forked from BrainCOGS/HPC_manifolds
-
Notifications
You must be signed in to change notification settings - Fork 0
/
makeFigures_Figure3.m
194 lines (150 loc) · 7.3 KB
/
makeFigures_Figure3.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
%% Intrinsic dimensionality
fnameStruct = mind_makeFnameStruct('Edward','towers','laptop');
outputFitPowerLaw = mind_fitPowerLaw_FunctionSLIM(fnameStruct, 'towers', 1, 5);
% Saved the output as outputFitPowerLaw_Towers to use with the T7 data in S3
% Location: "C:\Neuroscience\imaging\FINAL\fitPowerLaw_Data\outputFitPowerLaw_Towers.mat"
%% Example reconstruction
% Copy and paste this to matlab on spock to submit all the jobs
% 150 is not there because it is a bad trial
% trialsList = [145 146 147 148 149 151 152 153 154 157 158 159 160];
%
% for i=1:length(trialsList)
% curTrial = num2str(trialsList(i));
% command_string = redo_deadjob_function(curTrial);
% submitJobs(command_string, 'towers');
% end
%after jobs have completed, run:
collect_allTrials_reconstructionMultipleTrials
%% Reconstruction scores
clear all;
fnameStruct = mind_makeFnameStruct('Edward','towers','laptop');
% First run run_analysis_allTrials on matlab on spock to generate the
% held-out trial data
% load("C:\Neuroscience\imaging\FINAL\reconstructTrials_Data\maxReconstruct.mat");
% Or run this code:
maxReconstruct = collect_allTrials_2to7_minLeaves500(fnameStruct);
sourceData_3c = maxReconstruct;
figure;
nieh_barSEM(maxReconstruct(1,:), maxReconstruct(2,:), maxReconstruct(3,:), maxReconstruct(4,:), maxReconstruct(5,:), maxReconstruct(6,:));
hold on;
scatter([ones(length(fnameStruct),1); ...
ones(length(fnameStruct),1)*2; ...
ones(length(fnameStruct),1)*3; ...
ones(length(fnameStruct),1)*4; ...
ones(length(fnameStruct),1)*5; ...
ones(length(fnameStruct),1)*6; ...
],[maxReconstruct(1,:) ...
maxReconstruct(2,:) ...
maxReconstruct(3,:) ...
maxReconstruct(4,:) ...
maxReconstruct(5,:) ...
maxReconstruct(6,:) ...
], '.');
ylabel('Mean Cross-Validated Score');
xticklabels({'2', '3', '4', '5', '6', '7'});
xlabel('Num Embedding Dims');
set(gca, 'box', 'off')
axis square
%% Comparison with PCA
% Need the data from collect_allTrials_2to7_minLeaves500 from above
mean_trials_animals = mind_pcaTest(fnameStruct);
meanMaxReconstruct = mean(maxReconstruct,2);
% Then find the index that corresponds to the first entry that surpasses
% the numbers in the reconstruction scores plot above.
greater4 = mean_trials_animals>meanMaxReconstruct(3);
greater4 = find(greater4==1);
greater4 = greater4(1);
greater5 = mean_trials_animals>meanMaxReconstruct(4);
greater5 = find(greater5==1);
greater5 = greater5(1);
greater6 = mean_trials_animals>meanMaxReconstruct(5);
greater6 = find(greater6==1);
greater6 = greater6(1);
[greater4 greater5 greater6]
%% Tiled fields
fnameStruct = mind_makeFnameStruct('Edward','towers','laptop');
% Important functions it uses are:
% mind_fitFiringFieldsNEW_dimX_manuel, extractVariables
outputTiledFields = mind_plotTiledFieldsSLIM(fnameStruct(7).fname, fnameStruct(7).fname_mani);
% To generate the movie, after running mind_plotTiledFields:
movieName = 'Supp_movie_2_20210420_greaterthanequalto';
mind_makeTiledMovie(outputTiledFields.manifold3d, outputTiledFields.ROIactivities_thres, movieName);
%% Position and evidence gradients
fnameStruct = mind_makeFnameStruct('Edward','towers','laptop');
load(fnameStruct(7).fname_mani);
outputMindPlotter = mind_plotManifoldGradients(outMind, fnameStruct(7).fname, 'towers',1)
set(gcf,'renderer','painters');
%% Decode position and evidence
fnameStruct = mind_makeFnameStruct('Edward','towers','laptop');
load("C:\Neuroscience\imaging\FINAL\decoding_Data\decodeEandY_all.mat")
% Or run the following
%
% dimEmbedList = [2:7];
% for i=1:length(fnameStruct)
% for j=1:length(dimEmbedList)
% outputNonlinearDecoding_E = mind_nonlinearDecoding_dimX_All(fnameStruct(i).fname, fnameStruct(i).fname_mani,5,'GP','Evidence','towers',0,1,[], dimEmbedList(j));
% outputNonlinearDecodingAll_E{i,j} = outputNonlinearDecoding_E;
% meancorrAll_E(i,j) = outputNonlinearDecoding_E.meancorr;
%
% outputNonlinearDecoding_Y = mind_nonlinearDecoding_dimX_All(fnameStruct(i).fname, fnameStruct(i).fname_mani,5,'GP','Position','towers',0,1,[], dimEmbedList(j));
% outputNonlinearDecodingAll_Y{i,j} = outputNonlinearDecoding_Y;
% meancorrAll_Y(i,j) = outputNonlinearDecoding_Y.meancorr;
%
% disp(['Animal ' num2str(i) ' of ' num2str(length(fnameStruct)) ', dim ' num2str(dimEmbedList(j)) ' finished']);
% end
%
% outputNonlinearDecoding_ROIs_E = mind_nonlinearDecoding_dimX_All(fnameStruct(i).fname, fnameStruct(i).fname_mani,5,'GP','Evidence','towers',0,0,[],[]);
% outputNonlinearDecoding_ROIsAll_E{i,j} = outputNonlinearDecoding_ROIs_E;
% meancorrROIsAll_E(i) = outputNonlinearDecoding_ROIs_E.meancorr;
%
% outputNonlinearDecoding_ROIs_Y = mind_nonlinearDecoding_dimX_All(fnameStruct(i).fname, fnameStruct(i).fname_mani,5,'GP','Position','towers',0,0,[],[]);
% outputNonlinearDecoding_ROIsAll_Y{i,j} = outputNonlinearDecoding_ROIs_Y;
% meancorrROIsAll_Y(i) = outputNonlinearDecoding_ROIs_Y.meancorr;
%
% disp(['Animal ' num2str(i) ' of ' num2str(length(fnameStruct)) ', ROI finished']);
% end
figure;
subplot(1,2,1)
nieh_barSEM(meancorrAll_Y, meancorrROIsAll_Y);
sourceData_3g_Y = [meancorrAll_Y' ; meancorrROIsAll_Y];
hold on;
scatter([ones(length(fnameStruct),1); ...
ones(length(fnameStruct),1)*2; ...
ones(length(fnameStruct),1)*3; ...
ones(length(fnameStruct),1)*4; ...
ones(length(fnameStruct),1)*5; ...
ones(length(fnameStruct),1)*6; ...
ones(length(fnameStruct),1)*7; ...
],[meancorrAll_Y(:); meancorrROIsAll_Y'], '.');
ylabel('Decoding Index (r)');
xticklabels({'2', '3', '4', '5', '6', '7', 'ROIs'});
xlabel('# Dims embedded, last bar is ROIs');
title('Position')
set(gca, 'box', 'off')
subplot(1,2,2)
nieh_barSEM(meancorrAll_E, meancorrROIsAll_E);
sourceData_3g_E = [meancorrAll_E' ; meancorrROIsAll_E];
hold on;
scatter([ones(length(fnameStruct),1); ...
ones(length(fnameStruct),1)*2; ...
ones(length(fnameStruct),1)*3; ...
ones(length(fnameStruct),1)*4; ...
ones(length(fnameStruct),1)*5; ...
ones(length(fnameStruct),1)*6; ...
ones(length(fnameStruct),1)*7; ...
],[meancorrAll_E(:); meancorrROIsAll_E'], '.');
ylabel('Decoding Index (r)');
xticklabels({'2', '3', '4', '5', '6', '7', 'ROIs'});
xlabel('# Dims embedded, last bar is ROIs');
title('Evidence')
set(gca, 'box', 'off')
%% Align Multiple Animals (Fig. 3i, j)
fnameStruct = mind_makeFnameStruct('Edward','towers','laptop');
load("C:\Neuroscience\imaging\FINAL\decoding_Data\decodeEandY_all.mat")
% index of 4 means 5 dim
bestfit_position = meancorrAll_Y(:,4);
bestfit_evidence = meancorrAll_E(:,4);
load('C:\Neuroscience\imaging\FINAL\HPC2HPC_Data\outputHPC2HPC.mat')
% Or run this code:
%outputHPC2HPC = map_HPC2HPC(fnameStruct, bestfit_position, bestfit_evidence);
outputPlotHPC2HPC = plot_HPC2HPC(outputHPC2HPC);