From e3b5956f30f74cbc033d4ced5ffa4522ee29e159 Mon Sep 17 00:00:00 2001 From: Dennis Rohde Date: Tue, 9 May 2023 18:01:53 +0200 Subject: [PATCH] minor fixes --- setup.py | 2 +- src/clustering.cpp | 6 ++++-- src/simplification.cpp | 1 + 3 files changed, 6 insertions(+), 3 deletions(-) diff --git a/setup.py b/setup.py index dad6063..8684238 100644 --- a/setup.py +++ b/setup.py @@ -80,7 +80,7 @@ def build_extension(self, ext): setup( name='Fred-Frechet', - version='1.11', + version='1.11.2', author='Dennis Rohde', author_email='dennis.rohde@tu-dortmund.de', description='A fast, scalable and light-weight C++ Fréchet distance library, exposed to python and focused on (k,l)-clustering of polygonal curves.', diff --git a/src/clustering.cpp b/src/clustering.cpp index cffa511..1473976 100644 --- a/src/clustering.cpp +++ b/src/clustering.cpp @@ -128,8 +128,10 @@ Clustering_Result kl_cluster(const curve_number_t num_centers, const curve_size_ } if (not consecutive_call) { - if (Config::verbosity > 0) py::print("KL_CLUST: allocating ", in.size(), " x ", in.size(), " distance_matrix"); - if (use_distance_matrix) distances = Distance_Matrix(in.size(), in.size()); + if (use_distance_matrix) { + if (Config::verbosity > 0) py::print("KL_CLUST: allocating ", in.size(), " x ", in.size(), " distance_matrix"); + distances = Distance_Matrix(in.size(), in.size()); + } if (Config::verbosity > 0) py::print("KL_CLUST: allocating space for ", in.size(), " simplifications, each of complexity ", ell); simplifications = Curves(in.size(), ell, in.dimensions()); } else if (use_distance_matrix) { diff --git a/src/simplification.cpp b/src/simplification.cpp index 0685b46..96d0b3a 100644 --- a/src/simplification.cpp +++ b/src/simplification.cpp @@ -167,6 +167,7 @@ Curve approximate_minimum_link_simplification(const Curve &pcurve, const distanc Curve approximate_minimum_error_simplification(const Curve &curve, const curve_size_t ell) { if (Config::verbosity > 1) py::print("ASIMPL: computing approximate minimum error simplification"); + if (ell >= curve.complexity()) return curve; Curve simplification(curve.dimensions()), segment(2, curve.dimensions()); segment[0] = curve.front();