forked from cad-audio/executorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
example_runner.cpp
309 lines (272 loc) · 10.8 KB
/
example_runner.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
/**
* @file
*
* This tool can run ExecuTorch model files that only use operators that
* are covered by the portable kernels, with possible delegate to the
* test_backend_compiler_lib.
*
* It sets all input tensor data to ones, and assumes that the outputs are
* all fp32 tensors.
*/
#include <fstream>
#include <memory>
#include <gflags/gflags.h>
#include <executorch/devtools/bundled_program/bundled_program.h>
#include <executorch/devtools/etdump/etdump_flatcc.h>
#include <executorch/extension/data_loader/buffer_data_loader.h>
#include <executorch/runtime/executor/method.h>
#include <executorch/runtime/executor/program.h>
#include <executorch/runtime/platform/log.h>
#include <executorch/runtime/platform/runtime.h>
static std::array<uint8_t, 4 * 1024U * 1024U> method_allocator_pool; // 4MB
DEFINE_string(
bundled_program_path,
"model_bundled.bpte",
"Model serialized in flatbuffer format.");
DEFINE_int32(
testset_idx,
0,
"Index of bundled verification set to be run "
"by bundled model for verification");
DEFINE_string(
etdump_path,
"etdump.etdp",
"If etdump generation is enabled an etdump will be written out to this path");
DEFINE_bool(
output_verification,
false,
"Comapre the model output to the reference outputs present in the BundledProgram.");
DEFINE_bool(
print_output,
false,
"Print the output of the ET model to stdout, if needs.");
DEFINE_bool(dump_outputs, false, "Dump outputs to etdump file");
DEFINE_bool(
dump_intermediate_outputs,
false,
"Dump intermediate outputs to etdump file.");
DEFINE_string(
debug_output_path,
"debug_output.bin",
"Path to dump debug outputs to.");
DEFINE_int32(
debug_buffer_size,
262144, // 256 KB
"Size of the debug buffer in bytes to allocate for intermediate outputs and program outputs logging.");
using executorch::etdump::ETDumpGen;
using executorch::etdump::ETDumpResult;
using executorch::extension::BufferDataLoader;
using executorch::runtime::Error;
using executorch::runtime::EValue;
using executorch::runtime::EventTracerDebugLogLevel;
using executorch::runtime::HierarchicalAllocator;
using executorch::runtime::MemoryAllocator;
using executorch::runtime::MemoryManager;
using executorch::runtime::Method;
using executorch::runtime::MethodMeta;
using executorch::runtime::Program;
using executorch::runtime::Result;
using executorch::runtime::Span;
std::vector<uint8_t> load_file_or_die(const char* path) {
std::ifstream file(path, std::ios::binary | std::ios::ate);
const size_t nbytes = file.tellg();
file.seekg(0, std::ios::beg);
auto file_data = std::vector<uint8_t>(nbytes);
ET_CHECK_MSG(
file.read(reinterpret_cast<char*>(file_data.data()), nbytes),
"Could not load contents of file '%s'",
path);
return file_data;
}
int main(int argc, char** argv) {
executorch::runtime::runtime_init();
gflags::ParseCommandLineFlags(&argc, &argv, true);
if (argc != 1) {
std::string msg = "Extra commandline args:";
for (int i = 1 /* skip argv[0] (program name) */; i < argc; i++) {
msg += std::string(" ") + argv[i];
}
ET_LOG(Error, "%s", msg.c_str());
return 1;
}
// Read in the entire file.
const char* bundled_program_path = FLAGS_bundled_program_path.c_str();
std::vector<uint8_t> file_data = load_file_or_die(bundled_program_path);
// Find the offset to the embedded Program.
const void* program_data;
size_t program_data_len;
Error status = executorch::bundled_program::get_program_data(
reinterpret_cast<void*>(file_data.data()),
file_data.size(),
&program_data,
&program_data_len);
ET_CHECK_MSG(
status == Error::Ok,
"get_program_data() failed on file '%s': 0x%x",
bundled_program_path,
(unsigned int)status);
auto buffer_data_loader = BufferDataLoader(program_data, program_data_len);
// Parse the program file. This is immutable, and can also be reused
// between multiple execution invocations across multiple threads.
Result<Program> program = Program::load(&buffer_data_loader);
if (!program.ok()) {
ET_LOG(Error, "Failed to parse model file %s", bundled_program_path);
return 1;
}
ET_LOG(Info, "Model file %s is loaded.", bundled_program_path);
// Use the first method in the program.
const char* method_name = nullptr;
{
const auto method_name_result = program->get_method_name(0);
ET_CHECK_MSG(method_name_result.ok(), "Program has no methods");
method_name = *method_name_result;
}
ET_LOG(Info, "Running method %s", method_name);
// MethodMeta describes the memory requirements of the method.
Result<MethodMeta> method_meta = program->method_meta(method_name);
ET_CHECK_MSG(
method_meta.ok(),
"Failed to get method_meta for %s: 0x%x",
method_name,
(unsigned int)method_meta.error());
//
// The runtime does not use malloc/new; it allocates all memory using the
// MemoryManger provided by the client. Clients are responsible for allocating
// the memory ahead of time, or providing MemoryAllocator subclasses that can
// do it dynamically.
//
// The method allocator is used to allocate all dynamic C++ metadata/objects
// used to represent the loaded method. This allocator is only used during
// loading a method of the program, which will return an error if there was
// not enough memory.
//
// The amount of memory required depends on the loaded method and the runtime
// code itself. The amount of memory here is usually determined by running the
// method and seeing how much memory is actually used, though it's possible to
// subclass MemoryAllocator so that it calls malloc() under the hood (see
// MallocMemoryAllocator).
//
// In this example we use a statically allocated memory pool.
MemoryAllocator method_allocator{MemoryAllocator(
sizeof(method_allocator_pool), method_allocator_pool.data())};
// The memory-planned buffers will back the mutable tensors used by the
// method. The sizes of these buffers were determined ahead of time during the
// memory-planning pasees.
//
// Each buffer typically corresponds to a different hardware memory bank. Most
// mobile environments will only have a single buffer. Some embedded
// environments may have more than one for, e.g., slow/large DRAM and
// fast/small SRAM, or for memory associated with particular cores.
std::vector<std::unique_ptr<uint8_t[]>> planned_buffers; // Owns the memory
std::vector<Span<uint8_t>> planned_spans; // Passed to the allocator
size_t num_memory_planned_buffers = method_meta->num_memory_planned_buffers();
for (size_t id = 0; id < num_memory_planned_buffers; ++id) {
// .get() will always succeed because id < num_memory_planned_buffers.
size_t buffer_size =
static_cast<size_t>(method_meta->memory_planned_buffer_size(id).get());
ET_LOG(Info, "Setting up planned buffer %zu, size %zu.", id, buffer_size);
planned_buffers.push_back(std::make_unique<uint8_t[]>(buffer_size));
planned_spans.push_back({planned_buffers.back().get(), buffer_size});
}
HierarchicalAllocator planned_memory(
{planned_spans.data(), planned_spans.size()});
// Assemble all of the allocators into the MemoryManager that the Executor
// will use.
MemoryManager memory_manager(&method_allocator, &planned_memory);
//
// Load the method from the program, using the provided allocators. Running
// the method can mutate the memory-planned buffers, so the method should only
// be used by a single thread at at time, but it can be reused.
//
ETDumpGen etdump_gen;
Result<Method> method =
program->load_method(method_name, &memory_manager, &etdump_gen);
ET_CHECK_MSG(
method.ok(),
"Loading of method %s failed with status 0x%" PRIx32,
method_name,
static_cast<int>(method.error()));
ET_LOG(Info, "Method loaded.");
void* debug_buffer = malloc(FLAGS_debug_buffer_size);
if (FLAGS_dump_intermediate_outputs) {
Span<uint8_t> buffer((uint8_t*)debug_buffer, FLAGS_debug_buffer_size);
etdump_gen.set_debug_buffer(buffer);
etdump_gen.set_event_tracer_debug_level(
EventTracerDebugLogLevel::kIntermediateOutputs);
} else if (FLAGS_dump_outputs) {
Span<uint8_t> buffer((uint8_t*)debug_buffer, FLAGS_debug_buffer_size);
etdump_gen.set_debug_buffer(buffer);
etdump_gen.set_event_tracer_debug_level(
EventTracerDebugLogLevel::kProgramOutputs);
}
// Use the inputs embedded in the bundled program.
status = executorch::bundled_program::load_bundled_input(
*method, file_data.data(), FLAGS_testset_idx);
ET_CHECK_MSG(
status == Error::Ok,
"LoadBundledInput failed with status 0x%" PRIx32,
static_cast<int>(status));
ET_LOG(Info, "Inputs prepared.");
// Run the model.
status = method->execute();
ET_CHECK_MSG(
status == Error::Ok,
"Execution of method %s failed with status 0x%" PRIx32,
method_name,
static_cast<int>(status));
ET_LOG(Info, "Model executed successfully.");
// Print the outputs.
if (FLAGS_print_output) {
std::vector<EValue> outputs(method->outputs_size());
status = method->get_outputs(outputs.data(), outputs.size());
ET_CHECK(status == Error::Ok);
for (EValue& output : outputs) {
// TODO(T159700776): This assumes that all outputs are fp32 tensors. Add
// support for other EValues and Tensor dtypes, and print tensors in a
// more readable way.
auto output_tensor = output.toTensor();
auto data_output = output_tensor.const_data_ptr<float>();
for (size_t j = 0; j < output_tensor.numel(); ++j) {
ET_LOG(Info, "%f", data_output[j]);
}
}
}
// Dump the etdump data containing profiling/debugging data to the specified
// file.
ETDumpResult result = etdump_gen.get_etdump_data();
if (result.buf != nullptr && result.size > 0) {
FILE* f = fopen(FLAGS_etdump_path.c_str(), "w+");
fwrite((uint8_t*)result.buf, 1, result.size, f);
fclose(f);
free(result.buf);
}
if (FLAGS_output_verification) {
// Verify the outputs.
status = executorch::bundled_program::verify_method_outputs(
*method,
file_data.data(),
FLAGS_testset_idx,
1e-3, // rtol
1e-5 // atol
);
ET_CHECK_MSG(
status == Error::Ok,
"Bundle verification failed with status 0x%" PRIx32,
static_cast<int>(status));
ET_LOG(Info, "Model verified successfully.");
}
if (FLAGS_dump_outputs || FLAGS_dump_intermediate_outputs) {
FILE* f = fopen(FLAGS_debug_output_path.c_str(), "w+");
fwrite((uint8_t*)debug_buffer, 1, FLAGS_debug_buffer_size, f);
fclose(f);
}
free(debug_buffer);
return 0;
}