forked from AFAgarap/cnn-svm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
105 lines (92 loc) · 3.04 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# Copyright 2017 Abien Fred Agarap
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Implementation of the CNN classes"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
__version__ = "0.1.0"
__author__ = "Abien Fred Agarap"
import argparse
from model.cnn_softmax import CNN
from model.cnn_svm import CNNSVM
from tensorflow.examples.tutorials.mnist import input_data
def parse_args():
parser = argparse.ArgumentParser(
description="CNN & CNN-SVM for Image Classification"
)
group = parser.add_argument_group("Arguments")
group.add_argument(
"-m", "--model", required=True, type=str, help="[1] CNN-Softmax, [2] CNN-SVM"
)
group.add_argument(
"-d", "--dataset", required=True, type=str, help="path of the MNIST dataset"
)
group.add_argument(
"-p",
"--penalty_parameter",
required=False,
type=int,
help="the SVM C penalty parameter",
)
group.add_argument(
"-c",
"--checkpoint_path",
required=True,
type=str,
help="path where to save the trained model",
)
group.add_argument(
"-l",
"--log_path",
required=True,
type=str,
help="path where to save the TensorBoard logs",
)
arguments = parser.parse_args()
return arguments
if __name__ == "__main__":
args = parse_args()
mnist = input_data.read_data_sets(args.dataset, one_hot=True)
num_classes = mnist.train.labels.shape[1]
sequence_length = mnist.train.images.shape[1]
model_choice = args.model
assert (
model_choice == "1" or model_choice == "2"
), "Invalid choice: Choose between 1 and 2 only."
if model_choice == "1":
model = CNN(
alpha=1e-3,
batch_size=128,
num_classes=num_classes,
num_features=sequence_length,
)
model.train(
checkpoint_path=args.checkpoint_path,
epochs=10000,
log_path=args.log_path,
train_data=mnist.train,
test_data=mnist.test,
)
elif model_choice == "2":
model = CNNSVM(
alpha=1e-3,
batch_size=128,
num_classes=num_classes,
num_features=sequence_length,
penalty_parameter=args.penalty_parameter,
)
model.train(
checkpoint_path=args.checkpoint_path,
epochs=10000,
log_path=args.log_path,
train_data=mnist.train,
test_data=mnist.test,
)