-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy path0011-product-grid-20-20.py
137 lines (120 loc) · 5.46 KB
/
0011-product-grid-20-20.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
"""
Problem 11
In the 2020 grid below, four numbers along a diagonal line have been marked in red.
08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08
49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70
67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21
24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72
21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95
78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48
The product of these numbers is 26 63 78 14 = 1788696.
What is the greatest product of four adjacent numbers in any direction (up, down, left, right, or diagonally) in the 2020 grid?
"""
def parse_data():
"""
Parse the given string into a list of lists
"""
data = "\
08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08\n\
49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00\n\
81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65\n\
52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91\n\
22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80\n\
24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50\n\
32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70\n\
67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21\n\
24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72\n\
21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95\n\
78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92\n\
16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57\n\
86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58\n\
19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40\n\
04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66\n\
88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69\n\
04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36\n\
20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16\n\
20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54\n\
01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48\n"
# Separate individual numbers
lines = data.split()
# Initialize empty list
l = []
l.append([])
# Initialize counters
i = 0
width = 20
count = 0
for x in lines:
# Check if the list is filled to its width or not
if count >= width:
# Reset variables and shift on to new list
count = 0
l.append([])
i = i + 1
# Fill the list as usual
l[i].append(int(x))
count = count + 1
return l
def grid_processing():
data = parse_data()
max_product = data[0][0]
# Traverse over all the elements
for i in range(len(data)):
for j in range(len(data[i])):
# print "For ",data[i][j]
# The try..except block to catch all the out of index exceptions
# it saves me constraint checking time, and also makes it kind of
# easy to see.
# The product = data[i][j] * ... will throw an exception if any of
# the operands doesnot exist and the product won't be computed. And
# there will be transfer to the "except" block (which does nothing)
# However, if the product is computed, then we compare it with
# maximum product, and it goes on for all the directions relevant.
# Vertical
try:
product = data[i][j] * data[i+1][j] * data[i+2][j] * data[i+3][j]
if product > max_product:
max_product = product
#print "\tDown: ", product
except Exception:
pass
# Horizontal
try:
product = data[i][j] * data[i][j+1] * data[i][j+2] * data[i][j+3]
if product > max_product:
max_product = product
#print "\tRight: ", product
except Exception:
pass
# Diagonal right
try:
product = data[i][j] * data[i+1][j+1] * data[i+2][j+2] * data[i+3][j+3]
if product > max_product:
max_product = product
#print "\tDiagonal Right: ", product
except Exception:
pass
# Diagonal left
try:
product = data[i][j] * data[i+1][j-1] * data[i+2][j-2] * data[i+3][j-3]
if product > max_product:
max_product = product
#print "\tDiagonal Left: ", product
except Exception:
pass
return max_product
print "Answer by traditional method: ", grid_processing()