Skip to content

Latest commit

 

History

History
96 lines (65 loc) · 2.13 KB

index.md

File metadata and controls

96 lines (65 loc) · 2.13 KB
title author highlighter output job knit mode hitheme subtitle framework widgets
Developemnt Data Products Course Project
DHGarcia
highlight.js
pdf_document
Johns Hopkins Specialization in Data Science
slidify::knit2slides
selfcontained
tomorrow
MPG Regression Models
io2012

MPG Regression Models

Introduction

Simple App for the Developemnt Data Products Course Project.

The Goal is to explore the relationship between miles per gallon (MPG)
and a set of variables in the `mtcars` data set provide in R.

--- .class #id

MPG Regression Models

DataSet

`mtcars` dataset is use to build our model predicton. 
We load the mtcars data and take a look at the variables.
And convert some variables into factors.
mtcars$cyl = factor(mtcars$cyl)
mtcars$vs = factor(mtcars$vs)
mtcars$am = factor(mtcars$am)
mtcars$gear = factor(mtcars$gear)
mtcars$carb = factor(mtcars$carb)
levels(mtcars$am) = c("AT", "MT")
str(mtcars)
## 'data.frame':	32 obs. of  11 variables:
##  $ mpg : num  21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
##  $ cyl : Factor w/ 3 levels "4","6","8": 2 2 1 2 3 2 3 1 1 2 ...
##  $ disp: num  160 160 108 258 360 ...
##  $ hp  : num  110 110 93 110 175 105 245 62 95 123 ...
##  $ drat: num  3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
##  $ wt  : num  2.62 2.88 2.32 3.21 3.44 ...
##  $ qsec: num  16.5 17 18.6 19.4 17 ...
##  $ vs  : Factor w/ 2 levels "0","1": 1 1 2 2 1 2 1 2 2 2 ...
##  $ am  : Factor w/ 2 levels "AT","MT": 2 2 2 1 1 1 1 1 1 1 ...
##  $ gear: Factor w/ 3 levels "3","4","5": 2 2 2 1 1 1 1 2 2 2 ...
##  $ carb: Factor w/ 6 levels "1","2","3","4",..: 4 4 1 1 2 1 4 2 2 4 ...

--- .class #id

Model Selection

The user can select different set of variables to create the regreesion model.

## Error: could not find function "selectInput"

The model will be of the form.

model1 <- lm(mpg ~ am, mtcars)

--- .class #id

Output

The main panel will show the residual plot and the summary of the compute model.

par(mfrow = c(2, 2))
plot(model1)

plot of chunk figure3