-
Notifications
You must be signed in to change notification settings - Fork 0
/
predict.py
55 lines (32 loc) · 1.19 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import numpy as np
import sys
import pickle
model = pickle.load(open('final_prediction.pickle', 'rb'))
def predict(argv):
int_features = [int(x) for x in argv[1:]]
final_features = [np.array(int_features)]
prediction = model.predict(final_features)
output = prediction[0]
return output
if __name__ == '__main__':
predict(sys.argv)
# app = Flask(__name__)
# from flask import Flask, request, jsonify, render_template
# @app.route('/')
# def home():
# return render_template('index.html')
# @app.route('/predict', methods=['POST'])
# def predict():
# int_features = [int(x) for x in request.form.values()]
# final_features = [np.array(int_features)]
# prediction = model.predict(final_features)
# output = round(prediction[0], 2)
# return render_template('index.html', prediction_text='This transaction is likely to be fraud in percentage by $ {}'.format(output))
# @app.route('/results', methods=['POST'])
# def results():
# data = request.get_json(force=True)
# prediction = model.predict([np.array(list(data.values()))])
# output = prediction[0]
# return jsonify(output)
# if __name__ == "__main__":
# app.run(debug=True)