-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenomeSize.R
executable file
·79 lines (58 loc) · 2.49 KB
/
genomeSize.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
#!/usr/bin/env Rscript
args <- commandArgs(TRUE)
## Default setting when no arguments passed
if(length(args) < 1) {
args <- c("--help")
}
## Help section
if("--help" %in% args) {
cat("
genomeSize.R - Estimate genome size based on Jellyfish histogram data
Arguments:
--in - input file
--help - print this Help
Example:
./genomeSize.R --in=\"input1.histo\"
Daniel Guariz Pinheiro
FCAV/UNESP - Univ Estadual Paulista
\n\n")
q(save="no")
}
find_peaks <- function (x, m = 3){
shape <- diff(sign(diff(x, na.pad = FALSE)))
pks <- sapply(which(shape < 0), FUN = function(i){
z <- i - m + 1
z <- ifelse(z > 0, z, 1)
w <- i + m + 1
w <- ifelse(w < length(x), w, length(x))
if(all(x[c(z : i, (i + 2) : w)] <= x[i + 1])) return(i + 1) else return(numeric(0))
})
pks <- unlist(pks)
pks
}
#https://stats.stackexchange.com/questions/22974/how-to-find-local-peaks-valleys-in-a-series-of-data
## Parse arguments (we expect the form --arg=value)
parseArgs <- function(x) strsplit(sub("^--", "", x), "=")
argsDF <- as.data.frame(do.call("rbind", parseArgs(args)))
argsL <- as.list(as.character(argsDF$V2))
names(argsL) <- argsDF$V1
if(is.null(argsL[['in']])) {
sink(stderr())
cat("\nERROR: Missing input file (--in) !\n\n")
sink()
q(save="no")
}
k.df <- read.table(argsL[['in']]) #load the data into dataframe
peak.n <- find_peaks(k.df[1:dim(k.df)[1],'V2'],m=1)[1]
valley.first.n <- find_peaks( k.df[peak.n,'V2']-k.df[1:dim(k.df)[1],'V2'] , m=1)[1]
valley.second.n <- find_peaks(k.df[peak.n:dim(k.df)[1],'V2']-k.df[peak.n,'V2'], m=1)[1]
#plot(k.df[,c('V1','V2')],type="l", xlim=c(valley.first.n,valley.second.n), ylim=c(0,max(k.df[valley.first.n:valley.second.n,'V2'])) )
#points(k.df[peak.n,c('V1','V2')],col="red")
cat(paste("First valley: ", valley.first.n, " (",k.df[valley.first.n,'V2'],")\n", sep=""))
cat(paste("Peak: ", peak.n, " (",k.df[peak.n,'V2'],")\n", sep=""))
cat(paste("Second valley: ", valley.second.n, " (",k.df[valley.second.n,'V2'],")\n", sep=""))
genomesize <- sum(as.numeric(k.df[valley.first.n:dim(k.df)[1],'V1']*k.df[valley.first.n:dim(k.df)[1],'V2']))/peak.n
#genomesize <- sum(as.numeric(k.df[2:dim(k.df)[1],1]*k.df[2:dim(k.df)[1],2]))/peak.n
#genomesize <- sum(as.numeric(k.df[valley.first.n:valley.second.n,1]*k.df[valley.first.n:valley.second.n,2]))/peak.n
cat(paste("Genome size: ", genomesize/1000000, " Mb\n\n",sep=""))