forked from rohitmodee/MolOpt
-
Notifications
You must be signed in to change notification settings - Fork 1
/
MultiAgentEnv.py
251 lines (212 loc) · 10.7 KB
/
MultiAgentEnv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import gym, ray, pdb
from gym import spaces
import numpy as np
from ray.tune.registry import register_env
from ray.rllib.env.multi_agent_env import MultiAgentEnv
import numpy as np
import random
from sklearn.metrics.pairwise import euclidean_distances
from ase import Atoms
from ase.io import Trajectory, read
# from ase.calculators.emt import EMT
# from ase.calculators.gaussian import Gaussian
from gpaw import GPAW, PW, FD
import torch
import torchani
import warnings
import string
from datetime import datetime
#used for creating a "unique" id for a run (almost impossible to generate the same twice)
def id_generator(size=8, chars=string.ascii_uppercase + string.ascii_lowercase + string.digits):
return ''.join(random.SystemRandom().choice(chars) for _ in range(size))
gen = id_generator()
warnings.simplefilter(action='ignore')
methane_low_ener = read("dataset/c2c4_smiles_filtered_frames.xyz", index=":") #Training
# methane_low_ener = read("dataset/c3c5c6c7c8_smiles_alkanes.xyz", index=":") #Evaluation
## AEV parameters
Rcr = 5.1000e+00
Rca = 3.5000e+00
device=torch.device("cpu")
EtaR = torch.tensor([1.9700000e+01], device=device)
ShfR = torch.tensor([8.0000000e-01,1.0687500e+00,1.3375000e+00,1.6062500e+00,1.8750000e+00,2.1437500e+00,2.4125000e+00,2.6812500e+00,2.9500000e+00,3.2187500e+00,3.4875000e+00,3.7562500e+00,4.0250000e+00,4.2937500e+00,4.5625000e+00,4.8312500e+00], device=device)
Zeta = torch.tensor([1.4100000e+01], device=device)
ShfZ = torch.tensor([3.9269908e-01,1.1780972e+00,1.9634954e+00,2.7488936e+00], device=device)
EtaA = torch.tensor([1.2500000e+01], device=device)
ShfA = torch.tensor([8.0000000e-01,1.1375000e+00,1.4750000e+00,1.8125000e+00,2.1500000e+00,2.4875000e+00,2.8250000e+00,3.1625000e+00], device=device)
num_species = 2
aev_computer = torchani.AEVComputer(Rcr, Rca, EtaR, ShfR, EtaA, Zeta, ShfA, ShfZ, num_species)
species_to_tensor = torchani.utils.ChemicalSymbolsToInts('HC')
# species_to_tensor = torchani.utils.ChemicalSymbolsToInts('HCNO')
def cartesian_to_spherical(pos: np.ndarray) -> np.ndarray:
theta_phi = np.empty(shape=pos.shape[:-1] + (3, ))
x, y, z = pos[..., 0], pos[..., 1], pos[..., 2]
r = np.linalg.norm(pos, axis=-1)
theta_phi[..., 0] = r
theta_phi[..., 1] = np.arccos(z / r) # theta
theta_phi[..., 2] = np.arctan2(y, x) # phi
return theta_phi
def spherical_to_cartesian(theta_phi: np.ndarray) -> np.ndarray:
r, theta, phi = theta_phi[..., 0], theta_phi[..., 1], theta_phi[..., 2]
x = r * np.sin(theta) * np.cos(phi)
y = r * np.sin(theta) * np.sin(phi)
z = r * np.cos(theta)
return np.stack([x, y, z], axis=-1)
def team_reward(resultant_forces):
t_rew = -np.log(resultant_forces).mean()
return t_rew
def cont_atomic_plus_team_reward(spherical_forces, idx, atom_symbol):
if spherical_forces[:,0][idx] >= 10:
atomic_rew = -1.0
custom_rew = atomic_rew + team_reward(spherical_forces[:,0])
elif spherical_forces[:,0][idx] < 10 and spherical_forces[:,0][idx] >= 1.0:
atomic_rew = 0.0
custom_rew = atomic_rew + team_reward(spherical_forces[:,0])
elif spherical_forces[:,0][idx] < 1.0 and spherical_forces[:,0][idx] >= 0.1:
atomic_rew = 1.0
custom_rew = atomic_rew + team_reward(spherical_forces[:,0])
elif spherical_forces[:,0][idx] < 0.1 and spherical_forces[:,0][idx] >= 0.01:
atomic_rew = 20.0
custom_rew = atomic_rew + team_reward(spherical_forces[:,0])
elif spherical_forces[:,0][idx] < 0.01 and spherical_forces[:,0][idx] >= 0.001:
atomic_rew = 500.0
custom_rew = atomic_rew + team_reward(spherical_forces[:,0])
elif spherical_forces[:,0][idx] < 0.001:
atomic_rew = 2000.0
custom_rew = atomic_rew + team_reward(spherical_forces[:,0])
return custom_rew
def get_atomization_energy(Ener, S):
self_energies = {'H':-0.500607632585, 'C':-37.8302333826,'N':-54.5680045287,'O':-75.0362229210}
self_interaction_energies = 0
for specie in S:
self_interaction_energies += self_energies[specie]
Ener -= torchani.units.hartree2ev(self_interaction_energies)
# Ener = Ener*627.51
return Ener
class MA_env(MultiAgentEnv):
def __init__(self, env_config):
# pick actual env based on worker and env indexes
self.action_space = spaces.Box(low=-0.05,high=0.05, shape=(3,))
self.observation_space = spaces.Box(low=-1000,high=1000, shape=(128+5+3,))
self.calc = torchani.models.ANI1ccx(periodic_table_index=True).to("cpu")
def reset(self):
self.all_atoms = []
self.trajectory = []
self.energies = []
self.all_forces = []
self.agents = []
# self.atom_count = {}
self.atom_agent_map = []
# self.all_aevs = []
print("\nReset called")
self.dones = set()
# system = np.random.choice(methane)
system = np.random.choice(methane_low_ener)
atoms = system.get_chemical_symbols()
self.all_atoms.append(atoms)
for atom_id, key in enumerate(atoms):
self.atom_agent_map.append("A"+"_"+str(atom_id))
self.agents.append(Atom_Agent())
system.center(vacuum=3.0)
system.set_calculator(self.calc.ase())
e = system.get_potential_energy()
unit_forces = system.get_forces()
e = get_atomization_energy(e, atoms)
spherical_forces = cartesian_to_spherical(unit_forces)
# e = e.item()
self.energies.append(e)
self.all_forces.append(unit_forces)
self.trajectory.append(system)
res_max_force = np.max(spherical_forces[:,0])
# print(f"energies = {e:.5f} fmax = {res_max_force:.5f} {''.join(atoms)} forces = {[round(spf , 5) for spf in spherical_forces[:,0]]}")#" bonds = {np.array([dist_mat[i] for i in bonds])}")
print(f"energies = {e:.5f} fmax = {res_max_force:.5f} {''.join(atoms)} disp = {[round(spf , 5) for spf in spherical_forces[:,0]]}")#" bonds = {np.array([dist_mat[i] for i in bonds])}")
"""feature vector.
input can be a tuple of two tensors: species, coordinates.
species must have shape ``(C, A)``, coordinates must have shape
``(C, A, 3)`` where ``C`` is the number of molecules in a chunk,
and ``A`` is the number of atoms."""
# tmp_energy = torch.tensor([self.energies[0]-self.energies[-1]]*len(spherical_forces)).reshape(-1, 1)
species = species_to_tensor(atoms).unsqueeze(dim=0)
coor = torch.FloatTensor(system.get_positions()).unsqueeze(dim=0)
species_one_hot = torch.nn.functional.one_hot(species, num_classes=2)
result = aev_computer((species.to(device), coor.to(device)))
aev = torch.cat((result.aevs, species_one_hot, torch.tensor(unit_forces).unsqueeze(0), torch.zeros_like(coor)), 2)
return_dict = {self.atom_agent_map[i]: agent.reset(aev[0,i], system.get_positions()[i]) for i, agent in enumerate(self.agents)}
return return_dict
def step(self, action):
obs, rew, done, info = {}, {}, {}, {}
self.dones = set()
for val in self.atom_agent_map:
obs[val] = None
rew[val] = None
done[val] = None
info[val] = None
for idx, val in action.items():
res = self.agents[self.atom_agent_map.index(idx)].step(val)
obs[idx], rew[idx], done[idx], info[idx] = res
# print(f"{idx}:- {obs[idx]} {val}")
final_coordinates = np.array([obs[key] for key in self.atom_agent_map])
len_final_coor = len(final_coordinates)
if len(self.all_atoms[-1]) != len_final_coor:
print("Error species and coordinates do NOT match")
atoms = Atoms(self.all_atoms[-1], positions=final_coordinates)
self.trajectory.append(atoms)
atoms.center(vacuum=3.0)
terminate = False
try:
atoms.set_calculator(self.calc.ase())
f = atoms.get_forces()
e = atoms.get_potential_energy()
e = get_atomization_energy(e, atoms.get_chemical_symbols())
max_force = np.max(np.abs(f))
self.energies.append(e)
self.all_forces.append(f)
spherical_forces = cartesian_to_spherical(f)
res_max_force = np.max(spherical_forces[:,0])
if max_force < 0.001:
print("Converged")
terminate = True
for idx, key in enumerate(self.atom_agent_map):
rew[key] = 5000.0
for idx, key in enumerate(self.atom_agent_map):
rew[key] = cont_atomic_plus_team_reward(spherical_forces, idx, atoms.get_chemical_symbols()[idx])
print(f"energies = {e:.5f} fmax = {res_max_force:.5f} {''.join(self.all_atoms[-1])}")#" bonds = {np.array([dist_mat[i] for i in bonds])}")
except:
print("Gaussian Converge error")
terminate = True
for idx, key in enumerate(self.atom_agent_map):
rew[key] = -1.0
# self.dones.add(idx)
self.energies.append("None")
######## calculate aev (feature vector) from final_coordinates after step has been taken
######## create observation dict of all aevs
species = species_to_tensor(atoms.get_chemical_symbols()).unsqueeze(dim=0)
coor = torch.FloatTensor(final_coordinates).unsqueeze(dim=0)
species_one_hot = torch.nn.functional.one_hot(species, num_classes=2)
result = aev_computer((species.to(device), coor.to(device)))
if self.energies[-1] == "None":
get_shape = atoms.positions.shape
dummy_forces = np.ones(get_shape)*700
delta_forces = -dummy_forces
aev = torch.cat((result.aevs, species_one_hot, torch.from_numpy(dummy_forces).unsqueeze(0)), 2)
else:
delta_forces = self.all_forces[-2]-self.all_forces[-1]
f = np.c_[f, delta_forces]
aev = torch.cat((result.aevs, species_one_hot, torch.tensor(f).unsqueeze(0)), 2)
obs = {self.atom_agent_map[i]: np.array(aev[0,i]) for i, agent in enumerate(self.agents)}
## convert obs to feature vector here
## calculate atom wise reward here
# done["__all__"] = len(self.dones) == len(self.agents)
done["__all__"] = terminate
return obs, rew, done, info
class Atom_Agent(gym.Env):
def __init__(self):
self.action_space = spaces.Box(low=-0.05,high=0.05, shape=(3,))
self.observation_space = spaces.Box(low=-1000,high=1000, shape=(128+5+3,))
def reset(self,feature,coordinates):
self.feature = np.array(feature)
self.coordinates = coordinates
## return features instead of coordintaes
return self.feature
def step(self, action):
self.coordinates = self.coordinates + action
return self.coordinates, None, False, {}