-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathviembed_test.py
58 lines (50 loc) · 2.33 KB
/
viembed_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import torch
from transformers import AutoModel, AutoTokenizer
import numpy as np
# Load the tokenizer and model
PhobertTokenizer = AutoTokenizer.from_pretrained("VoVanPhuc/sup-SimCSE-VietNamese-phobert-base")
model = AutoModel.from_pretrained("VoVanPhuc/sup-SimCSE-VietNamese-phobert-base")
# Define the sentence and word pairs
sample_vietnamese_sentence = 'Kẻ đánh bom đinh tồi tệ nhất nước Anh.'
vietnamese_gender_direction = [
["đàn_bà", "đàn_ông"],
["cô_ấy", "anh_ấy"],
["con gái", "con trai"],
["mẹ", "bố"],
["cô_gái", "chàng_trai"],
["u", "thầy"],
["nữ", "nam"],
["con", "thằng"],
["nữ_tính", "nam_tính"],
["Thúy", "Hùng"]
]
def vietnamese_sentence_embedding(input_sentence):
inputs = PhobertTokenizer(input_sentence, return_tensors="pt")
outputs = model(**inputs)
last_hidden_state = outputs.last_hidden_state # Shape: (batch_size, seq_len, hidden_size)
num_tokens = last_hidden_state.shape[1]
# Gather embeddings for each word except the first token ([CLS])
word_embeddings = []
for i in range(1, num_tokens): # Start from the second token (index 1)
token_embedding = last_hidden_state[0][i].detach().numpy()
# Normalize the embedding
normalized_embedding = token_embedding / np.linalg.norm(token_embedding)
word_embeddings.append(normalized_embedding)
return word_embeddings
def vietnamese_words_embedding(word_pairs):
embeddings = []
for pair in word_pairs:
pair_embedding = []
for word in pair:
inputs = PhobertTokenizer(word, return_tensors="pt")
outputs = model(**inputs)
# Take embedding for the main token (excluding [CLS])
embedding = outputs.last_hidden_state[0][1].detach().numpy()
normalized_embedding = embedding / np.linalg.norm(embedding)
pair_embedding.append(normalized_embedding)
embeddings.append(pair_embedding)
return embeddings
# input_vietnamese_sentence_embedding = vietnamese_sentence_embedding(sample_vietnamese_sentence)
# vietnamese_gender_embeddings = vietnamese_words_embedding(vietnamese_gender_direction)
# for i, (pair, embedding) in enumerate(zip(vietnamese_gender_direction, vietnamese_gender_embeddings)):
# print(f"Pair: {pair}, Embedding: {embedding}")