forked from x4nth055/emotion-recognition-using-speech
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreate_csv.py
127 lines (115 loc) · 5.5 KB
/
create_csv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import glob
import pandas as pd
import os
def write_emodb_csv(emotions=["sad", "neutral", "happy"], train_name="train_emo.csv",
test_name="test_emo.csv", train_size=0.8, verbose=1):
"""
Reads speech emodb dataset from directory and write it to a metadata CSV file.
params:
emotions (list): list of emotions to read from the folder, default is ['sad', 'neutral', 'happy']
train_name (str): the output csv filename for training data, default is 'train_emo.csv'
test_name (str): the output csv filename for testing data, default is 'test_emo.csv'
train_size (float): the ratio of splitting training data, default is 0.8 (80% Training data and 20% testing data)
verbose (int/bool): verbositiy level, 0 for silence, 1 for info, default is 1
"""
target = {"path": [], "emotion": []}
categories = {
"W": "angry",
"L": "boredom",
"E": "disgust",
"A": "fear",
"F": "happy",
"T": "sad",
"N": "neutral"
}
# delete not specified emotions
categories_reversed = { v: k for k, v in categories.items() }
for emotion, code in categories_reversed.items():
if emotion not in emotions:
del categories[code]
for file in glob.glob("data/emodb/wav/*.wav"):
try:
emotion = categories[os.path.basename(file)[5]]
except KeyError:
continue
target['emotion'].append(emotion)
target['path'].append(file)
if verbose:
print("[EMO-DB] Total files to write:", len(target['path']))
# dividing training/testing sets
n_samples = len(target['path'])
test_size = int((1-train_size) * n_samples)
train_size = int(train_size * n_samples)
if verbose:
print("[EMO-DB] Training samples:", train_size)
print("[EMO-DB] Testing samples:", test_size)
X_train = target['path'][:train_size]
X_test = target['path'][train_size:]
y_train = target['emotion'][:train_size]
y_test = target['emotion'][train_size:]
pd.DataFrame({"path": X_train, "emotion": y_train}).to_csv(train_name)
pd.DataFrame({"path": X_test, "emotion": y_test}).to_csv(test_name)
def write_tess_ravdess_csv(emotions=["sad", "neutral", "happy"], train_name="train_tess_ravdess.csv",
test_name="test_tess_ravdess.csv", verbose=1):
"""
Reads speech TESS & RAVDESS datasets from directory and write it to a metadata CSV file.
params:
emotions (list): list of emotions to read from the folder, default is ['sad', 'neutral', 'happy']
train_name (str): the output csv filename for training data, default is 'train_tess_ravdess.csv'
test_name (str): the output csv filename for testing data, default is 'test_tess_ravdess.csv'
verbose (int/bool): verbositiy level, 0 for silence, 1 for info, default is 1
"""
train_target = {"path": [], "emotion": []}
test_target = {"path": [], "emotion": []}
for category in emotions:
# for training speech directory
for i, path in enumerate(glob.glob(f"data/training/Actor_*/*_{category}.wav")):
train_target["path"].append(path)
train_target["emotion"].append(category)
if verbose:
print(f"[TESS&RAVDESS] There are {i} training audio files for category:{category}")
# for validation speech directory
for i, path in enumerate(glob.glob(f"data/validation/Actor_*/*_{category}.wav")):
test_target["path"].append(path)
test_target["emotion"].append(category)
if verbose:
print(f"[TESS&RAVDESS] There are {i} testing audio files for category:{category}")
pd.DataFrame(test_target).to_csv(test_name)
pd.DataFrame(train_target).to_csv(train_name)
def write_custom_csv(emotions=['sad', 'neutral', 'happy'], train_name="train_custom.csv", test_name="test_custom.csv",
verbose=1):
"""
Reads Custom Audio data from data/*-custom and then writes description files (csv)
params:
emotions (list): list of emotions to read from the folder, default is ['sad', 'neutral', 'happy']
train_name (str): the output csv filename for training data, default is 'train_custom.csv'
test_name (str): the output csv filename for testing data, default is 'test_custom.csv'
verbose (int/bool): verbositiy level, 0 for silence, 1 for info, default is 1
"""
train_target = {"path": [], "emotion": []}
test_target = {"path": [], "emotion": []}
for category in emotions:
# train data
for i, file in enumerate(glob.glob(f"data/train-custom/*_{category}.wav")):
train_target["path"].append(file)
train_target["emotion"].append(category)
if verbose:
try:
print(f"[Custom Dataset] There are {i} training audio files for category:{category}")
except NameError:
# in case {i} doesn't exist
pass
# test data
for i, file in enumerate(glob.glob(f"data/test-custom/*_{category}.wav")):
test_target["path"].append(file)
test_target["emotion"].append(category)
if verbose:
try:
print(f"[Custom Dataset] There are {i} testing audio files for category:{category}")
except NameError:
pass
# write CSVs
if train_target["path"]:
pd.DataFrame(train_target).to_csv(train_name)
if test_target["path"]:
pd.DataFrame(test_target).to_csv(test_name)