forked from Wuziyi616/CFUN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
617 lines (519 loc) · 24.6 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
"""
CFUN
Common utility functions and classes.
"""
import torch
import numpy as np
import nibabel as nib
import skimage.transform
from distutils.version import LooseVersion
import torch.nn.functional as F
############################################################
# Bounding Boxes
############################################################
def extract_bboxes(mask):
"""Compute bounding boxes from masks.
mask: [depth, height, width, num_instances]. Mask pixels are either 1 or 0.
Returns: bbox array [num_instances, (z1, y1, x1, z2, y2, x2)].
"""
boxes = np.zeros([mask.shape[-1], 6], dtype=np.int32)
for i in range(mask.shape[-1]):
# Bounding box.
ix = np.where(np.sum(mask, axis=2) > 0)
z1 = ix[0].min()
z2 = ix[0].max()
y1 = ix[1].min()
y2 = ix[1].max()
ix = np.where(np.sum(mask, axis=0) > 0)
x1 = ix[1].min()
x2 = ix[1].max()
# x2, y2 and z2 should not be part of the box. Increment by 1.
if z1 != z2:
z2 += 1
x2 += 1
y2 += 1
else:
# No mask for this instance. Might happen due to
# resizing or cropping. Set bbox to zeros
x1, x2, y1, y2, z1, z2 = 0, 0, 0, 0, 0, 0
boxes[i] = np.array([z1, y1, x1, z2, y2, x2])
return boxes.astype(np.int32)
def compute_iou(box, boxes, box_volume, boxes_volume):
"""Calculates IoU of the given box with the array of the given boxes.
box: 1D vector [z1, y1, x1, z2, y2, x2]
boxes: [boxes_count, (z1, y1, x1, z2, y2, x2)]
box_volume: float. the volume of 'box'
boxes_volume: array of depth boxes_count.
Note: the volumes are passed in rather than calculated here for
efficiency. Calculate once in the caller to avoid duplicate work.
"""
# Calculate intersection volumes
z1 = np.maximum(box[0], boxes[:, 0])
z2 = np.minimum(box[3], boxes[:, 3])
y1 = np.maximum(box[1], boxes[:, 1])
y2 = np.minimum(box[4], boxes[:, 4])
x1 = np.maximum(box[2], boxes[:, 2])
x2 = np.minimum(box[5], boxes[:, 5])
intersection = np.maximum(x2 - x1, 0) * np.maximum(y2 - y1, 0) * np.maximum(z2 - z1, 0)
union = box_volume + boxes_volume[:] - intersection[:]
iou = intersection / (union + 1e-6)
return iou
def compute_overlaps(boxes1, boxes2):
"""Computes IoU overlaps between two sets of boxes.
boxes1, boxes2: [N, (z1, y1, x1, z2, y2, x2)].
For better performance, pass the largest set first and the smaller second.
"""
# volumes of anchors and GT boxes
volume1 = (boxes1[:, 3] - boxes1[:, 0]) * (boxes1[:, 4] - boxes1[:, 1]) * (boxes1[:, 5] - boxes1[:, 2])
volume2 = (boxes2[:, 3] - boxes2[:, 0]) * (boxes2[:, 4] - boxes2[:, 1]) * (boxes2[:, 5] - boxes2[:, 2])
# Compute overlaps to generate matrix [boxes1 count, boxes2 count]
# Each cell contains the IoU value.
overlaps = np.zeros((boxes1.shape[0], boxes2.shape[0]))
for i in range(overlaps.shape[1]):
box2 = boxes2[i]
overlaps[:, i] = compute_iou(box2, boxes1, volume2[i], volume1)
return overlaps
def box_refinement(box, gt_box):
"""Compute refinement needed to transform box to gt_box.
box and gt_box are [N, (z1, y1, x1, z2, y2, x2)]
"""
depth = box[:, 3] - box[:, 0]
height = box[:, 4] - box[:, 1]
width = box[:, 5] - box[:, 2]
center_z = box[:, 0] + 0.5 * depth
center_y = box[:, 1] + 0.5 * height
center_x = box[:, 2] + 0.5 * width
gt_depth = gt_box[:, 3] - gt_box[:, 0]
gt_height = gt_box[:, 4] - gt_box[:, 1]
gt_width = gt_box[:, 5] - gt_box[:, 2]
gt_center_z = gt_box[:, 0] + 0.5 * gt_depth
gt_center_y = gt_box[:, 1] + 0.5 * gt_height
gt_center_x = gt_box[:, 2] + 0.5 * gt_width
dz = (gt_center_z - center_z) / depth
dy = (gt_center_y - center_y) / height
dx = (gt_center_x - center_x) / width
dd = torch.log(gt_depth / depth)
dh = torch.log(gt_height / height)
dw = torch.log(gt_width / width)
result = torch.stack([dz, dy, dx, dd, dh, dw], dim=1)
return result
def non_max_suppression(boxes, scores, threshold, max_num):
"""Performs non-maximum suppression and returns indices of kept boxes.
boxes: [N, (z1, y1, x1, z2, y2, x2)]. Notice that (z2, y2, x2) lays outside the box.
scores: 1-D array of box scores.
threshold: Float. IoU threshold to use for filtering.
max_num: Int. The max number of boxes to keep.
Return the index of boxes to keep.
"""
# Compute box volumes
z1 = boxes[:, 0]
y1 = boxes[:, 1]
x1 = boxes[:, 2]
z2 = boxes[:, 3]
y2 = boxes[:, 4]
x2 = boxes[:, 5]
volume = (z2 - z1) * (y2 - y1) * (x2 - x1)
# Get indices of boxes sorted by scores (highest first)
ixs = scores.argsort()[::-1]
pick = []
while len(ixs) > 0:
# Pick top box and add its index to the list
i = ixs[0]
pick.append(i)
if len(pick) >= max_num:
break
# Compute IoU of the picked box with the rest
iou = compute_iou(boxes[i], boxes[ixs[1:]], volume[i], volume[ixs[1:]])
# Identify boxes with IoU over the threshold. This returns indices into ixs[1:],
# so add 1 to get indices into ixs.
remove_ixs = np.where(iou > threshold)[0] + 1
# Remove indices of the picked and overlapped boxes.
ixs = np.delete(ixs, remove_ixs)
ixs = np.delete(ixs, 0)
return np.array(pick, dtype=np.int32)
def denorm_boxes_graph(boxes, size):
"""Converts boxes from normalized coordinates to pixel coordinates.
boxes: [..., (z1, y1, x1, z2, y2, x2)] in normalized coordinates
size: [depth, height, width], the size to denorm to.
Note: In pixel coordinates (z2, y2, x2) is outside the box.
But in normalized coordinates it's inside the box.
Returns:
[..., (z1, y1, x1, z2, y2, x2)] in pixel coordinates
"""
d, h, w = size
scale = torch.Tensor([d, h, w, d, h, w]).cuda()
denorm_boxes = torch.mul(boxes, scale)
return denorm_boxes
############################################################
# Dataset
############################################################
class Dataset(object):
"""The base class for dataset classes.
To use it, create a new class that adds functions specific to the dataset
you want to use. For example:
class CatsAndDogsDataset(Dataset):
def load_cats_and_dogs(self):
...
def load_mask(self, image_id):
...
def image_reference(self, image_id):
...
See COCODataset and ShapesDataset as examples.
"""
def __init__(self, class_map=None):
self._image_ids = []
self.image_info = []
# Background is always the first class
self.class_info = [{"source": "", "id": 0, "name": "BG"}]
self.source_class_ids = {}
def add_class(self, source, class_id, class_name):
assert "." not in source, "Source name cannot contain a dot"
# Does the class exist already?
for info in self.class_info:
if info['source'] == source and info["id"] == class_id:
# source.class_id combination already available, skip
return
# Add the class
self.class_info.append({
"source": source,
"id": class_id,
"name": class_name,
})
def add_image(self, source, image_id, path, **kwargs):
image_info = {
"id": image_id,
"source": source,
"path": path,
}
image_info.update(kwargs)
self.image_info.append(image_info)
def image_reference(self, image_id):
"""Return a link to the image in its source Website or details about
the image that help looking it up or debugging it.
Override for your dataset, but pass to this function
if you encounter images not in your dataset.
"""
return ""
def prepare(self, class_map=None):
"""Prepares the Dataset class for use.
TODO: class map is not supported yet. When done, it should handle mapping
classes from different datasets to the same class ID.
"""
def clean_name(name):
"""Returns a shorter version of object names for cleaner display."""
return ",".join(name.split(",")[:1])
# Build (or rebuild) everything else from the info dicts.
self.num_classes = len(self.class_info)
self.class_ids = np.arange(self.num_classes)
self.class_names = [clean_name(c["name"]) for c in self.class_info]
self.num_images = len(self.image_info)
self._image_ids = np.arange(self.num_images)
self.class_from_source_map = {"{}.{}".format(info['source'], info['id']): id
for info, id in zip(self.class_info, self.class_ids)}
# Map sources to class_ids they support
self.sources = list(set([i['source'] for i in self.class_info]))
self.source_class_ids = {}
# Loop over datasets
for source in self.sources:
self.source_class_ids[source] = []
# Find classes that belong to this dataset
for i, info in enumerate(self.class_info):
# Include BG class in all datasets
if i == 0 or source == info['source']:
self.source_class_ids[source].append(i)
def map_source_class_id(self, source_class_id):
"""Takes a source class ID and returns the int class ID assigned to it.
For example:
dataset.map_source_class_id("coco.12") -> 23
"""
return self.class_from_source_map[source_class_id]
def get_source_class_id(self, class_id, source):
"""Map an internal class ID to the corresponding class ID in the source dataset."""
info = self.class_info[class_id]
assert info['source'] == source
return info['id']
def append_data(self, class_info, image_info):
self.external_to_class_id = {}
for i, c in enumerate(self.class_info):
for ds, id in c["map"]:
self.external_to_class_id[ds + str(id)] = i
# Map external image IDs to internal ones.
self.external_to_image_id = {}
for i, info in enumerate(self.image_info):
self.external_to_image_id[info["ds"] + str(info["id"])] = i
@property
def image_ids(self):
return self._image_ids
def source_image_link(self, image_id):
"""Returns the path or URL to the image.
Override this to return a URL to the image if it's available online for easy
debugging.
"""
return self.image_info[image_id]["path"]
def load_image(self, image_id):
"""Load the specified image and return a [H, W, D, 1] Numpy array."""
# Load image
image = nib.load(self.image_info[image_id]['path']).get_data().copy()
return np.expand_dims(image, -1)
def load_mask(self, image_id):
"""Load the specified mask and return a [H, W, D] Numpy array."""
# Override this function to load a mask from your dataset.
# Otherwise, it returns an empty mask.
mask = np.empty([0, 0, 0])
return mask
def resize(image, output_shape, order=1, mode='constant', cval=0, clip=True,
preserve_range=True, anti_aliasing=False, anti_aliasing_sigma=None):
"""A wrapper for Scikit-Image resize().
Scikit-Image generates warnings on every call to resize() if it doesn't
receive the right parameters. The right parameters depend on the version
of skimage. This solves the problem by using different parameters per
version. And it provides a central place to control resizing defaults.
"""
if LooseVersion(skimage.__version__) >= LooseVersion("0.14"):
# New in 0.14: anti_aliasing. Default it to False for backward
# compatibility with skimage 0.13.
return skimage.transform.resize(
image, output_shape,
order=order, mode=mode, cval=cval, clip=clip,
preserve_range=preserve_range, anti_aliasing=anti_aliasing,
anti_aliasing_sigma=anti_aliasing_sigma)
else:
return skimage.transform.resize(
image, output_shape,
order=order, mode=mode, cval=cval, clip=clip,
preserve_range=preserve_range)
def resize_image(image, min_dim=None, max_dim=None, min_scale=None, mode="square"):
"""Resizes an image keeping the aspect ratio.
min_dim: if provided, resizes the image such that it's smaller
dimension == min_dim
max_dim: if provided, ensures that the image longest side doesn't
exceed this value.
min_scale: if provided, ensure that the image is scaled up by at least
this percent even if min_dim doesn't require it.
mode: Resizing mode.
none: No resizing. Return the image unchanged.
square: Resize and pad with zeros to get a square image
of size [max_dim, max_dim, max_dim].
pad64: Pads width and height with zeros to make them multiples of 64.
If min_dim or min_scale are provided, it scales the image up
before padding. max_dim is ignored in this mode.
The multiple of 64 is needed to ensure smooth scaling of feature
maps up and down the 6 levels of the FPN pyramid (2**6=64).
crop: Picks random crops from the image. First, scales the image based
on min_dim and min_scale, then picks a random crop of
size min_dim x min_dim. Can be used in training only.
max_dim is not used in this mode.
self: Self-designed resize strategy.
Resize the image to [IMAGE_MAX_DIM, IMAGE_MAX_DIM, IMAGE_MIN_DIM]
Returns:
image: the resized image of [height, width, depth, channels]
window: (z1, y1, x1, z2, y2, x2). If max_dim is provided, padding might
be inserted in the returned image. If so, this window is the
coordinates of the image part of the full image (excluding
the padding). The x2, y2, z2 pixels are not included.
scale: The scale factor used to resize the image
padding: Padding added to the image [(top, bottom), (left, right), (front, back), (0, 0)]
"""
# Keep track of image dtype and return results in the same dtype
image_dtype = image.dtype
# Default window (z1, y1, x1, z2, y2, x2) and default scale == 1.
h, w, d = image.shape[:3]
window = (0, 0, 0, d, h, w)
scale = 1
padding = [(0, 0), (0, 0), (0, 0), (0, 0)]
crop = None
if mode == "none":
return image, window, scale, padding, crop
# Self-designed resize strategy.
if mode == "self":
image = resize(image, (max_dim, max_dim, min_dim, 1),
order=1, mode="constant", preserve_range=True)
return image.astype(image_dtype), (0, 0, 0, min_dim, max_dim, max_dim), -1, \
[(0, 0), (0, 0), (0, 0), (0, 0)], crop
def resize_mask(mask, scale, padding, max_dim=0, min_dim=0, crop=None, mode="square"):
"""Resizes a mask using the given scale and padding.
Typically, you get the scale and padding from resize_image() to
ensure both, the image and the mask, are resized consistently.
scale: mask scaling factor
padding: Padding to add to the mask in the form
[(top, bottom), (left, right), (front, back), (0, 0)]
"""
# Self-designed resize strategy.
if mode == "self":
mask = resize(mask, (max_dim, max_dim, min_dim), order=0, mode='constant', preserve_range=True)
return np.round(mask).astype(np.int32)
def minimize_mask(bbox, mask, mini_shape):
"""Resize masks to a smaller version to cut memory load.
Mini-masks can then resized back to image scale using expand_masks()
"""
mini_mask = np.zeros(mini_shape + (mask.shape[-1],), dtype=np.int32)
for i in range(mask.shape[-1]):
m = mask[:, :, :, i]
z1, y1, x1, z2, y2, x2 = bbox[i][:6]
m = m[z1:z2, y1:y2, x1:x2]
if m.size == 0:
raise Exception("Invalid bounding box with volume of zero")
m = skimage.transform.resize(m, mini_shape, order=0, mode="constant", preserve_range=True)
mini_mask[:, :, :, i] = np.around(m).astype(np.int32)
return mini_mask
def expand_mask(bbox, mini_mask, image_shape):
"""Resizes mini masks back to image size. Reverses the change
of minimize_mask().
"""
mask = np.zeros(image_shape[:3] + (mini_mask.shape[-1],), dtype=np.int32)
for i in range(mask.shape[-1]):
m = mini_mask[:, :, :, i]
z1, y1, x1, z2, y2, x2 = bbox[i][:6]
d = z2 - z1
h = y2 - y1
w = x2 - x1
m = skimage.transform.resize(m, (d, h, w), order=1, mode="constant", preserve_range=True)
mask[z1:z2, y1:y2, x1:x2, i] = np.around(m).astype(np.int32)
return mask
def unmold_mask(mask, bbox, image_shape):
"""Converts a mask generated by the neural network into a format similar
to it's original shape.
mask: [depth, height, width, num_instances] of type float. A small, typically 28x28 mask.
bbox: [z1, y1, x1, z2, y2, x2]. The box to fit the mask in.
image_shape: [channels, depth, height, width]
Returns a tf.int32 mask with the same size as the original image.
"""
z1, y1, x1, z2, y2, x2 = bbox
mask = torch.from_numpy(mask).float().cuda()
mask = mask.permute(3, 0, 1, 2).unsqueeze(0)
mask = F.interpolate(mask, size=(z2 - z1, y2 - y1, x2 - x1), mode='trilinear', align_corners=False)
mask = mask.squeeze(0).detach().cpu().numpy().transpose(1, 2, 3, 0)
# Put the mask in the right location.
full_mask = np.zeros((image_shape[1], image_shape[2], image_shape[3], mask.shape[-1]), dtype=np.float32)
full_mask[z1:z2, y1:y2, x1:x2, :] = mask
return full_mask
############################################################
# Anchors
############################################################
def generate_anchors(scales, ratios, shape, feature_stride, anchor_stride):
"""
scales: 1D array of anchor sizes in pixels. Example: [32, 64, 128]
ratios: 1D array of anchor ratios of width/height. Example: [1]
shape: [depth, height, width] spatial shape of the feature map over which
to generate anchors.
feature_stride: Stride of the feature map relative to the image in pixels.
anchor_stride: Stride of anchors on the feature map. For example, if the
value is 2 then generate anchors for every other feature map pixel.
"""
# Get all combinations of scales and ratios
scales, ratios = np.meshgrid(np.array(scales), np.array(ratios))
scales = scales.flatten()
ratios = ratios.flatten()
# Enumerate heights and widths from scales and ratios
# TODO: conditions when we have different ratios?
# Here I apply a trick.
depths = scales
heights = scales
widths = scales
# Enumerate shifts in feature space
shifts_z = np.arange(0, shape[0], anchor_stride) * feature_stride
shifts_y = np.arange(0, shape[1], anchor_stride) * feature_stride
shifts_x = np.arange(0, shape[2], anchor_stride) * feature_stride
shifts_z, shifts_y, shifts_x = np.meshgrid(shifts_z, shifts_y, shifts_x)
# Enumerate combinations of shifts, widths, and heights
box_depths, box_centers_z = np.meshgrid(depths, shifts_z)
box_widths, box_centers_x = np.meshgrid(widths, shifts_x)
box_heights, box_centers_y = np.meshgrid(heights, shifts_y)
# Reshape to get a list of (z, y, x) and a list of (d, h, w)
box_centers = np.stack(
[box_centers_z, box_centers_y, box_centers_x], axis=2).reshape([-1, 3])
box_sizes = np.stack([box_depths, box_heights, box_widths], axis=2).reshape([-1, 3])
# Convert to corner coordinates (z1, y1, x1, z2, y2, x2)
boxes = np.concatenate([box_centers - 0.5 * box_sizes,
box_centers + 0.5 * box_sizes], axis=1)
return boxes
def generate_pyramid_anchors(scales, ratios, feature_shapes, feature_strides,
anchor_stride):
"""Generate anchors at different levels of a feature pyramid. Each scale
is associated with a level of the pyramid, but each ratio is used in
all levels of the pyramid.
Returns:
anchors: [N, (z1, y1, x1, z2, y2, x2)]. All generated anchors in one array. Sorted
with the same order of the given scales. So, anchors of scale[0] come
first, then anchors of scale[1], and so on.
"""
# Anchors
# [anchor_count, (z1, y1, x1, z2, y2, x2)]
anchors = []
for i in range(len(scales)):
anchors.append(generate_anchors(scales[i], ratios, feature_shapes[i],
feature_strides[i], anchor_stride))
return np.concatenate(anchors, axis=0)
############################################################
# Miscellaneous
############################################################
# ## Batch Slicing
# Some custom layers support a batch size of 1 only, and require a lot of work
# to support batches greater than 1. This function slices an input tensor
# across the batch dimension and feeds batches of size 1. Effectively,
# an easy way to support batches > 1 quickly with little code modification.
# In the long run, it's more efficient to modify the code to support large
# batches and getting rid of this function. Consider this a temporary solution
def batch_slice(inputs, graph_fn, batch_size, names=None):
"""
Splits inputs into slices and feeds each slice to a copy of the given
computation graph and then combines the results. It allows you to run a
graph on a batch of inputs even if the graph is written to support one
instance only.
inputs: list of tensors. All must have the same first dimension size
graph_fn: A function that returns a TF tensor that's part of a graph.
batch_size: number of slices to divide the data into.
names: If provided, assigns names to the resulting tensors.
"""
if not isinstance(inputs, list):
inputs = [inputs]
outputs = []
for i in range(batch_size):
inputs_slice = [x[i] for x in inputs]
output_slice = graph_fn(*inputs_slice)
if not isinstance(output_slice, (tuple, list)):
output_slice = [output_slice]
outputs.append(output_slice)
# Change outputs from a list of slices where each is
# a list of outputs to a list of outputs and each has
# a list of slices
outputs = list(zip(*outputs))
if names is None:
names = [None] * len(outputs)
result = [torch.stack(o, axis=0, name=n)
for o, n in zip(outputs, names)]
if len(result) == 1:
result = result[0]
return result
def compute_per_class_mask_iou(gt_masks, pred_masks):
"""Computes per_class_IoU overlaps between two sets of masks.
gt_masks, pred_masks: [Height, Width, Depth, instances], zero-padding if there's no such instance.
Returns ious per instance.
"""
# flatten masks and compute their areas
gt_masks = np.reshape(gt_masks > .5, (-1, gt_masks.shape[-1])).astype(np.float32)
pred_masks = np.reshape(pred_masks > .5, (-1, pred_masks.shape[-1])).astype(np.float32)
area1 = np.sum(gt_masks, axis=0)
area2 = np.sum(pred_masks, axis=0)
# intersections and union
intersections = np.array([np.dot(gt_masks.T, pred_masks)[i, i] for i in range(gt_masks.shape[-1])])
union = area1 + area2 - intersections
ious = intersections / (union + 1e-6) # avoid intersections to be divided by 0
return ious
def compute_mask_iou(gt_masks, pred_masks):
"""Computes IoU overlaps between two sets of masks. Regard different classes as the same.
gt_masks, pred_masks: [Height, Width, Depth].
Returns ious of the two masks.
"""
# flatten masks and compute their areas
gt_masks[gt_masks > 0] = 1
pred_masks[pred_masks > 0] = 1
gt_masks = np.reshape(gt_masks, (-1)).astype(np.int32)
pred_masks = np.reshape(pred_masks, (-1)).astype(np.int32)
area1 = np.sum(gt_masks)
area2 = np.sum(pred_masks)
# intersections and union
intersections = np.dot(gt_masks.T, pred_masks)
union = area1 + area2 - intersections
ious = intersections / (union + 1e-6) # avoid intersections to be divided by 0
return ious