-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfinal_evaluation.py
488 lines (446 loc) · 27.3 KB
/
final_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import time
import traceback
import warnings
import trajectory_visualize
from trajectory_visualize import plot3d_and_save_vid
import matplotlib
gui_env = ['QtAgg', 'TKAgg', 'GTKAgg', 'Qt4Agg', 'WXAgg']
for gui in gui_env:
try:
print("testing", gui)
matplotlib.use(gui, force=True)
from matplotlib import pyplot as plt
break
except:
# traceback.print_exc()
continue
print("final_evalutaion plt backend: ",matplotlib.get_backend())
warnings.filterwarnings('ignore', category=DeprecationWarning)
import os
from torch import multiprocessing
from pathlib import Path
os.environ['MKL_SERVICE_FORCE_INTEL'] = '1'
os.environ['MUJOCO_GL'] = 'egl'
import hydra
import torch
import numpy as np
np.set_printoptions(precision=2, suppress=True, sign=' ', floatmode='fixed')
from dm_env import specs # https://github.com/deepmind/dm_env/blob/master/dm_env/_environment.py
# local import
import drqv2.utils as drqutils
from drqv2.logger import Logger
import saver_utils
from habitat_test import AestheticTourDMCWrapper, HabitatSimGymWrapper, SpaceMapping
def make_agent(obs_spec, pos_spec, action_spec, cfg):
""" Created from config.yaml agent block"""
cfg.obs_shape = obs_spec.shape
cfg.pos_shape = pos_spec.shape
cfg.action_shape = action_spec.shape
return hydra.utils.instantiate(cfg)
class Workspace:
def __init__(self, cfg):
# don't access cfg, use the loaded self.cfg (accurate)
self.scenes = ["room_0_, apartment_2_livingroom, office_3_, room_1_, apartment_0_bedroomUpperFloorMirror, office_0_"]
self.scene_id = 0 # 0, 1, 2, 3, 4, or 5
self.algo_id = 1 # 1 or 2 (DrQv2 or CURL)
self.special = False
self.fig4_mode = False # robust
self.fig6_mode = False # diversity
self.fig7_mode = False # smoothness
self.fig7_ablation_mode = False
self.teaser_mode = True # teaser
self.user_study_mode = False # 9 sequences per scene
self.work_dir = Path.cwd()
# self.snapshot_path = Path(cfg.snapshot_dir)
self.snapshot_path = Path("../92 no hidden room0")
if self.fig4_mode:
if self.algo_id == 1:
if self.scene_id == 0:
self.snapshot_path = Path("../70 no diversity room_0")
elif self.scene_id == 1:
self.snapshot_path = Path("../74 no diversity apartment2")
elif self.scene_id == 2:
self.snapshot_path = Path("../75 no diversity office3")
else:
raise
elif self.algo_id == 2:
if self.scene_id == 0:
# self.snapshot_path = Path("../70 no diversity room_0")
pass
elif self.scene_id == 1:
self.snapshot_path = Path("../10 no diversity apartment2")
elif self.scene_id == 2:
self.snapshot_path = Path("../11 no diversity office3")
else:
raise
if self.fig6_mode:
if self.algo_id == 1:
if self.scene_id == 0:
# self.snapshot_path = Path("../70 no diversity room_0")
pass
elif self.scene_id == 1:
self.snapshot_path = Path("../67 apartment2living")
elif self.scene_id == 2:
self.snapshot_path = Path("../69 office_3_")
elif self.scene_id == 3:
self.snapshot_path = Path("../76 default room_1")
elif self.scene_id == 4:
self.snapshot_path = Path("../78 default apartment_0_bedroomMirror")
elif self.scene_id == 5:
self.snapshot_path = Path("../77 default office_0")
else:
raise
elif self.algo_id == 2:
if self.scene_id == 0:
self.snapshot_path = Path("../4 room_0_")
elif self.scene_id == 1:
self.snapshot_path = Path("../5 apartment_2_livingroom")
elif self.scene_id == 2:
self.snapshot_path = Path("../6 office_3_")
elif self.scene_id == 3:
self.snapshot_path = Path("../16 default room1")
elif self.scene_id == 4:
self.snapshot_path = Path("../18 default apartment0")
elif self.scene_id == 5:
self.snapshot_path = Path("../17 default office0")
else:
raise
self.snapshot_name = 'best.pt'
assert (self.snapshot_path / self.snapshot_name).exists(), f"The specified snapshot is not found: {self.snapshot_path / self.snapshot_name}"
print(f'Resuming. Loaded snapshot at : {self.snapshot_path / self.snapshot_name}')
print(f'workspace: {self.work_dir}')
self.load_snapshot()
# modify/access the loaded self.cfg
if self.user_study_mode:
if self.cfg.sceneList[0] == "room_0_":
self.init_pose_idxs = np.array([0, 0, 0, 7, 7, 7, 8, 8, 8])
elif self.cfg.sceneList[0] == "apartment_2_livingroom":
self.init_pose_idxs = np.array([1, 1, 1, 4, 4, 4, 6, 6, 6])
elif self.cfg.sceneList[0] == "office_3_":
self.init_pose_idxs = np.array([2, 2, 2, 5, 5, 5, 9, 9, 9])
self.cfg.num_eval_episodes = 9
if not hasattr(self.agent.actor, 'no_hidden'):
self.agent.actor.no_hidden = cfg.no_hidden
self.agent.critic.no_hidden = cfg.no_hidden
self.agent.critic_target.no_hidden = cfg.no_hidden
if not hasattr(self.agent, 'no_aug'):
self.agent.no_aug = cfg.no_aug
print(self.cfg)
self.use_context = self.cfg.agent.use_context
self.use_rotation = self.cfg.use_rotation
self.use_multiprocessing = self.cfg.use_multiprocessing
self.cfg.replay_buffer_num_workers = multiprocessing.cpu_count()
# cfg.replay_buffer_num_workers = 0 # for debug
drqutils.set_seed_everywhere(self.cfg.seed)
if self.cfg.device[:4] == "cuda":
torch.backends.cudnn.benchmark = True
self.device = torch.device(self.cfg.device)
self.num_scenes = self.cfg.num_scenes
self.setup()
self.trajectories = [[] for _ in range(self.num_scenes)]
self.np_trajectories = [[] for _ in range(self.num_scenes)]
self.eval_trajectories = [[] for _ in range(self.num_scenes)]
self.np_eval_trajectories = [[] for _ in range(self.num_scenes)]
self.empty = None
def setup(self):
""" create logger, env, replay buffer, and video recorder"""
# create logger
self.logger = Logger(self.work_dir, use_tb=self.cfg.use_tb)
# create envs
pose_dim = 5 if self.cfg.use_rotation else 3
self.cfg.pose_dim = pose_dim
self.step_size = self.cfg.step_size[:pose_dim]
observation_spec = specs.BoundedArray(self.cfg.state_dim, np.uint8, 0, 255, 'observation')
pose_spec = specs.Array((pose_dim,), np.float32, 'pose')
action_spec = specs.BoundedArray((pose_dim,), np.float32, -1.0, 1.0, "action")
data_specs = (
observation_spec,
pose_spec,
action_spec,
specs.Array((1,), np.float32, 'reward'),
specs.Array((1,), np.float32, 'discount'),
)
if not self.cfg.async_:
self.train_env = AestheticTourDMCWrapper(self.cfg, data_specs)
self.eval_env = self.train_env # let train and eval share env, reduce resources used
if self.user_study_mode:
self.train_env.num_sequences = 3
@property
def global_step(self):
return self._global_step
@property
def global_episode(self):
return self._global_episode
@property
def global_frame(self):
return self.global_step * self.cfg.action_repeat
def eval(self):
scene_name = self.cfg.sceneList[self.cfg.scene_index]
init_poses = np.load(f"../{scene_name}_init_poses.npz")["pose"]
step, episode, total_rewards = 0, 0, [0] * self.num_scenes
eval_until_episode = drqutils.Until(self.cfg.num_eval_episodes)
if self.fig4_mode:
if self.scene_id == 0:
init_poses = np.load(f"../fig4_room0_init_poses.npz")["pose"]
elif self.scene_id == 1:
init_poses = np.load(f"../fig4_apartment2_init_poses.npz")["pose"]
elif self.scene_id == 2:
init_poses = np.load(f"../fig4_office3_init_poses.npz")["pose"]
eval_until_episode = drqutils.Until(3)
merge_plot_inputs = []
elif self.fig6_mode:
if self.algo_id == 1:
if self.scene_id == 0:
init_poses_idxs = np.array([8,8,8])
elif self.scene_id == 1:
init_poses_idxs = np.array([0, 0, 0])
elif self.scene_id == 2:
init_poses_idxs = np.array([0, 0, 0])
elif self.scene_id == 3:
init_poses_idxs = np.array([0, 0, 0])
elif self.scene_id == 4:
init_poses_idxs = np.array([1, 1, 1])
elif self.scene_id == 5:
init_poses_idxs = np.array([3, 3, 3])
elif self.algo_id == 2:
if self.scene_id == 0:
init_poses_idxs = np.array([8, 8, 8])
elif self.scene_id == 1:
init_poses_idxs = np.array([5, 5, 5])
elif self.scene_id == 2:
init_poses_idxs = np.array([2, 2, 2])
elif self.scene_id == 3:
init_poses_idxs = np.array([1, 1, 1])
elif self.scene_id == 4:
init_poses_idxs = np.array([1, 1, 1])
elif self.scene_id == 5:
init_poses_idxs = np.array([3, 3, 3])
init_poses = init_poses[init_poses_idxs]
eval_until_episode = drqutils.Until(3)
merge_plot_inputs = []
elif self.fig7_mode:
merge_plot_inputs = []
self.cfg.gpu_aes_obs = False
self.cfg.aes_obs_width = 512
self.cfg.aes_obs_height = 512
space_mapper = SpaceMapping(scene_name)
gymenv = HabitatSimGymWrapper(self.cfg, space_mapper) # for plotting
if self.fig7_mode or self.special:
if self.special:
seq1 = np.load("../figure 6 apartment0/trajectories/2268000_s0_eval0.npz")
merge_plot_inputs.append([seq1['pose'], seq1['action'], seq1['reward'], seq1['excluding_seq'], seq1['diversity_ratio'], seq1['smoothness_ratio']])
plot3d_and_save_vid(gymenv, self.cfg.max_timestep, *merge_plot_inputs[0], save_fig=True, fn=f"{0}")
seq2 = np.load("../figure 6 apartment0/trajectories/2268000_s0_eval1.npz")
merge_plot_inputs.append([seq2['pose'], seq2['action'], seq2['reward'], seq2['excluding_seq'], seq2['diversity_ratio'], seq2['smoothness_ratio']])
plot3d_and_save_vid(gymenv, self.cfg.max_timestep, *merge_plot_inputs[1], save_fig=True, fn=f"{1}")
seq2 = np.load("../figure 6 apartment0/trajectories/2268000_s0_eval2.npz")
merge_plot_inputs.append([seq2['pose'], seq2['action'], seq2['reward'], seq2['excluding_seq'], seq2['diversity_ratio'], seq2['smoothness_ratio']])
plot3d_and_save_vid(gymenv, self.cfg.max_timestep, *merge_plot_inputs[2], save_fig=True, fn=f"{2}")
elif self.algo_id == 1:
if self.scene_id == 0:
if self.fig7_ablation_mode:
seq1 = np.load("../eval 66 33/trajectories/2943060_s0_eval0.npz")
merge_plot_inputs.append([seq1['pose'], seq1['action'], seq1['reward'], seq1['excluding_seq'], seq1['diversity_ratio'], seq1['smoothness_ratio']])
seq2 = np.load("../eval 71 no smoothness 74/trajectories/2686500_s0_eval0.npz")
merge_plot_inputs.append([seq2['pose'], seq2['action'], seq2['reward'], seq2['excluding_seq'], seq2['diversity_ratio'], seq2['smoothness_ratio']])
else:
seq1 = np.load("../eval 66 33/trajectories/2943060_s0_eval0.npz")
merge_plot_inputs.append([seq1['pose'], seq1['action'], seq1['reward'], seq1['excluding_seq'], seq1['diversity_ratio'], seq1['smoothness_ratio']])
seq2 = np.load("../eval 71 no smoothness 74/trajectories/2686500_s0_eval0.npz")
merge_plot_inputs.append([seq2['pose'], seq2['action'], seq2['reward'], seq2['excluding_seq'], seq2['diversity_ratio'], seq2['smoothness_ratio']])
elif self.scene_id == 1:
seq1 = np.load("../eval 67 20/trajectories/2938575_s0_eval0.npz")
merge_plot_inputs.append([seq1['pose'], seq1['action'], seq1['reward'], seq1['excluding_seq'], seq1['diversity_ratio'], seq1['smoothness_ratio']])
seq2 = np.load("../eval 83 no smoothness apartment2/trajectories/2344515_s0_eval0.npz")
merge_plot_inputs.append([seq2['pose'], seq2['action'], seq2['reward'], seq2['excluding_seq'], seq2['diversity_ratio'], seq2['smoothness_ratio']])
elif self.scene_id == 2:
seq1 = np.load("../eval 69 35/trajectories/2934015_s0_eval0.npz")
merge_plot_inputs.append([seq1['pose'], seq1['action'], seq1['reward'], seq1['excluding_seq'], seq1['diversity_ratio'], seq1['smoothness_ratio']])
seq2 = np.load("../eval 84 no smoothness office3/trajectories/2205000_s0_eval0.npz")
merge_plot_inputs.append([seq2['pose'], seq2['action'], seq2['reward'], seq2['excluding_seq'], seq2['diversity_ratio'], seq2['smoothness_ratio']])
elif self.algo_id == 2:
if self.scene_id == 0:
# seq1 = np.load("../eval 66 33/trajectories/2943060_s0_eval0.npz")
# merge_plot_inputs.append([seq1['pose'], seq1['action'], seq1['reward'], seq1['excluding_seq'], seq1['diversity_ratio'], seq1['smoothness_ratio']])
# seq2 = np.load("../eval 71 no smoothness 74/trajectories/2686500_s0_eval0.npz")
# merge_plot_inputs.append([seq2['pose'], seq2['action'], seq2['reward'], seq2['excluding_seq'], seq2['diversity_ratio'], seq2['smoothness_ratio']])
pass
elif self.scene_id == 1:
seq1 = np.load("../eval 5 apartment2/trajectories/2637000_s0_eval0.npz")
merge_plot_inputs.append([seq1['pose'], seq1['action'], seq1['reward'], seq1['excluding_seq'], seq1['diversity_ratio'], seq1['smoothness_ratio']])
seq2 = np.load("../eval 12 no smoothness apartment2/trajectories/1444500_s0_eval0.npz")
merge_plot_inputs.append([seq2['pose'], seq2['action'], seq2['reward'], seq2['excluding_seq'], seq2['diversity_ratio'], seq2['smoothness_ratio']])
elif self.scene_id == 2:
seq1 = np.load("../eval 6 office3/trajectories/2848500_s0_eval0.npz")
merge_plot_inputs.append([seq1['pose'], seq1['action'], seq1['reward'], seq1['excluding_seq'], seq1['diversity_ratio'], seq1['smoothness_ratio']])
seq2 = np.load("../eval 13 no smoothness office3/trajectories/2452500_s0_eval0.npz")
merge_plot_inputs.append([seq2['pose'], seq2['action'], seq2['reward'], seq2['excluding_seq'], seq2['diversity_ratio'], seq2['smoothness_ratio']])
merge_plot_inputs = zip(*merge_plot_inputs)
merge_plot_labels = ["sequence 0 - with smoothness", "sequence 1 - without smoothness"]
if self.special:
merge_plot_labels = ["sequence 0 - no excluding region", "sequence 1 - one excluding region", "sequence 2 - two excluding regions"]
plot3d_and_save_vid(gymenv, self.cfg.max_timestep, *merge_plot_inputs, merge_plot=True, merge_plot_labels=merge_plot_labels, save_fig=False, save_interpolate_video=False, show_img=False, no_exclusion=True, fn=f"{100}")
elif self.teaser_mode:
seq1 = np.load("../figure 4.1/trajectories/2727090_s0_eval0.npz", allow_pickle=True)
inputs = [seq1['pose'], seq1['action'], seq1['reward'], seq1['excluding_seq'], seq1['diversity_ratio'], seq1['smoothness_ratio']]
plot3d_and_save_vid(gymenv, self.cfg.max_timestep, *inputs, save_fig=False, save_interpolate_video=False, show_img=False, teaser_background=True, fn=f"{100}")
else:
while eval_until_episode(episode):
# TODO init_poses[0] for testing random excluding seqs, init_poses[0] for testing other stuff
# excluding pose is set according to config (random or last ending pose)
# time_steps, histories = self.eval_env.reset(to_poses=[init_poses[0]])
init_pose = init_poses[episode]
curr_diversity_radius = None
if self.user_study_mode:
init_pose = init_poses[self.init_pose_idxs[episode]]
curr_diversity_radius = 1. * torch.ones((self.cfg.num_excluding_sequences, 1))
time_steps, histories = self.eval_env.reset(to_poses=[init_pose], curr_diversity_radius=curr_diversity_radius)
self.append_to_trajectory(time_steps, eval=True)
while not time_steps[0].last():
with torch.no_grad(), drqutils.eval_mode(self.agent):
action = [self.agent.act(time_steps[i].observation,
time_steps[i].pose,
time_steps[i].t,
time_steps[i].excluding_seq,
time_steps[i].avg_step_size,
self.global_step,
eval_mode=True,
history=histories[i]) for i in range(self.num_scenes)]
time_steps, histories = self.eval_env.step(action)
self.append_to_trajectory(time_steps, eval=True)
for i in range(self.num_scenes):
total_rewards[i] += time_steps[i].reward
step += 1
np_trajectory = list(zip(*self.np_eval_trajectories[0]))
np_trajectory = [np.stack(np_trajectory[i]) for i in range(len(np_trajectory))]
# np.savez(fname, pose=np_trajectory[0], reward=np_trajectory[1], discount=np_trajectory[2], action=np_trajectory[3], step_size=np_trajectory[4],
# diversity_ratio=np_trajectory[5], excluding_seq=np_trajectory[6], smoothness_ratio=np_trajectory[7], avg_step_size=np_trajectory[8])
poses, rewards, _, actions = np_trajectory[:4]
diversity_ratio, excluding_seq, smoothness_ratio = np_trajectory[5:8]
if self.fig4_mode or self.fig6_mode:
merge_plot_inputs.append([poses, actions, rewards, excluding_seq, diversity_ratio, smoothness_ratio])
# if self.teaser_mode:
# plot3d_and_save_vid(gymenv, self.cfg.max_timestep, poses, actions, rewards, excluding_seq, diversity_ratio, smoothness_ratio, save_fig=False, show_img=False, teaser_background=True, fn=f"{episode}")
plot3d_and_save_vid(gymenv, self.cfg.max_timestep, poses, actions, rewards, excluding_seq, diversity_ratio, smoothness_ratio, save_fig=True, fn=f"{episode}")
self.plot_trajectory(eval_i=episode)
episode += 1
with self.logger.log_and_dump_ctx(self.global_frame, ty='eval') as log:
avg_ep_rewards = []
for i in range(self.num_scenes):
avg_ep_rewards.append(total_rewards[i] / episode)
log(f'episode_reward{i}', avg_ep_rewards[-1])
log(f'episode_reward', np.average(np.array(avg_ep_rewards)))
log('episode_length', step * self.cfg.action_repeat / episode)
log('episode', self.global_episode)
log('step', self.global_step)
if self.fig4_mode:
merge_plot_inputs = zip(*merge_plot_inputs)
merge_plot_labels = ["sequence 0", "sequence 1", "sequence 2"]
plot3d_and_save_vid(gymenv, self.cfg.max_timestep, *merge_plot_inputs, merge_plot=True, merge_plot_labels=merge_plot_labels, save_fig=False, save_interpolate_video=False, show_img=False, fn=f"{100}")
if self.fig6_mode:
merge_plot_inputs = zip(*merge_plot_inputs)
merge_plot_labels = ["sequence 0 - no excluding region", "sequence 1 - one excluding region", "sequence 2 - two excluding regions"]
plot3d_and_save_vid(gymenv, self.cfg.max_timestep, *merge_plot_inputs, merge_plot=True, merge_plot_labels=merge_plot_labels, save_fig=False, save_interpolate_video=False, show_img=False, fn=f"{100}")
def save_snapshot(self):
snapshot = self.work_dir / 'snapshot.pt'
keys_to_save = ['agent', 'cfg', 'timer', '_global_step', '_global_episode']
payload = {k: self.__dict__[k] for k in keys_to_save}
with snapshot.open('wb') as f:
torch.save(payload, f)
def load_snapshot(self):
snapshot = self.snapshot_path / self.snapshot_name
with snapshot.open('rb') as f:
payload = torch.load(f)
for k, v in payload.items():
self.__dict__[k] = v
def append_to_trajectory(self, time_steps, eval=False):
if eval or self.global_episode % self.cfg.eval_every_episodes < self.cfg.num_eval_episodes:
for i in range(self.num_scenes):
if self.use_rotation:
tile_to_plot = (time_steps[i].aes_obs.squeeze(0),
f"p: {time_steps[i].pose[:3]}\n"
f" {time_steps[i].pose[3:] * np.array([180., 90.])}\n"
f"r: {time_steps[i].reward:.4f} d: {time_steps[i].diversity_ratio:.2f} s: {time_steps[i].smoothness_ratio}\n"
f"a: {time_steps[i].action[:3] * self.cfg.step_size[:3]}\n"
f" {time_steps[i].action[3:] * self.cfg.step_size[3:]}")
else:
tile_to_plot = (torch.tensor(time_steps[i].observation, dtype=torch.float) / 255.,
f"p: {time_steps[i].pose[:3]}\n"
f"r: {time_steps[i].reward:.4f}\n"
f"a: {time_steps[i].action[:3] * self.cfg.step_size[:3]}")
if eval:
self.eval_trajectories[i].append(tile_to_plot)
self.np_eval_trajectories[i].append([time_steps[i].pose, time_steps[i].reward, time_steps[i].discount, time_steps[i].action, np.array(self.cfg.step_size),
time_steps[i].diversity_ratio, time_steps[i].excluding_seq, time_steps[i].smoothness_ratio, time_steps[i].avg_step_size])
elif self.global_episode % self.cfg.eval_every_episodes < self.cfg.num_eval_episodes:
self.trajectories[i].append(tile_to_plot)
self.np_trajectories[i].append([time_steps[i].pose, time_steps[i].reward, time_steps[i].discount, time_steps[i].action, np.array(self.cfg.step_size),
time_steps[i].diversity_ratio, time_steps[i].excluding_seq, time_steps[i].smoothness_ratio, time_steps[i].avg_step_size])
def plot_trajectory(self, eval_i=None, evaluatation_phase=""):
""" trajectory contains (image, camerapos) tuples of an episode"""
trajectories = self.eval_trajectories if eval_i is not None else self.trajectories
np_trajectories = self.np_eval_trajectories if eval_i is not None else self.np_trajectories
# only save trajectory plot and clear trajectories list once in a while
if eval_i is not None or self.global_episode % self.cfg.eval_every_episodes < self.cfg.num_eval_episodes:
for s_idx, trajectory in enumerate(trajectories):
directory = self.work_dir / "trajectories"
Path(directory).mkdir(parents=True, exist_ok=True)
if self.empty is None:
self.empty = torch.ones_like(trajectory[0][0]) # a white, empty image
to_plot = [] # 2D list containing tensors of each image
ncol = 5
i = 0
while i < len(trajectory):
row = []
for _ in range(ncol):
tensor = saver_utils.draw_text_tensor(trajectory[i][0], trajectory[i][1])
# tensor = trajectory[i][0]
row.append(tensor)
i += 1
if i == len(trajectory):
break
while len(row) < ncol: # fill last row if not full
row.append(self.empty)
to_plot.append(row)
if evaluatation_phase != "":
# before or after
fname = directory / f"s{s_idx}_{evaluatation_phase}_eval{eval_i}"
else:
fname = directory / f"{self.global_step}_s{s_idx}" if eval_i is None else directory / f"{self.global_step}_s{s_idx}_eval{eval_i}"
saver_utils.save_tensors_image(str(fname) + ".png", to_plot)
np_trajectory = list(zip(*np_trajectories[s_idx]))
np_trajectory = [np.stack(np_trajectory[i]) for i in range(len(np_trajectory))]
np.savez(fname, pose=np_trajectory[0], reward=np_trajectory[1], discount=np_trajectory[2], action=np_trajectory[3], step_size=np_trajectory[4],
diversity_ratio=np_trajectory[5], excluding_seq=np_trajectory[6], smoothness_ratio=np_trajectory[7], avg_step_size=np_trajectory[8])
# clear trajectory
if eval_i is not None:
self.eval_trajectories = [[] for _ in range(self.num_scenes)]
self.np_eval_trajectories = [[] for _ in range(self.num_scenes)]
else:
self.trajectories = [[] for _ in range(self.num_scenes)]
self.np_trajectories = [[] for _ in range(self.num_scenes)]
@hydra.main(config_path='cfgs', config_name='config')
def main(cfg):
print("before workspace")
from final_evaluation import Workspace as W
print("after workspace")
import matplotlib
gui_env = ['QtAgg', 'TKAgg', 'GTKAgg', 'Qt4Agg', 'WXAgg']
for gui in gui_env:
try:
print("testing", gui)
matplotlib.use(gui, force=True)
from matplotlib import pyplot as plt
break
except:
# traceback.print_exc()
continue
print("final_evalutaion plt backend: ", matplotlib.get_backend())
workspace = W(cfg)
workspace.eval()
if __name__ == '__main__':
main()