forked from cad-audio/executorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
aot_arm_compiler.py
538 lines (455 loc) · 16.2 KB
/
aot_arm_compiler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# Copyright 2023-2024 Arm Limited and/or its affiliates.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
# Example script for exporting simple models to flatbuffer
import argparse
import json
import logging
import os
from pathlib import Path
from typing import Any, Dict, Optional, Tuple
import torch
from executorch.backends.arm.arm_backend import ArmCompileSpecBuilder
from executorch.backends.arm.arm_partitioner import ArmPartitioner
from executorch.backends.arm.quantizer.arm_quantizer import (
ArmQuantizer,
get_symmetric_quantization_config,
)
from executorch.backends.arm.util.arm_model_evaluator import (
GenericModelEvaluator,
MobileNetV2Evaluator,
)
from executorch.devtools.backend_debug import get_delegation_info
from executorch.exir import (
EdgeCompileConfig,
ExecutorchBackendConfig,
to_edge_transform_and_lower,
)
from executorch.extension.export_util.utils import save_pte_program
from tabulate import tabulate
# Quantize model if required using the standard export quantizaion flow.
from torch.ao.quantization.quantize_pt2e import convert_pt2e, prepare_pt2e
from torch.utils.data import DataLoader
from ..models import MODEL_NAME_TO_MODEL
from ..models.model_factory import EagerModelFactory
FORMAT = "[%(levelname)s %(asctime)s %(filename)s:%(lineno)s] %(message)s"
logging.basicConfig(level=logging.WARNING, format=FORMAT)
def get_model_and_inputs_from_name(model_name: str) -> Tuple[torch.nn.Module, Any]:
"""Given the name of an example pytorch model, return it and example inputs.
Raises RuntimeError if there is no example model corresponding to the given name.
"""
# Case 1: Model is defined in this file
if model_name in models.keys():
model = models[model_name]()
example_inputs = models[model_name].example_input
# Case 2: Model is defined in examples/models/
elif model_name in MODEL_NAME_TO_MODEL.keys():
logging.warning(
"Using a model from examples/models not all of these are currently supported"
)
model, example_inputs, _, _ = EagerModelFactory.create_model(
*MODEL_NAME_TO_MODEL[model_name]
)
# Case 3: Model is in an external python file loaded as a module.
# ModelUnderTest should be a torch.nn.module instance
# ModelInputs should be a tuple of inputs to the forward function
elif model_name.endswith(".py"):
import importlib.util
# load model's module and add it
spec = importlib.util.spec_from_file_location("tmp_model", model_name)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
model = module.ModelUnderTest
example_inputs = module.ModelInputs
else:
raise RuntimeError(
f"Model '{model_name}' is not a valid name. Use --help for a list of available models."
)
return model, example_inputs
def quantize(
model: torch.nn.Module,
model_name: str,
example_inputs: Tuple[torch.Tensor],
evaluator_name: str | None,
evaluator_config: Dict[str, Any] | None,
) -> torch.nn.Module:
"""This is the official recommended flow for quantization in pytorch 2.0 export"""
logging.info("Quantizing Model...")
logging.debug(f"Original model: {model}")
quantizer = ArmQuantizer()
# if we set is_per_channel to True, we also need to add out_variant of quantize_per_channel/dequantize_per_channel
operator_config = get_symmetric_quantization_config(is_per_channel=False)
quantizer.set_global(operator_config)
m = prepare_pt2e(model, quantizer)
dataset = get_calibration_data(
model_name, example_inputs, evaluator_name, evaluator_config
)
# The dataset could be a tuple of tensors or a DataLoader
# These two cases need to be accounted for
if isinstance(dataset, DataLoader):
for sample, _ in dataset:
m(sample)
else:
m(*dataset)
m = convert_pt2e(m)
logging.debug(f"Quantized model: {m}")
return m
# Simple example models
class AddModule(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return x + x
example_input = (torch.ones(5, dtype=torch.int32),)
can_delegate = True
class AddModule2(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, x, y):
return x + y
example_input = (
torch.ones(5, dtype=torch.int32),
torch.ones(5, dtype=torch.int32),
)
can_delegate = True
class AddModule3(torch.nn.Module):
def __init__(self):
super().__init__()
def forward(self, x, y):
return (x + y, x + x)
example_input = (
torch.ones(5, dtype=torch.int32),
torch.ones(5, dtype=torch.int32),
)
can_delegate = True
class SoftmaxModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.softmax = torch.nn.Softmax(dim=0)
def forward(self, x):
z = self.softmax(x)
return z
example_input = (torch.ones(2, 2),)
can_delegate = False
models = {
"add": AddModule,
"add2": AddModule2,
"add3": AddModule3,
"softmax": SoftmaxModule,
}
calibration_data = {
"add": (torch.randn(1, 5),),
"add2": (
torch.randn(1, 5),
torch.randn(1, 5),
),
"add3": (
torch.randn(32, 5),
torch.randn(32, 5),
),
"softmax": (torch.randn(32, 2, 2),),
}
evaluators = {
"generic": GenericModelEvaluator,
"mv2": MobileNetV2Evaluator,
}
targets = [
"ethos-u55-32",
"ethos-u55-64",
"ethos-u55-128",
"ethos-u55-256",
"ethos-u85-128",
"ethos-u85-256",
"ethos-u85-512",
"ethos-u85-1024",
"ethos-u85-2048",
"TOSA",
]
def get_calibration_data(
model_name: str,
example_inputs: Tuple[torch.Tensor],
evaluator_name: str | None,
evaluator_config: str | None,
):
# Firstly, if the model is being evaluated, take the evaluators calibration function if it has one
if evaluator_name is not None:
evaluator = evaluators[evaluator_name]
if hasattr(evaluator, "get_calibrator"):
assert evaluator_config is not None
config_path = Path(evaluator_config)
with config_path.open() as f:
config = json.load(f)
if evaluator_name == "mv2":
return evaluator.get_calibrator(
training_dataset_path=config["training_dataset_path"]
)
else:
raise RuntimeError(f"Unknown evaluator: {evaluator_name}")
# If the model is in the calibration_data dictionary, get the data from there
# This is used for the simple model examples provided
if model_name in calibration_data:
return calibration_data[model_name]
# As a last resort, fallback to the scripts previous behavior and return the example inputs
return example_inputs
def get_compile_spec(
target: str, intermediates: Optional[str] = None
) -> ArmCompileSpecBuilder:
spec_builder = None
if target == "TOSA":
spec_builder = (
ArmCompileSpecBuilder()
.tosa_compile_spec("TOSA-0.80.0+BI")
.set_permute_memory_format(True)
)
elif "ethos-u55" in target:
spec_builder = (
ArmCompileSpecBuilder()
.ethosu_compile_spec(
target,
system_config="Ethos_U55_High_End_Embedded",
memory_mode="Shared_Sram",
extra_flags="--debug-force-regor --output-format=raw",
)
.set_permute_memory_format(True)
.set_quantize_io(True)
)
elif "ethos-u85" in target:
spec_builder = (
ArmCompileSpecBuilder()
.ethosu_compile_spec(
target,
system_config="Ethos_U85_SYS_DRAM_Mid",
memory_mode="Shared_Sram",
extra_flags="--output-format=raw",
)
.set_permute_memory_format(True)
.set_quantize_io(True)
)
if intermediates is not None:
spec_builder.dump_intermediate_artifacts_to(intermediates)
return spec_builder.build()
def evaluate_model(
model_name: str,
intermediates: str,
model_fp32: torch.nn.Module,
model_int8: torch.nn.Module,
example_inputs: Tuple[torch.Tensor],
evaluator_name: str,
evaluator_config: str | None,
) -> None:
evaluator = evaluators[evaluator_name]
# Get the path of the TOSA flatbuffer that is dumped
intermediates_path = Path(intermediates)
tosa_paths = list(intermediates_path.glob("*.tosa"))
if evaluator.REQUIRES_CONFIG:
assert evaluator_config is not None
config_path = Path(evaluator_config)
with config_path.open() as f:
config = json.load(f)
if evaluator_name == "mv2":
init_evaluator = evaluator(
model_name,
model_fp32,
model_int8,
example_inputs,
str(tosa_paths[0]),
config["batch_size"],
config["validation_dataset_path"],
)
else:
raise RuntimeError(f"Unknown evaluator {evaluator_name}")
else:
init_evaluator = evaluator(
model_name, model_fp32, model_int8, example_inputs, str(tosa_paths[0])
)
quant_metrics = init_evaluator.evaluate()
output_json_path = intermediates_path / "quant_metrics.json"
with output_json_path.open("w") as json_file:
json.dump(quant_metrics, json_file)
def dump_delegation_info(edge, intermediate_files_folder: Optional[str] = None):
graph_module = edge.exported_program().graph_module
delegation_info = get_delegation_info(graph_module)
df = delegation_info.get_operator_delegation_dataframe()
table = tabulate(df, headers="keys", tablefmt="fancy_grid")
delegation_info_string = f"Delegation info:\n{delegation_info.get_summary()}\nDelegation table:\n{table}\n"
logging.info(delegation_info_string)
if intermediate_files_folder is not None:
delegation_file_path = os.path.join(
intermediate_files_folder, "delegation_info.txt"
)
with open(delegation_file_path, "w") as file:
file.write(delegation_info_string)
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"-m",
"--model_name",
required=True,
help=f"Provide model name. Valid ones: {set(list(models.keys())+list(MODEL_NAME_TO_MODEL.keys()))}",
)
parser.add_argument(
"-d",
"--delegate",
action="store_true",
required=False,
default=False,
help="Flag for producing ArmBackend delegated model",
)
parser.add_argument(
"-t",
"--target",
action="store",
required=False,
default="ethos-u55-128",
choices=targets,
help=f"For ArmBackend delegated models, pick the target, and therefore the instruction set generated. valid targets are {targets}",
)
parser.add_argument(
"-e",
"--evaluate",
required=False,
nargs="?",
const="generic",
choices=["generic", "mv2"],
help="Flag for running evaluation of the model.",
)
parser.add_argument(
"-c",
"--evaluate_config",
required=False,
default=None,
help="Provide path to evaluator config, if it is required.",
)
parser.add_argument(
"-q",
"--quantize",
action="store_true",
required=False,
default=False,
help="Produce a quantized model",
)
parser.add_argument(
"-s",
"--so_library",
required=False,
default=None,
help="Provide path to so library. E.g., cmake-out/examples/portable/custom_ops/libcustom_ops_aot_lib.so",
)
parser.add_argument(
"--debug", action="store_true", help="Set the logging level to debug."
)
parser.add_argument(
"-i",
"--intermediates",
action="store",
required=False,
help="Store intermediate output (like TOSA artefacts) somewhere.",
)
parser.add_argument(
"-o",
"--output",
action="store",
required=False,
help="Location for outputs, if not the default of cwd.",
)
args = parser.parse_args()
if args.evaluate and (
args.quantize is None or args.intermediates is None or (not args.delegate)
):
raise RuntimeError(
"--evaluate requires --quantize, --intermediates and --delegate to be enabled."
)
if args.debug:
logging.basicConfig(level=logging.DEBUG, format=FORMAT, force=True)
if args.quantize and not args.so_library:
logging.warning(
"Quantization enabled without supplying path to libcustom_ops_aot_lib using -s flag."
+ "This is required for running quantized models with unquantized input."
)
# if we have custom ops, register them before processing the model
if args.so_library is not None:
logging.info(f"Loading custom ops from {args.so_library}")
torch.ops.load_library(args.so_library)
if (
args.model_name in models.keys()
and args.delegate is True
and models[args.model_name].can_delegate is False
):
raise RuntimeError(f"Model {args.model_name} cannot be delegated.")
return args
if __name__ == "__main__":
args = get_args()
# Pick model from one of the supported lists
model, example_inputs = get_model_and_inputs_from_name(args.model_name)
model = model.eval()
# export_for_training under the assumption we quantize, the exported form also works
# in to_edge if we don't quantize
exported_program = torch.export.export_for_training(model, example_inputs)
model = exported_program.module()
model_fp32 = model
# Quantize if required
model_int8 = None
if args.quantize:
model = quantize(
model, args.model_name, example_inputs, args.evaluate, args.evaluate_config
)
model_int8 = model
# Wrap quantized model back into an exported_program
exported_program = torch.export.export_for_training(model, example_inputs)
if args.intermediates:
os.makedirs(args.intermediates, exist_ok=True)
if args.delegate:
# As we can target multiple output encodings from ArmBackend, one must
# be specified.
compile_spec = get_compile_spec(args.target, args.intermediates)
edge = to_edge_transform_and_lower(
exported_program,
partitioner=[ArmPartitioner(compile_spec)],
compile_config=EdgeCompileConfig(
_check_ir_validity=False,
_skip_dim_order=True,
),
)
else:
edge = to_edge_transform_and_lower(
exported_program,
compile_config=EdgeCompileConfig(
_check_ir_validity=False,
_skip_dim_order=True,
),
)
dump_delegation_info(edge, args.intermediates)
try:
exec_prog = edge.to_executorch(
config=ExecutorchBackendConfig(extract_delegate_segments=False)
)
except RuntimeError as e:
if "Missing out variants" in str(e.args[0]):
raise RuntimeError(
e.args[0]
+ ".\nThis likely due to an external so library not being loaded. Supply a path to it with the -s flag."
).with_traceback(e.__traceback__) from None
else:
raise e
model_name = os.path.basename(os.path.splitext(args.model_name)[0])
output_name = f"{model_name}" + (
f"_arm_delegate_{args.target}"
if args.delegate is True
else f"_arm_{args.target}"
)
if args.output is not None:
output_name = os.path.join(args.output, output_name)
save_pte_program(exec_prog, output_name)
if args.evaluate:
evaluate_model(
args.model_name,
args.intermediates,
model_fp32,
model_int8,
example_inputs,
args.evaluate,
args.evaluate_config,
)