q9DOEUoDyDAGTVS9+Wv9f0P3VX+kWdwFuyr2jQOi+K8Dl40vRj7qiso+mxYsV5Zt/NMuOEOz9P2OIhK6mS7Bouzd9aSZW0hEaeVvnsiAZNIWPHpHxRx9sh99deYl4LmvjRTlgCANkfmucvnNt98lyKYD0pEvll+mSVpCfCn/nMZ7qyj1x33XUDNR5CyAjBcRIn40smUR9JH/pkQohNIr9Mn6yT9ER43bp16t+EkDEKQyOGFPpkQoiAoREp87FjhFtbW0Ve+3RS9xFCRhauuEv8zGxvHyoaGhpQUlIyZPsfSuiTCRm7JPLLQ+mTgeHrl9OaCNfU1GDlypX43e9+h87O7lgfx3HgcrkQsxMTEEJGH8P4jXB5eTnGjx+POXPmYM6cOZg7dy7mzp2L6dOnw63FeY9w6JMJIQCG9Rvh4eqX05oI33bbbXAcB8888wxKSkpGZSYjd8zMwGaL1dLPLJeczf7PTdufKqCzRXZKFjk925wl3EqiDgB4LFGdS60jB+8OWyKIZLLGacK4sFR5OWGrL1s8h17Ecsnkn9SyzfnMY3Ep/Whfu33fOIojcIUVm9e0ub3K+Y3Ie9L+/lw9xDfatdQniXLan9k+ROzatQs7d+7Ezp078eabb+Kxxx4DcHoB+AsuuABz587tcsaLFy8esnH2F2PBJztewOkhIMs6ZB5jpEk+zmJB2Y/HyqAWzpN3Z6RQEaHtMDOttZVrWTQV4arbvD+9bXJM3nbZV2ex2VfmEVnn+AXymINWpjz7PAFAZ74cQ+CU2X/eL3bKStMmGsX42++LKt6zz5L7O6/UHOPeJlEnPk751cL2dR/UiyqxCaXCZgut26bJvrP2NQtb2S9qjXJkUrGo014mM+55wua5yzgmqqjCxkiWeXyZx7qvlajy3EqKRH55iLN9Dle/nNZE+O2338aOHTswffr0/h4PIWSkEIe6eoqxfYiYMWMGZsyYgRtvvBHXXnst7rvvPtx33304fPgw/va3v6G6uho/+MEP8N577yGs/DM10qBPJoQASOyXh9AnA8PXL6c1Ef7EJz6Burq6Yet0n3rqKTz22GOor6/HnDlz8OSTT2LhwoVDPSxCRhfDODSiJ7/97W+xc+dOTJs2DdOmTcOll17atW00TIIB+mRCyEcM49CIngwnv5zWRPh//s//iXvuuQcffvghLrjgApHXfvbs2f0yuHR46aWXUFlZic2bN6OiogKbNm3CsmXLsGfPHowfP37IxkXIqGMYh0b0ZNasWdi7dy+mTZsmtvn9co3VkQh9MiEEwLAOjejJcPLLaU2Ejx07hv379+MLX/hCl83lcg0LYcbjjz+Ou+66q2tsmzdvxi9/+Us888wzWLNmTfIdWYtSixjdNH9icKkxwkpiDDvWV4sRTsKWdLskYqB1mxVbHFMWsFfihl1RqzNlUXTb5mgJL7RrzYqtctSEGkq7ZBZZTCb2Uqnj8sgF3e0EHtrC8I52Pq34ZpdaR0skYJcd9e9kccUTx8qnHUffz3zlK1/Bl770JeTn52PRokVDPZwBYSz45PCUTrgzusuOywwA9sgcDXArL5bsuGF/sxLXayfJARCzns3a9e0/JW0nZ5hxoFl1StIhRZMRPGbWay+T48zdr8Qpd5oDs3UcAOBtlddDNMv0Uc7MKaKOy0qE1P7ZClFHS8aUvdOM7XVyMkWdWI6MvY0HLb+ZP0nUCdQ2Clt4wjij7GtRkm7YWhIATlaGUY77pUYj7pHfQ/4u84vvKFcyaiiPjs4Cs//DV3Sfu3iHC/i1bNMXifzycPHJwPDyy2lNhO+8807MmzcPL7zwwrASZoTDYezYsQNr167tsrndbixduhRVVVVqm1AohFCoW4TV3CwD6AkhI5d7770Xzc3NWLx4McrLyzF//nzMmzcPc+fOxbx58zBpkny4jjTokwkhI4nh5JfTmgh/8MEH+PnPf66+0h5Kjh8/jlgsJtapKykpwe7du9U2GzduxEMPPTQYwyNkVOFy+lhHeJj8DPfpT38a999/P/x+P6qrq1FdXY0//vGP+N73vofGxkax5u5IhD6ZEAIk9svDxScDw8svpzURvvzyy/H2228PO6ebDmvXrkVlZWVXubm5GRMmTBjCEREyQhghYrkf/ehHXX9feOGFuP3227vKdXV1QzGkfoc+mRACYMSI5YaTX05rInzttddi1apV2LlzJy688EIhzPj0pz/dL4NLlaKiIng8HjQ0NBj2hoYGlJbKtQYBIBAIIBCQsUmEkD4YIRPhRIyWCRZ9MiEEwIiZCCdisP1yWhPhe+65BwCwYcMGsW0ohRl+vx8LFizAtm3bcN111wEA4vE4tm3bhpUrV6bUl8uxhG2O3J4WmjAumSQbySbiSGKcSY09yf0JWxqiq6TR+h7I/aWLJrpTx973Tz8upa90r71E10Y6fY4UsVxPAVkinn322QEeycAxFnyy/0AQnmC30i0WMC/a+HSZqcJfLUVLcb/ZztsufbKvRRPQmWWPkjyjo0RJKGQl8GicI2+MzA+lmDbrsCVE/lAT2Umbr9XsP5wr+24v1sS71phqlf01tRhlx50n6mRXHxa20DRzdRBPmxSqeffJdk6nqYB0F+SLOvF8+R379x81ym0Xlos6HVMLhC1z1xGj7IrnyP0ps6bIOFNkFwtKkV3GUZkQKpBjfg95u7o7j4XSmp6NGLHccPLLaZ3p4RxTV1lZieXLl+Oiiy7CwoULsWnTJrS1tSV90gkhSTJC3gifOmUquj/88EO8/fbb+NSnPjVEI+p/6JMJIQBGzBvh4eSX0/uXYxhz00034dixY3jwwQdRX1+PuXPnYuvWrUKsQQj5eIhfTZTtw4Gf/vSnXX/X1dVhyZIliEQiOO+88/DII48M4cjGBvTJhAweifzycPHJwPDyy/L9fRLcf//9eOKJJ4T9e9/7Hr785S9/3DF9bFauXIkPPvgAoVAI27dvR0WFXOuQEPIxObPWdqLPMOLQoUNYsmQJzjrrLGzbtg1PP/00Hn300aEeVr9An0wIATCifDIwPPxyWm+E/8//+T/4+c9/LuwXX3wxHnnkEWzatOnjjmvIEclZXHJ7OriU3yYcZaXt/loGtF9XS9H6ss+Lsti4Nga7nsuj/E9m2bQ6jpaowrYlG7ObRJYUNTGG2zpAdUza8VkL2KvHp5xP25bE9wIAjrv3sr0tGUbKG2EAOHz4MC677DKUl5fjV7/6FbKysvAf//EfuPrqq1FQUID/9t/+21AP8WMxFnyyJwT0vGM6S6245w5TIAgAWS3ChPYy88IMF8j4aXeHvCFy95m2zsnyAs88LG+8sBVG64oqiTEOSt9Tf6nZf/Cw9CvRqcKEomqzXjhb7i+nVsbo+k+Z2UeaZsn42GCjmQgjZ69c49mOBwYA/1EzftvVLrOfxE6eFDb39HOMcrhIJuLw7aoVtui0s4TNpnmSnP7EvWYscVaNzJCSGVBirkvMbCua7zs2T47d225W9Ld0l2Ph9BzoSHkjDAwfv5zWRPjEiRPIy5NB8rm5uTh+/PjHHhQhZAQwQmKEjxw5giVLlqCkpARbt25FVlYWAGDJkiV44YUXcNNNNyE/Px//9b/+1yEeafrQJxNCAIyYGOHh5JfTCo2YNm0atm7dKuy/+tWvMHWq8i8qIWT0Ee9WKGufdNOQ9zeXXXYZiouL8etf/7rL2Z7h05/+NP793//dWMNyJEKfTAgBkNAvDxefDAwvv5zWG+HKykqsXLkSx44dw+WXXw4A2LZtG7797W+Pip/gCCFJMELeCBcWFhpvHGw+//nP48SJE4M8qv6FPpkQAmDEvBEeTn45rYnwnXfeiVAohIcffhjf+MY3AACTJ0/G008/jc9//vP9OkBCyPBkpMQI//rXv0Z2tlxrtCerVq0apNEMDPTJhBBg5MQIDye/nPJEOBqN4vnnn8dnP/tZ3HvvvTh27BgyMjL6PKARh9s5/fkIxxJEJa1Bsy48TTjmUoRb9v6STXAhdGFK8IsmjBJCKm29ddVmjtOtibt8iggsagnFfErnUfPydMWU33W0hBO2wS3371LUiI7Vl1ZH7ctr3UY+eVu5fFLII+op7bTzEveaY4gr5zfuk2O3v7+eojtNlNcnI+SN8KjzTRZjxSdH8h3Egt0Xla/JvKAjBfKCi/uFCQXvmNf6yVny/vEqyTKaLowa5WCDvF9bpkgf5Tabqb415pf7y6oxx+Vtl+0ytPBv+9GhPOVbJkp/NP51U1kYypPXj52QIeN3H4g6/gkyeYXw04rfduflClvsvb+bfU+eKLsuKZJ97aoxDZfOEHVy6qLClrmv0TQo63O3j9dEduZJD5yS7Yp2dghbywQzg+LRT/Tos8MBnhNN+maEvBEeTv4p5Rhhr9eLe+65B50fZXwpLi4eVgdECBkczrx5SPQhAw99MiHkDPTJqZOWWG7hwoX429/+1t9jIYSMNJwEHzJo0CcTQrqgT06JtGKE//t//+9YvXo1Dh06hAULFohg59mzZ/fL4Aghw5dEOe3PbCeDA30yIQRI7JfT9clPPfUUHnvsMdTX12POnDl48sknsXDhwvQHOcxIayJ88803AzidzcjG5XIhFpMLlBNCRhkjJEZ4LECfTAgB0O8xwi+99BIqKyuxefNmVFRUYNOmTVi2bBn27NmD8eNl8pSRSFoT4Zqamr4rjXDiHhhnx2XH1SerLUrmwtP6EmKC5HYommkCN+Vbd1mpF+OKgM8VUwRYluYirtSJxRSBmSWWcwUUMVkS/726bFEhIAVtUeWA/XJ/mmhR9q3szxLLJSWMA+AETSVPXDkH8YAizPCb5y7ml+c3ponlLFvP707RhPTJSFk1YiwwFnyy/YD3NZvXc6RQNmmdIC9sX4t5vwSPyXsl0KSIucLmvdhZLrOzZR6U93DneHMMGfXyfm2ZLEzimaOJ7CJBOXavpcnKq5Hj7CiUfqV9oilWK3pXirsi2Wa76Cemy/3/dY+w2fV8h2XGtvhUmQ0u/Akzs1xICeZ0h+V3HPCYfWUqGeIihXLZrvZzC6xByf1pb1X9raax6Rz5ZRWGlWeAJcgOHu0ux7SDTYL+XjXi8ccfx1133YUvfOELAIDNmzfjl7/8JZ555hmsWbMmrTEON9KaCE+aNAkA8N5776G2thbhcHdqRpfL1bWdEDKK6WuBdoZGDBr0yYQQAIn98kf25mYzNXYgEEAgEBDVw+EwduzYgbVr13bZ3G43li5diqqqqn4a8NCT1kT4wIEDuP7667Fz5064XK6uZafOLDfFn+EIGf3wjfDwgT6ZEAIk90Z4woQJhn3dunVYv369qH/8+HHEYjGUlJQY9pKSEuzevbs/hjssSOvd+5e+9CVMmTIFR48eRWZmJt5991384Q9/wEUXXYTf/e53/TxEQsiwJNGKEVQpDyr0yYQQAEn55Lq6Opw6darr0/ON71gkrTfCVVVVePXVV1FUVAS32w2Px4PFixdj48aNuP/++0fHMj5e5/TnI+xYWFV9qWXLsND+U9MSXIh6WkNld3Er5kjLCZHUuJRjcSmLoMeseq64lq0jiQFosV/WELRkHfAqgXNWPK4rqrwNSzI5h8CjDdS0OVo8sBKT7ATMsceDsk4sKI8vFnRbZXleokElbtj65SvWI0Q5lsakdSBWjRjt6uSBYiz4ZH+TC55A97XubTW3t7vlRextk/dGuMj0B5l12j2maB0yrP4135qETXPlOTXyZgnlmfdwWOabUO+xzgJzhx1FMquIW4YNI3jSPC+hfOmPwtlWfPVhmeWj85LzZd/1beaYphaIOu0liv+zTAXvK1lFlIdcuMiM/w18KGOEWyfIUIBAk3kOtERDGcdlIo7jF5rnuLg6JOq0TJTfQ/MUsxwu7u473iH3kwzJrBqRm5uL3FzlgrIoKiqCx+NBQ0ODYW9oaEBpaWla4xuOpPVGOBaLIScnB8DpE3X48GEAp+PU9uyRgfKEkFFIP78RPqNOXrduHd566y3MmTMHy5Ytw9GjR/t33KMQ+mRCCIB+9cl+vx8LFizAtm3bumzxeBzbtm3DokWL+mvEQ05aE+ELLrgAb7/9NgCgoqICjz76KP785z9jw4YNmDp1ar8OkBAyPOnvzHI91cnnn38+Nm/ejMzMTDzzzDMDcwCjCPpkQgjQ/5nlKisr8YMf/AA/+tGP8P777+Pee+9FW1tb1yoSo4G0QiMeeOABtLWd/qljw4YNuOaaa3DJJZegsLAQL730Ur8OkBAyTEly1YhkFMpjRZ08UNAnE0IAJLVqRCrcdNNNOHbsGB588EHU19dj7ty52Lp1qxDQjWTSmggvW7as6+9p06Zh9+7daGxsxLhx47pUyoSQ0Y0LiVe3PrMtGYXyWFEnDxT0yYQQILFfTtcTrFy5EitXrkyz9fAnrYmwRkGBDH4fyTi+OBxfj3+fLEWbo4rlpMn+KULVY2ntrP61xBEuRSfmipqduZWHYDwJQYeq+1MfqH0n/nBcmhrQqqMcn9eyOT55wPYi9wDgiliCh6j8slxaBolkxHJ2sg5IQYU2zrhfE9BZoreAItoJyP1FLSGPKowLChOiGWa7nuK5tBbXSjKzXF1dnSHM0NarJP3PaPPJMR+AHuKp9ovNhA9anF+4UFozDpv3Ynu5vPrtBEMA4G0xbVryjMiFbcKGIxlG0RatAkDLBDnOcJ55c2UeUcbUKW/A1rPNck6t3F/Gcen/2krN8+IJyb4Dp8x2Jy+UgqtAsyZOtoWG8ljyd7cKW+OsbKPcWSxPnjuiKdCt3bVKkZ2vTZ4D8RxSHnltpUriI8vUUawI/6RWDnn7rf3XdD8DYmEPDskmfdPPmeXGAv02ESaEjC2SXTUiGYXyWFEnE0LIQJLMqhHEJL0cfoQQAlCdTAghww2u654SfCNMCEmL/s4sV1lZieXLl+Oiiy7CwoULsWnTplGnTiaEkIEkmcxyxIQTYUJIWvR3Qo2xoE4mhJCBhKERqcOJcC+4AjG4At1B/+IfKU1xpoithEUVxikCM1ssp1zALkWTYIvqHI/coSays0UCmlhOy4An2inZneJKdh7HytDm8Srnzmu200QR7rAioIuYJ8ulZJFzxdP711gT9Ylz4JMnKq7YYkIsp2Sz8iu2gC2Wk+NUs81lWHUye2ROVL63PklSLJcKo12dTNInXBiHO9h9L3trzAu/5/V8Bk+pzPAVPWX6DHeRrOOuzRC2SJ7lRxThrPvvWcIGnzmucL70R9kfyL7aJ5kOPuNdpU6JtNkZQNtLpC/oLNAEvWbZ1yzbBU6ZY/KElXOuCPgOX2EKN0u3S2GcJjIufMdcejEekFOWaKa0hQpMsdqJJRNFnXCuIiT32s8zUQVR5Sv2W4nrjs2XfRfulO0aL7D6zu0+v/GOGPD/k236hGK5lOFEmBCSFgORYpkQQkj68I1w6nAiTAhJjwF4I0wIIeRjwDfCKcOJMCEkLfpbLEcIIeTjQbFc6nAi3AtefxTuQLSrHLUTQMS0IFrN1kcZgKPFG1s2R4k/dmljiNl1ZBW3GrPrWGWtjuzLtmnt3MpV5li2mE+281ixdR4tRtj+YgC4ouagXPZi7ujfGGF7EcK4cix27Bkgj1mPB5a7i/v7jhG24/0AIGrFUEYzesQIp/GqwBV3Ep7HdM8xIRo5k0/Bk9nZVW6uyTe2x7OjsMnOlPG/kYh5w+TkyGQLnedGhM3Zb66F7TpXxrl6qnOEzXW+WS96JFPU6SiV98q4t00/FspTfJ3yU3fwuOUfZLgzPJ3SFrd8cla97PzQ5eaYiv4m+wnnyMBaf4t5fC2T5TmwEwUBQDjXrBfOk/srekd+78ET5vd34vzkEnHYz8uI/DpV39p2ltlX8IQ8llC+bBe1rtmsg91fQiyU3vQskV+mT9bhRJgQkh4MjSCEkOEFQyNShhNhQkhaMDSCEEKGFwyNSB1OhAkhacFVIwghZHjBVSNShxNhQkh6MDSCEEKGFwyNSBlOhHshGIzCE+wOuO+0Yt/jMSkI0K4xIYTTxHKayM4Wy2lJN1SxnN1O2Z8qMLMTcSjtVNGb2c4WXACAxydttqDMrQgQYpZexR1RhHhSJwG3JY5TE4+k6RD0pCJmWRPGaeclbp0XTSynCTNi/iTqBOQBxjJMm5PZI2GMdpL6gKERZDDxeWPweLuv0+LzjhvbGz4osJsgpAiOpi6uNcp/3zlB1AmeJYVwsUzTmcaOSsEXSqTD9ezPNsreyW2y74h0uCdzTQdh+2gACDbIdvZ9botkASDrkHRk2R+a9drKZZ3gMbOc84EUGtYvkucleNzs29spz9PxOfJYxr1vj0lUUd9yHp1niuO050Q4U3l+WqacWtn5yemyXdZh0xbOFVUQURJxZB8wr8+Osu79xZVzlAwMjUgdToQJIenh9PFTG50uIYQMLon8Mn2yCifChJD0cBw1rbixnRBCyOCRyC/TJ6twIkwISQuGRhBCyPCCoRGpo0Q8jlwmT54Ml8tlfB555JGhHhYhoxJXrO8PGdvQJxMyuNAnp86oeyO8YcMG3HXXXV3lnBwlNUwSZAVC8PZIQOS2/pWKxGRgv/argy2Ei2uiN0UsZ4vj4lodRSxnt3M0UZ8iurD7crTsaJpYzRJ8uRRRghNWxHlWO1X0Zo3TLZM96UI4O7ueEi+V1DIyySYPTCK7ni2M02yqoE4VyzlWHXnhaTYnaB60N6v7hMZdysntC64aQZKgv3zyiRPZcLd3O2UnbN14PnlTR1pkRrE6X75Rzp9yUtRpfU8K73zWLRI+OyzquE/JG92Z2GGUY8dkqrfAcfk8CU0xs+JpfruzRJjgO2X6fLfif7Vsc6fOsfqRekFEs8ybuu4fpTAu0KS0s4RpJ0qlsyt8R35/rWeZxxItlH6qrUT21WplBsx9T34v4TzFR1qPy5hfPj8z64UJzeeaY88+KNvFLj0lbG115r3gLurxnbfLrIhJwVUjUmbUTYRzcnJQWlo61MMgZNTD0AiSDPTJhAweDI1InVEVGgEAjzzyCAoLCzFv3jw89thjiEaVV409CIVCaG5uNj6EkL45k9M+0YcQ+mRCBg/65NQZVW+E77//fsyfPx8FBQV4/fXXsXbtWhw5cgSPP/54r202btyIhx56aBBHScgogaERpA/okwkZZBgakTLDfiK8Zs0afOtb30pY5/3338eMGTNQWVnZZZs9ezb8fj/+6Z/+CRs3bkQgIGPFAGDt2rVGu+bmZkyYMAF5gU54eyQl8Fi/KYSVGOFYXL5gt/8Bi6t1lJjSJGKLtb5iMbudEiOsxRZbscRqHLGv73hjbdF3LT7WjgnWYovtGGGtjhbr67aPT4sRTsIhaPHA2m8oIqFGkslI4l4r1lc5T46v7/hfrQ4CMnjaa9myszq7/o65Uo9HY2jE2GSofLITdxkaiLMmnDDa+Tzymv/weL6w5WeZMbuNLTLTge9c+Rba67ESarQFRZ1YphxDdoYZS9yeLx2L92x5/4UOm/Gjrmwtjl9xNlb33nNksG/USvIBQPjJ8Dh5A0dKzGPxfyhFDJ4OYUJnsTkoT6esc2K2cl6sfB3+BulITy6RnfnqzO8mquQ+8YQUzYsV9m3vHwDay+V58ZaZFUPN8pqKdUoH7yo0v/ec7O6TF3OnFyPM0IjUGfYT4dWrV+OOO+5IWGfq1KmqvaKiAtFoFAcPHsT06dPVOoFAoFeHTAjpnb5+auPPcKMT+mRChi+J/DJ9ss6wnwgXFxejuLg4rbbV1dVwu90YP358P4+KEMLQiLEJfTIhwxiGRqTMsJ8IJ0tVVRW2b9+Oyy67DDk5OaiqqsKqVatw2223Ydy4cUM9PEJGHQyNIImgTyZk8GFoROqMmolwIBDAiy++iPXr1yMUCmHKlClYtWqVEWtGCOlHYg7gTuBZY/S6Yxn6ZEKGgER+mT5ZZdRMhOfPn4833nij3/obF+iAr4e4yOs2lQShqDx1UVs1BSmgi2riNWX/djtNiBdTBHRJtVOSbCQjsotHNbFc3yI7KOK8eBIiO1sc504iecbpzq062glWlXB2530vuK7Z7AQbAOB4ZV92Ag1HSQgARQjnsup5/PIk+HzSlhEwlSDjMruFGVGkIZZDH2+EU+6RjCb62ydfNO0D+LK6xVnvHCk3tgd8Uk1bmC+FYodrC42yJ0u2cyvCu1CnKQzTEij5cuV95LJukomljaLOoWPyDbm7w7yDpsw4Jursby4XtnCZKaoLvCcTmMTypK/xn+x7NdWI9cyx9wUAkRz5bPS1mOWQIsRLxmFo/t57UIoW7cQfkTxFxFijJOI4x7wW3IpAMW4ncgHgs85LNEcen8ctz3n8lDn2srMauvvwhLBLtOibRH6ZPlln1K0jTAgZJByn7w8hhJDBY4h8cjLp1N955x1ccsklCAaDmDBhAh599NEBG08qjJo3woSQwcUVT5yqOqk01oQQQvqNRH55oH1yonTqzc3NuPLKK7F06VJs3rwZO3fuxJ133on8/HzcfffdAzuwPuBEmBCSFi7HgSvBG4ZE2wghhPQ/ifzyQPvkROnUn3vuOYTDYTzzzDPw+/2YNWsWqqur8fjjjw/5RJihEYSQ9Ign8SGEEDJ4JOGT7RTmoVB6yTtsEqVTr6qqwqWXXgq/vzvWftmyZdizZw9OnjzZL/tPF74R7oVCfxv8PcRFbus3hU6PzBKjCeGilnJKq6NmpLPC2pNtF7NEYBE1A54MmY9a9ZIW2VliOV1kp2Sps0V2iqAO1jjjWh1NQGcfnyqWS0KsoezO0dS4tlhOEcapKl5L9OZWxHIeb99COL9SJ+iXIo9svymWKw52C4ki8bBdvU+YUIMMJjVNhfCEuxNtTC40RWd7j8i1iZsP5Atb7pRTRjkzIK/9cFT6zQxLjDc177ioU9tSIG2HTXFea22uqOMvlSnMJsz70Ch/oAjqXPly7E6L+WwKF0j/4O6UfjpsCejiWUp2ymNm3+4pbbIfxW+Gg5bRn9x/ya5Gc3+axlkbZ2aRlentgDznGUuk+LD1SJ7Zd6e8DopKZdbBZjvLYLGcWN5zwZ+E7cm/XG6UO6LdxxuNpvcmIZmEGhMmTDDs69atw/r169Pa3xn6SqdeX1+PKVOmGG1KSkq6tg3lkoqcCBNC0qMv8QVDIwghZHBJ5Jc/stfV1SE3t/ufg94yOQ50OvXhAifChJC0YEINQggZXiSTUCM3N9eYCPdGf6ZTLy0tRUNDg1HnTLm3uOLBghNhQkhauGKOWCPV3k4IIWTwSOSXU/XJ/ZlOfdGiRfja176GSCQCn+90CMgrr7yC6dOnD3mmSU6Ee6HA14qgrztex2Mpf1pj8lV/NC7jiSJWtgWtjpaIw44JtmONtToAELeCqGJK31rcsNhfkjHJUStuWI1JTjOBhx037Cj9OEq8s/hVKNmEGrbz0FYfV2J9XR7T5vHIOtoC/V6veU35lFhfLf434DVjFbN8Mk4wwytjhHP9HUa5JNC9yn0oJuv3CUMjyCBSkt0CX1Z37GWur9PYvnjqftFmR+bZwnbT1LeM8pb3KkSduWd/KGw7rQQe84vqZJ0OmdxhXKGZTaI1Q0kAEZGP4lOdZr2YErccD0mbK9tKEKLchrFM6UttP5aV2ynq5E0yfcjR6hJRp3xug7DV7zbjt52gIu5o8kubNfaMKS2iSmeNTBjS7skwyh7Fb584mS33Z2lXfPnyHJTlyBjhc8eZ8cZ7T8rJ42+OzhS2Ky8wU2bMzDrS9XdnaxSvyxH2TRKhEf1NMunUP/e5z+Ghhx7CF7/4RfzLv/wL3n33XXz3u9/Fd77znQEZUypwIkwISQuK5QghZHiRjFiuv0kmnXpeXh5+85vfYMWKFViwYAGKiorw4IMPDvnSaQAnwoSQdOEbYUIIGV4MwRvhZNOpz549G3/84x8HZAwfB06ECSHp4SDxWsGcBxNCyOCSyC/TJ6twIkwISQtX3IErQc5OhkYQQsjgksgv0yfrcCLcC4XeVmR4u0+P2/pXKuCO2k0QisvTGbETaiiit0gSAjqtji2M09qpST68fYvlVGFcEsK7iCqo6zuphyr8s8ekieWU+zquCOjSwa0ILJKx+TRhnEc6Jr8legt65TUV8EhbpjecsAwA2Yotx2sKP0p83aKPTr/cT58wNIIMIifaM+FxdYuUr5n8jrH9J4cXiDbnFcqkCa83mss95ed0iDrHOqSQ6pxiM4FGfadcfionKBMpHDpiJdlQFP0XnfOBsL1bX2aUJ4yX2bfqm6RQzGP5mkhE+t/iklZhO9maaZTPKzoq6nxwylT3B86TwrEjR/OFzVtinmN/QPqbsrPld2UnEQmH5bEEJksBXShkJeIISJ88Z+IhYdt1xDznXk3ArDz75+Safb17TC4HdiokRZL548zz8pem7oQTkbbUkxwBGJLQiJEOJ8KEkPSIQ19Zo+d2Qgghg0civ0yfrMKJMCEkLVzxeB+hEfS6hBAymCTyy/TJOpwIE0LSg6ERhBAyvGBoRMpwIkwISQ9OhAkhZHjBiXDKcCLcC0WeVmQqorIz+FSxnE/YbLGcJnrTRHYx9J2Rzs5aBwBxWyyn1IlpIru4LerrO9vd6Xpmu7AmjEuiLzUjnTVORxm3JupLVxjrtrrX0lR63PKnJZ9l08Rymugt6IlYZVknSxG9ZXhMW7ZHCnQyPbJdnscUZhR7u4Uu7T4l01MfuGIOXAnW4xnIFMuTJ0/GBx+YAqONGzdizZo1XeV33nkHK1aswF//+lcUFxfjvvvuw1e/+tUBGxMZWD4/6Q1kZHf7yhcPf8LYrmVTvLLoPWE7GjFFbidzMkWdd5vKhe2Wsr8Y5e8dWCLqXHf2O8L2fMdFRrksVwrM9p6QmcgCPtMfaD4kdEoKsHKKTSHcvDKZJe+NminCdv7ZR4xyzclCUaepMcsoZ+RI34OTMkNcNM/8bqIn5LiRJ8+LLUS+oOyIqLP7mMxuF7cyxGlu6nBrnrBdPKnGKIdi8tmsZY0LW89w7Rlw/jiZce+IJbgcH+wW/oWjaWT7RGK/zLT3OpwIE0LSY4jfCG/YsAF33XVXVzknp1tB39zcjCuvvBJLly7F5s2bsXPnTtx5553Iz88fFpmMCCFkQOAb4ZThRJgQkh5xR10Kytg+gOTk5KC0VC5TBADPPfccwuEwnnnmGfj9fsyaNQvV1dV4/PHHOREmhIxeEvllriOsIn9XJoSQZHDiQDzBxxlYhfIjjzyCwsJCzJs3D4899hii0e6fjquqqnDppZfC7+/+mXbZsmXYs2cPTp6U67ESQsioIJFfHmCfPFLhG+FeyPO0IcvTHbcasxbm88VkDFCnW8YI23HDEbeMhe1UYovj1v602GI7/hiQSTbsWGNAjzdOZn9aAg87TlnrO5l4Yy3RiF1H278WN2wfS7LYSVO0eGCvYrMXWPe7k4sRzrBihDPcWmIMJf7XqmeXASDHI5ME5LjNhBo9Y4TbvGk4yCRDI5qbzdi/QCCAQCCgtUia+++/H/Pnz0dBQQFef/11rF27FkeOHMHjjz8OAKivr8eUKWYcZElJSde2cePGiT7J8GZfZwkC3m5f+e1zfmJsf7LhCtFmf+d4Yas6al4XM8fVizqTc04I26snZxrlY40yoUZ7uYyPvXHq34zy/3/3J0Sdy6fsFbY9p8yxl2edEnVaJ8j9zSk8bJQPt8tY2JtnvSlsPzsw2yhrCYyy8kwfcv54ee4+zJb7m5Rj/vP51w8miTqz82Us876DZvzvoex8UefyiX8Xtl+8d6FRvnPe66LOrw6fL2wX5R40yi/Uyu/q/528Q9h2t5qJOCaXyeunJSrjokVssav72RF3pa7bAMDQiDTgG2FCSHrEnb4/ACZMmIC8vLyuz8aNG9Xu1qxZA5fLlfCze/duAEBlZSWWLFmC2bNn45577sG3v/1tPPnkkwiFFPEOIYSMFZLwycSEb4QJIekRjwFI8NYifnpbXV0dcnO735719jZ49erVuOOOOxLucurUqaq9oqIC0WgUBw8exPTp01FaWoqGBlOlfabcW1wxIYSMeBL55Xiab5lHOZwIE0LSI+5AXZfI2A7k5uYaE+HeKC4uRnGxXJooGaqrq+F2uzF+/OmfkxctWoSvfe1riEQi8PlO/5z+yiuvYPr06QyLIISMXhL5Zb4RVmFoBCEkPc7EoiX6DABVVVXYtGkT3n77bRw4cADPPfccVq1ahdtuu61rkvu5z30Ofr8fX/ziF7Fr1y689NJL+O53v4vKysoBGRMhhAwLhsAnj3T4RrgXCtwdyHb3/n+CXwlkb4vLn3w7XaYQrtORwriAWy6cbQvh4spYNLGcnbxCE45pCS7E/jQRmiqWs9tpffdP4g9NiKeRjFjOFsYBgNtacsaniN68Sg73gCWW075Puw4gk15oordMtyaWM21ZmljOLcVyuZZYLq9HPxmKCLBP4g6ABO0G6O1DIBDAiy++iPXr1yMUCmHKlClYtWqVMcnNy8vDb37zG6xYsQILFixAUVERHnzwQS6dNoKZFmxARrD7kfVW50Rje0Nnjt0EM7NkAobWkCkwm54pEx389NBcYQt4zXt4wvhGUUcTGduirGnjj4s6VYcnC5vbuifbwjJxxK2T/ipsPz0819xfrtzf//77XGHzWUl1CnPaRJ2K4oNG+T/3XiDqlBfIxBj5ftMfnVt2VNRpjmYImydojun4Sfkdnz/5sLD9OmAKG599Z5Gok5sjfWRtyEwicnZOk6jzmwYpsrOTudxYJL+Xb9V8UtimWqJM4zmhPDOSIpFf5hthFU6ECSHpEY8j8UR4YJbqmT9/Pt54440+682ePRt//OMfB2QMhBAyLEnklwfIJ490OBEmhKTHEGeWI4QQYsHl01KGE2FCSHrE+lignW8fCCFkcEnkl+mTVTgRJoSkhePE4SSYCCfaRgghpP9J5Jfpk3U4Ee6FXHcEOYZArd3Y7lPEckGXFEnZ2ea0LHJhRfQWccyvRssQp4vX+v5K7Sx5p/typ1zn9P7MsWtCvGQEe8lkydOOtz+xs8Z5lDgrTUAXcJmihqAiltNEb3Y9rU6WZnOZ4jjtusvRhHfWNZvf4/puSU6HaOL0sUA7f4Yj/ciOlknwO91Ct08XmBnbNAHsrtZyYVtcfsAoN0azRJ3vz3he2B49bIqdwoowrimaKWzjgqYoy86YCQB5GZ3Cdo4lcnvjQ5mNrTZUIPcXMJ9VdW35os5tM6SY690W81zVt8klD18+MMso52XLcWsZ8JrCphBOy77ZEZPPxvKiJqN8+ITMWqc9GyMh8zk4pVwKBjuj8lm565SZIS7okb517rhDwtYYNq+hnZ1nizpLxsvsgZ/JNa/hXeHu76AjlqZYLpFfpk9W4USYEJIesRiQKA2ow8XbCSFkUEnkl+mTVTgRJoSkh9NHQg2+fSCEkMElkV+mT1bhRJgQkhZOPA5HWVe5azvj0QghZFBJ5Jfpk3U4Ee6FfLfbiBH2WHGYASVnd7tLxmXasa92zDCgx+PKGOHkEmPYxJX4qWTaaftT+xexxX0nxtDGpY3J7mugY4TtuG+P4kySiQ33uWRslxbHa8f/BtV22v5MW6ZyWoIueT4z3WbCl0CPZC8eTxoOMhYHEkyEE64oQUiKfKXkNeTkdF/XByJmDOsVRbtFmz83nSNs/5Bv1tvZPkHUORaTccP3lr5qlHeFZBzo8twPhO0/8oqM8o62KaJOgVcmrxhn2QIe6R/ePDFR2OwkDS2RoKjTEpO2A01mMomCjHZR5/ppbxvlIl+r7KdDpkkPxc3nWWNIxlKXZ8rY4iNWTPDL/89Tos7/PjVf2CaWmslOPlv+N1Hn/TYZP359wZtG+buH/lHUGeeV5+XWcea65k1xmRzk960zhO2VNjM5x8lI93UXao8A2CHa9Ekiv0yfrDJiUiw//PDDuPjii5GZmYn8/Hy1Tm1tLa6++mpkZmZi/Pjx+Od//mdEo2kGnBNCEuM4px1rrx/+DDeaoU8mZBiS0C/TJ2uMmDfC4XAYN954IxYtWoQf/vCHYnssFsPVV1+N0tJSvP766zhy5Ag+//nPw+fz4V//9V+HYMSEjG6cWAyO8ua5azuFGaMa+mRChh+J/DJ9ss6ImQg/9NBDAIAtW7ao23/zm9/gvffew29/+1uUlJRg7ty5+MY3voF/+Zd/wfr16+H3+9V2hJD0cOIOHFfvbxgcvn0Y1dAnEzL8SOSX6ZN1RsxEuC+qqqpw4YUXoqSkpMu2bNky3Hvvvdi1axfmzZuntguFQgiFumM1T506HafU0mrG0rRYsTXtSqhNuxJ/E7XiWjuV/8i0eFy7nR4j3PdFHVfUo8m0SzpG2Oo/rqy9O1JihKNJxAjbdQAgDtOmxRHHtOVsrHWLo+r++rbFlNMSUWxRa3+BHv00f3S9p+Ioo04oYcxZFDIumowd+tsnt1o+uS1i3lOdIRlyEWmTuo2OgFnvdCymSZuyzm3Muu86wnJ/zcr92t5m9qXtr9MrbR1es/9wqzyWaJtcZzxsaVWi7bJOyC/3F7PqReNKO5/ZrtMnz0G4Q/YdtjKaaWOyxw0A8XZzneLWFnl+O1vl/uzz0tGqjLNN+d595nelXT+dPtmu1XrutSkaopCyP7cV9x2KdNc5Uz/VyWsiv0yfrDNqJsL19fWGwwXQVa6vr++13caNG7vebPRk9ieO9u8ACRkBnDhxAnl5ctH6nvj9fpSWluJP9S/32V9paSnf/I1R+tsnX7zQTopg++j9Sm+/F5afCcubwiIlWRoHhaVSrVdnlauT6j1dXk+izh/S7Pu1NNv1F59Qrb/p01aVZP8ywGdfUnt7OKneteuzb5LxyUDyfpk+WTKkE+E1a9bgW9/6VsI677//PmbMkGrL/mLt2rWorOx2X01NTZg0aRJqa2uTuviGE83NzZgwYQLq6uqQmyuzAg13RvL4R/LYgdNv3SZOnIiCApmpyiYYDKKmpgbhsHxbYuP3+xEMSoU6GZ7QJ/cvI90vcPxDRyo+GUjeL9MnS4Z0Irx69WrccccdCetMnTo1qb5KS0vxl7/8xbA1NDR0beuNQCCAQCAg7Hl5eSPuxjlDbm7uiB07MLLHP5LHDgBud3ILyQSDQTrTUQh98sAw0v0Cxz90JOuTAfrldBnSiXBxcTGKi+Wag+mwaNEiPPzwwzh69CjGjx8PAHjllVeQm5uL888/v4/WhBBC6JMJIWONERMjXFtbi8bGRtTW1iIWi6G6uhoAMG3aNGRnZ+PKK6/E+eefj9tvvx2PPvoo6uvr8cADD2DFihXq2wVCCCHpQ59MCBkVOCOE5cuXn0mgbXxee+21rjoHDx50rrrqKicjI8MpKipyVq9e7UQikZT209nZ6axbt87p7Ozs5yMYeEby2B1nZI9/JI/dcUb++MngQ5/cNyN57I7D8Q8lI3nsIw2X43BhOUIIIYQQMvYYMSmWCSGEEEII6U84ESaEEEIIIWMSToQJIYQQQsiYhBNhQgghhBAyJuFE+CMefvhhXHzxxcjMzER+fr5ap7a2FldffTUyMzMxfvx4/PM//zOiUZnDfDgwefJkuFwu4/PII48M9bB65amnnsLkyZMRDAZRUVEhFuIfrqxfv16c54HMuvVx+cMf/oBrr70W5eXlcLlc+NnPfmZsdxwHDz74IMrKypCRkYGlS5di7969QzNYMuahXx5aRqJfpk8mqcKJ8EeEw2HceOONuPfee9XtsVgMV199NcLhMF5//XX86Ec/wpYtW/Dggw8O8kiTZ8OGDThy5EjX57777hvqIam89NJLqKysxLp16/DWW29hzpw5WLZsGY4ePTrUQ0uKWbNmGef5T3/601APqVfa2towZ84cPPXUU+r2Rx99FE888QQ2b96M7du3IysrC8uWLUNnZ+cgj5QQ+uWhZCT7ZfpkkhJDu3rb8OPZZ5918vLyhP3ll1923G63U19f32V7+umnndzcXCcUCg3iCJNj0qRJzne+852hHkZSLFy40FmxYkVXORaLOeXl5c7GjRuHcFTJsW7dOmfOnDlDPYy0AOD83//7f7vK8XjcKS0tdR577LEuW1NTkxMIBJwXXnhhCEZIyGnolwefkeqX6ZNJqvCNcJJUVVXhwgsvRElJSZdt2bJlaG5uxq5du4ZwZL3zyCOPoLCwEPPmzcNjjz02LH8uDIfD2LFjB5YuXdplc7vdWLp0KaqqqoZwZMmzd+9elJeXY+rUqbj11ltRW1s71ENKi5qaGtTX1xvfRV5eHioqKkbMd0HGFvTLA8NI98v0ySQVRkyK5aGmvr7ecLYAusr19fVDMaSE3H///Zg/fz4KCgrw+uuvY+3atThy5Agef/zxoR6awfHjxxGLxdRzu3v37iEaVfJUVFRgy5YtmD59Oo4cOYKHHnoIl1xyCd59913k5OQM9fBS4sx1rH0Xw/EaJ4R+eWAYyX6ZPpmkyqh+I7xmzRoRNG9/hvtN3ZNUjqeyshJLlizB7Nmzcc899+Db3/42nnzySYRCoSE+itHFVVddhRtvvBGzZ8/GsmXL8PLLL6OpqQk//vGPh3pohAxL6JfplwcS+mSSKqP6jfDq1atxxx13JKwzderUpPoqLS0VitmGhoaubYPBxzmeiooKRKNRHDx4ENOnTx+A0aVHUVERPB5P17k8Q0NDw6Cd1/4kPz8f5513Hvbt2zfUQ0mZM+e7oaEBZWVlXfaGhgbMnTt3iEZFRhv0y93QLw889MmkL0b1RLi4uBjFxcX90teiRYvw8MMP4+jRoxg/fjwA4JVXXkFubi7OP//8ftlHX3yc46murobb7e4a+3DB7/djwYIF2LZtG6677joAQDwex7Zt27By5cqhHVwatLa2Yv/+/bj99tuHeigpM2XKFJSWlmLbtm1dTra5uRnbt2/vVbVPSKrQL3dDvzzw0CeTvhjVE+FUqK2tRWNjI2praxGLxVBdXQ0AmDZtGrKzs3HllVfi/PPPx+23345HH30U9fX1eOCBB7BixQoEAoGhHbxFVVUVtm/fjssuuww5OTmoqqrCqlWrcNttt2HcuHFDPTxBZWUlli9fjosuuggLFy7Epk2b0NbWhi984QtDPbQ++cpXvoJrr70WkyZNwuHDh7Fu3Tp4PB7ccsstQz00ldbWVuPNSE1NDaqrq1FQUICJEyfiy1/+Mr75zW/i3HPPxZQpU/D1r38d5eXlXQ9DQgYT+uWhY6T6ZfpkkjJDvWzFcGH58uUOAPF57bXXuuocPHjQueqqq5yMjAynqKjIWb16tROJRIZu0L2wY8cOp6KiwsnLy3OCwaAzc+ZM51//9V+dzs7OoR5arzz55JPOxIkTHb/f7yxcuNB54403hnpISXHTTTc5ZWVljt/vd8466yznpptucvbt2zfUw+qV1157Tb3Oly9f7jjO6eV6vv71rzslJSVOIBBwrrjiCmfPnj1DO2gyZqFfHlpGol+mTyap4nIcxxncqTchhBBCCCFDz6heNYIQQgghhJDe4ESYEEIIIYSMSTgRJoQQQgghYxJOhAkhhBBCyJiEE2FCCCGEEDIm4USYEEIIIYSMSTgRJoQQQgghYxJOhMmIZv369cy5TgghwwT6ZDLSYEINMqJpbW1FKBRCYWHhUA+FEELGPPTJZKTBiTAZFCKRCHw+31APgxBCCOiTCTkDQyNIWmzduhWLFy9Gfn4+CgsLcc0112D//v0AgIMHD8LlcuGll17CP/zDPyAYDOK5554DADzzzDOYNWsWAoEAysrKsHLlyq4+XS4X/v3f/x3XXHMNMjMzMXPmTFRVVWHfvn1YsmQJsrKycPHFF3ftB5A/w91xxx247rrr8G//9m8oKytDYWEhVqxYgUgkMjgnhhBChgD6ZELSgxNhkhZtbW2orKzEm2++iW3btsHtduP6669HPB7vqrNmzRp86Utfwvvvv49ly5bh6aefxooVK3D33Xdj586d+PnPf45p06YZ/X7jG9/A5z//eVRXV2PGjBn43Oc+h3/6p3/C2rVr8eabb8JxHMNRa7z22mvYv38/XnvtNfzoRz/Cli1bsGXLloE4DYQQMiygTyYkTRxC+oFjx445AJydO3c6NTU1DgBn06ZNRp3y8nLna1/7Wq99AHAeeOCBrnJVVZUDwPnhD3/YZXvhhRecYDDYVV63bp0zZ86crvLy5cudSZMmOdFotMt24403OjfddNPHOTxCCBlR0CcTkhx8I0zSYu/evbjlllswdepU5ObmYvLkyQCA2trarjoXXXRR199Hjx7F4cOHccUVVyTsd/bs2V1/l5SUAAAuvPBCw9bZ2Ynm5uZe+5g1axY8Hk9XuaysDEePHk3uwAghZARCn0xIeniHegBkZHLttddi0qRJ+MEPfoDy8nLE43FccMEFCIfDXXWysrK6/s7IyEiq357iDZfL1aut5899ifo40yZRfUIIGenQJxOSHnwjTFLmxIkT2LNnDx544AFcccUVmDlzJk6ePJmwTU5ODiZPnoxt27YN0igJIWRsQJ9MSPrwjTBJmXHjxqGwsBD/43/8D5SVlaG2thZr1qzps9369etxzz33YPz48bjqqqvQ0tKCP//5z7jvvvsGYdSEEDI6oU8mJH34RpikjNvtxosvvogdO3bgggsuwKpVq/DYY4/12W758uXYtGkTvv/972PWrFm45pprsHfv3kEYMSGEjF7okwlJHybUIIQQQgghYxK+ESaEEEIIIWMSToQJIYQQQsiYhBNhQgghhBAyJuFEmBBCCCGEjEk4ESaEEEIIIWMSToQJIYQQQsiYhBNhQgghhBAyJuFEmBBCCCGEjEk4ESaEEEIIIWMSToQJIYQQQsiYhBNhQgghhBAyJuFEmBBCCCGEjEn+Pxttd2/bKj/IAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = plt.figure(figsize=(8, 6)) \n", + "\n", + "gs = gridspec.GridSpec(2, 2, width_ratios=[1, 1], height_ratios = [1,1])\n", + "\n", + "ax1 = plt.subplot(gs[0])\n", + "im1 = ax1.imshow(dT_map)\n", + "cbar1 = plt.colorbar(im1, ax=ax1, fraction=0.046, pad=0.04)\n", + "im1.set_extent([-width, width, -width, width])\n", + "ax1.set_title('dT map')\n", + "ax1.set_ylabel('arcmin')\n", + "ax1.set_xlabel('arcmin')\n", + "cbar1.set_label('$\\mu$K', rotation=270, labelpad=15)\n", + "\n", + "ax2 = plt.subplot(gs[1])\n", + "im2 = ax2.imshow(dT_map)\n", + "center = np.array(dT_map.shape) / 2\n", + "center = center - center[0]\n", + "cbar2 = plt.colorbar(im2, ax=ax2, fraction=0.046, pad=0.04)\n", + "im2.set_extent([-width, width, -width, width])\n", + "disk_circle = plt.Circle(center, 1.66, color='red', fill=False, linewidth=1)\n", + "annulus_circle = plt.Circle(center, np.sqrt(2) * 1.66, color='black', fill=False, linewidth=1)\n", + "ax2.add_patch(disk_circle)\n", + "ax2.add_patch(annulus_circle)\n", + "ax2.set_title('Aperture photometry performed \\n on dT map')\n", + "ax2.set_ylabel('arcmin')\n", + "ax2.set_xlabel('arcmin')\n", + "cbar2.set_label('$\\mu$K', rotation=270, labelpad=15)\n", + "\n", + "ax3 = plt.subplot(gs[2])\n", + "im3 = ax3.imshow(conv_map)\n", + "cbar3 = plt.colorbar(im3, ax=ax3, fraction=0.046, pad=0.04)\n", + "im3.set_extent([-width, width, -width, width])\n", + "ax3.set_title('Beam convolved temperature \\n map with CMB')\n", + "ax3.set_ylabel('arcmin')\n", + "ax3.set_xlabel('arcmin')\n", + "cbar3.set_label('$\\mu$K', rotation=270)\n", + "\n", + "ax4 = plt.subplot(gs[3])\n", + "im4 = ax4.imshow(total_map)\n", + "cbar4 = plt.colorbar(im4, ax=ax4, fraction=0.046, pad=0.04)\n", + "im4.set_extent([-width, width, -width, width])\n", + "ax4.set_title('Beam convolved temperature \\n map with CMB + noise')\n", + "ax4.set_ylabel('arcmin')\n", + "ax4.set_xlabel('arcmin')\n", + "cbar4.set_label('$\\mu$K', rotation=270)\n", + "\n", + "\n", + "plt.tight_layout(pad=1.0)\n", + "plt.subplots_adjust(left=0.1, right=0.9, top=0.9, bottom=0.1)\n", + "\n", + "plt.savefig(\"/Users/elaineran/Desktop/DeepSZSimfigforposter\", bbox_inches='tight', pad_inches=0.1)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8c442990-f4ee-45b4-ba53-b49b8ccd747e", + "metadata": {}, + "outputs": [], + "source": [ + "deepszsim.make_sz_cluster.get_r200_angsize_and_c200(M200, z, d)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "55592097-c6a9-4653-8858-1dace32fa475", + "metadata": {}, + "outputs": [], + "source": [ + "#B12 mass from the https://arxiv.org/pdf/1301.0816" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "92ab1562-2fcc-497a-bb21-30e24900e0a1", + "metadata": {}, + "outputs": [], + "source": [ + "#go from M500 to M200!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f933a930-0ee3-4b4a-89ed-413cd2951d30", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Any Display Name", + "language": "python", + "name": "your_env_name" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.0" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}