forked from x4nth055/emotion-recognition-using-speech
-
Notifications
You must be signed in to change notification settings - Fork 0
/
emotion_recognition.py
495 lines (449 loc) · 21.7 KB
/
emotion_recognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
from data_extractor import load_data
from utils import extract_feature, AVAILABLE_EMOTIONS
from create_csv import write_emodb_csv, write_tess_ravdess_csv, write_custom_csv
from sklearn.metrics import accuracy_score, make_scorer, fbeta_score, mean_squared_error, mean_absolute_error
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import GridSearchCV
import matplotlib.pyplot as pl
from time import time
from utils import get_best_estimators, get_audio_config
import numpy as np
import tqdm
import os
import random
import pandas as pd
class EmotionRecognizer:
"""A class for training, testing and predicting emotions based on
speech's features that are extracted and fed into `sklearn` or `keras` model"""
def __init__(self, model, **kwargs):
"""
Params:
model (sklearn model): the model used to detect emotions.
emotions (list): list of emotions to be used. Note that these emotions must be available in
RAVDESS_TESS & EMODB Datasets, available nine emotions are the following:
'neutral', 'calm', 'happy', 'sad', 'angry', 'fear', 'disgust', 'ps' ( pleasant surprised ), 'boredom'.
Default is ["sad", "neutral", "happy"].
tess_ravdess (bool): whether to use TESS & RAVDESS Speech datasets, default is True
emodb (bool): whether to use EMO-DB Speech dataset, default is True,
custom_db (bool): whether to use custom Speech dataset that is located in `data/train-custom`
and `data/test-custom`, default is True
tess_ravdess_name (str): the name of the output CSV file for TESS&RAVDESS dataset, default is "tess_ravdess.csv"
emodb_name (str): the name of the output CSV file for EMO-DB dataset, default is "emodb.csv"
custom_db_name (str): the name of the output CSV file for the custom dataset, default is "custom.csv"
features (list): list of speech features to use, default is ["mfcc", "chroma", "mel"]
(i.e MFCC, Chroma and MEL spectrogram )
classification (bool): whether to use classification or regression, default is True
balance (bool): whether to balance the dataset ( both training and testing ), default is True
verbose (bool/int): whether to print messages on certain tasks, default is 1
Note that when `tess_ravdess`, `emodb` and `custom_db` are set to `False`, `tess_ravdess` will be set to True
automatically.
"""
# model
self.model = model
# emotions
self.emotions = kwargs.get("emotions", ["sad", "neutral", "happy"])
# make sure that there are only available emotions
self._verify_emotions()
# audio config
self.features = kwargs.get("features", ["mfcc", "chroma", "mel"])
self.audio_config = get_audio_config(self.features)
# datasets
self.tess_ravdess = kwargs.get("tess_ravdess", True)
self.emodb = kwargs.get("emodb", True)
self.custom_db = kwargs.get("custom_db", True)
if not self.tess_ravdess and not self.emodb and not self.custom_db:
self.tess_ravdess = True
self.classification = kwargs.get("classification", True)
self.balance = kwargs.get("balance", True)
self.override_csv = kwargs.get("override_csv", True)
self.verbose = kwargs.get("verbose", 1)
self.tess_ravdess_name = kwargs.get("tess_ravdess_name", "tess_ravdess.csv")
self.emodb_name = kwargs.get("emodb_name", "emodb.csv")
self.custom_db_name = kwargs.get("custom_db_name", "custom.csv")
self.verbose = kwargs.get("verbose", 1)
# set metadata path file names
self._set_metadata_filenames()
# write csv's anyway
self.write_csv()
# boolean attributes
self.data_loaded = False
self.model_trained = False
def _set_metadata_filenames(self):
"""
Protected method to get all CSV (metadata) filenames into two instance attributes:
- `self.train_desc_files` for training CSVs
- `self.test_desc_files` for testing CSVs
"""
train_desc_files, test_desc_files = [], []
if self.tess_ravdess:
train_desc_files.append(f"train_{self.tess_ravdess_name}")
test_desc_files.append(f"test_{self.tess_ravdess_name}")
if self.emodb:
train_desc_files.append(f"train_{self.emodb_name}")
test_desc_files.append(f"test_{self.emodb_name}")
if self.custom_db:
train_desc_files.append(f"train_{self.custom_db_name}")
test_desc_files.append(f"test_{self.custom_db_name}")
# set them to be object attributes
self.train_desc_files = train_desc_files
self.test_desc_files = test_desc_files
def _verify_emotions(self):
"""
This method makes sure that emotions passed in parameters are valid.
"""
for emotion in self.emotions:
assert emotion in AVAILABLE_EMOTIONS, "Emotion not recognized."
def get_best_estimators(self):
"""Loads estimators from grid files and returns them"""
return get_best_estimators(self.classification)
def write_csv(self):
"""
Write available CSV files in `self.train_desc_files` and `self.test_desc_files`
determined by `self._set_metadata_filenames()` method.
"""
for train_csv_file, test_csv_file in zip(self.train_desc_files, self.test_desc_files):
# not safe approach
if os.path.isfile(train_csv_file) and os.path.isfile(test_csv_file):
# file already exists, just skip writing csv files
if not self.override_csv:
continue
if self.emodb_name in train_csv_file:
write_emodb_csv(self.emotions, train_name=train_csv_file, test_name=test_csv_file, verbose=self.verbose)
if self.verbose:
print("[+] Writed EMO-DB CSV File")
elif self.tess_ravdess_name in train_csv_file:
write_tess_ravdess_csv(self.emotions, train_name=train_csv_file, test_name=test_csv_file, verbose=self.verbose)
if self.verbose:
print("[+] Writed TESS & RAVDESS DB CSV File")
elif self.custom_db_name in train_csv_file:
write_custom_csv(emotions=self.emotions, train_name=train_csv_file, test_name=test_csv_file, verbose=self.verbose)
if self.verbose:
print("[+] Writed Custom DB CSV File")
def load_data(self):
"""
Loads and extracts features from the audio files for the db's specified
"""
if not self.data_loaded:
result = load_data(self.train_desc_files, self.test_desc_files, self.audio_config, self.classification,
emotions=self.emotions, balance=self.balance)
self.X_train = result['X_train']
self.X_test = result['X_test']
self.y_train = result['y_train']
self.y_test = result['y_test']
self.train_audio_paths = result['train_audio_paths']
self.test_audio_paths = result['test_audio_paths']
if self.verbose:
print("[+] Data loaded")
self.data_loaded = True
def train(self, verbose=1):
"""
Train the model, if data isn't loaded, it 'll be loaded automatically
"""
if not self.data_loaded:
# if data isn't loaded yet, load it then
self.load_data()
if not self.model_trained:
self.model.fit(X=self.X_train, y=self.y_train)
self.model_trained = True
if verbose:
print("[+] Model trained")
def predict(self, audio_path):
"""
given an `audio_path`, this method extracts the features
and predicts the emotion
"""
feature = extract_feature(audio_path, **self.audio_config).reshape(1, -1)
return self.model.predict(feature)[0]
def predict_proba(self, audio_path):
"""
Predicts the probability of each emotion.
"""
if self.classification:
feature = extract_feature(audio_path, **self.audio_config).reshape(1, -1)
proba = self.model.predict_proba(feature)[0]
result = {}
for emotion, prob in zip(self.emotions, proba):
result[emotion] = prob
return result
else:
raise NotImplementedError("Probability prediction doesn't make sense for regression")
def grid_search(self, params, n_jobs=2):
"""
Performs GridSearchCV on `params` passed on the `self.model`
And returns the tuple: (best_estimator, best_params, best_score).
"""
score = accuracy_score if self.classification else mean_absolute_error
grid = GridSearchCV(estimator=self.model, param_grid=params, scoring=make_scorer(score),
n_jobs=n_jobs, verbose=1, cv=3)
grid_result = grid.fit(self.X_train, self.y_train)
return grid_result.best_estimator_, grid_result.best_params_, grid_result.best_score_
def determine_best_model(self, train=True):
"""
Loads best estimators and determine which is best for test data,
and then set it to `self.model`.
if `train` is True, then train that model on train data, so the model
will be ready for inference.
In case of regression, the metric used is MSE and accuracy for classification.
Note that the execution of this method may take several minutes due
to training all estimators (stored in `grid` folder) for determining the best possible one.
"""
if not self.data_loaded:
self.load_data()
# loads estimators
estimators = self.get_best_estimators()
result = []
if self.verbose:
estimators = tqdm.tqdm(estimators)
for estimator, params, cv_score in estimators:
if self.verbose:
estimators.set_description(f"Evaluating {estimator.__class__.__name__}")
detector = EmotionRecognizer(estimator, emotions=self.emotions, tess_ravdess=self.tess_ravdess,
emodb=self.emodb, custom_db=self.custom_db, classification=self.classification,
features=self.features, balance=self.balance, override_csv=False)
# data already loaded
detector.X_train = self.X_train
detector.X_test = self.X_test
detector.y_train = self.y_train
detector.y_test = self.y_test
detector.data_loaded = True
# train the model
detector.train(verbose=0)
# get test accuracy
accuracy = detector.test_score()
# append to result
result.append((detector.model, accuracy))
# sort the result
if self.classification:
result = sorted(result, key=lambda item: item[1], reverse=True)
else:
# regression, best is the lower, not the higher
result = sorted(result, key=lambda item: item[1], reverse=False)
best_estimator = result[0][0]
accuracy = result[0][1]
self.model = best_estimator
self.model_trained = True
if self.verbose:
if self.classification:
print(f"[+] Best model determined: {self.model.__class__.__name__} with {accuracy*100:.3f}% test accuracy")
else:
print(f"[+] Best model determined: {self.model.__class__.__name__} with {accuracy:.5f} mean absolute error")
def test_score(self):
"""
Calculates score on testing data
if `self.classification` is True, the metric used is accuracy,
Mean-Squared-Error is used otherwise (regression)
"""
y_pred = self.model.predict(self.X_test)
if self.classification:
return accuracy_score(y_true=self.y_test, y_pred=y_pred)
else:
return mean_squared_error(y_true=self.y_test, y_pred=y_pred)
def train_score(self):
"""
Calculates accuracy score on training data
if `self.classification` is True, the metric used is accuracy,
Mean-Squared-Error is used otherwise (regression)
"""
y_pred = self.model.predict(self.X_train)
if self.classification:
return accuracy_score(y_true=self.y_train, y_pred=y_pred)
else:
return mean_squared_error(y_true=self.y_train, y_pred=y_pred)
def train_fbeta_score(self, beta):
y_pred = self.model.predict(self.X_train)
return fbeta_score(self.y_train, y_pred, beta, average='micro')
def test_fbeta_score(self, beta):
y_pred = self.model.predict(self.X_test)
return fbeta_score(self.y_test, y_pred, beta, average='micro')
def confusion_matrix(self, percentage=True, labeled=True):
"""
Computes confusion matrix to evaluate the test accuracy of the classification
and returns it as numpy matrix or pandas dataframe (depends on params).
params:
percentage (bool): whether to use percentage instead of number of samples, default is True.
labeled (bool): whether to label the columns and indexes in the dataframe.
"""
if not self.classification:
raise NotImplementedError("Confusion matrix works only when it is a classification problem")
y_pred = self.model.predict(self.X_test)
matrix = confusion_matrix(self.y_test, y_pred, labels=self.emotions).astype(np.float32)
if percentage:
for i in range(len(matrix)):
matrix[i] = matrix[i] / np.sum(matrix[i])
# make it percentage
matrix *= 100
if labeled:
matrix = pd.DataFrame(matrix, index=[ f"true_{e}" for e in self.emotions ],
columns=[ f"predicted_{e}" for e in self.emotions ])
return matrix
def draw_confusion_matrix(self):
"""Calculates the confusion matrix and shows it"""
matrix = self.confusion_matrix(percentage=False, labeled=False)
#TODO: add labels, title, legends, etc.
pl.imshow(matrix, cmap="binary")
pl.show()
def n_emotions(self, emotion, partition):
"""Returns number of `emotion` data samples in a particular `partition`
('test' or 'train')
"""
if partition == "test":
return len([y for y in self.y_test if y == emotion])
elif partition == "train":
return len([y for y in self.y_train if y == emotion])
def get_samples_by_class(self):
"""
Returns a dataframe that contains the number of training
and testing samples for all emotions.
Note that if data isn't loaded yet, it'll be loaded
"""
if not self.data_loaded:
self.load_data()
train_samples = []
test_samples = []
total = []
for emotion in self.emotions:
n_train = self.n_emotions(emotion, "train")
n_test = self.n_emotions(emotion, "test")
train_samples.append(n_train)
test_samples.append(n_test)
total.append(n_train + n_test)
# get total
total.append(sum(train_samples) + sum(test_samples))
train_samples.append(sum(train_samples))
test_samples.append(sum(test_samples))
return pd.DataFrame(data={"train": train_samples, "test": test_samples, "total": total}, index=self.emotions + ["total"])
def get_random_emotion(self, emotion, partition="train"):
"""
Returns random `emotion` data sample index on `partition`.
"""
if partition == "train":
index = random.choice(list(range(len(self.y_train))))
while self.y_train[index] != emotion:
index = random.choice(list(range(len(self.y_train))))
elif partition == "test":
index = random.choice(list(range(len(self.y_test))))
while self.y_train[index] != emotion:
index = random.choice(list(range(len(self.y_test))))
else:
raise TypeError("Unknown partition, only 'train' or 'test' is accepted")
return index
def plot_histograms(classifiers=True, beta=0.5, n_classes=3, verbose=1):
"""
Loads different estimators from `grid` folder and calculate some statistics to plot histograms.
Params:
classifiers (bool): if `True`, this will plot classifiers, regressors otherwise.
beta (float): beta value for calculating fbeta score for various estimators.
n_classes (int): number of classes
"""
# get the estimators from the performed grid search result
estimators = get_best_estimators(classifiers)
final_result = {}
for estimator, params, cv_score in estimators:
final_result[estimator.__class__.__name__] = []
for i in range(3):
result = {}
# initialize the class
detector = EmotionRecognizer(estimator, verbose=0)
# load the data
detector.load_data()
if i == 0:
# first get 1% of sample data
sample_size = 0.01
elif i == 1:
# second get 10% of sample data
sample_size = 0.1
elif i == 2:
# last get all the data
sample_size = 1
# calculate number of training and testing samples
n_train_samples = int(len(detector.X_train) * sample_size)
n_test_samples = int(len(detector.X_test) * sample_size)
# set the data
detector.X_train = detector.X_train[:n_train_samples]
detector.X_test = detector.X_test[:n_test_samples]
detector.y_train = detector.y_train[:n_train_samples]
detector.y_test = detector.y_test[:n_test_samples]
# calculate train time
t_train = time()
detector.train()
t_train = time() - t_train
# calculate test time
t_test = time()
test_accuracy = detector.test_score()
t_test = time() - t_test
# set the result to the dictionary
result['train_time'] = t_train
result['pred_time'] = t_test
result['acc_train'] = cv_score
result['acc_test'] = test_accuracy
result['f_train'] = detector.train_fbeta_score(beta)
result['f_test'] = detector.test_fbeta_score(beta)
if verbose:
print(f"[+] {estimator.__class__.__name__} with {sample_size*100}% ({n_train_samples}) data samples achieved {cv_score*100:.3f}% Validation Score in {t_train:.3f}s & {test_accuracy*100:.3f}% Test Score in {t_test:.3f}s")
# append the dictionary to the list of results
final_result[estimator.__class__.__name__].append(result)
if verbose:
print()
visualize(final_result, n_classes=n_classes)
def visualize(results, n_classes):
"""
Visualization code to display results of various learners.
inputs:
- results: a dictionary of lists of dictionaries that contain various results on the corresponding estimator
- n_classes: number of classes
"""
n_estimators = len(results)
# naive predictor
accuracy = 1 / n_classes
f1 = 1 / n_classes
# Create figure
fig, ax = pl.subplots(2, 4, figsize = (11,7))
# Constants
bar_width = 0.4
colors = [ (random.random(), random.random(), random.random()) for _ in range(n_estimators) ]
# Super loop to plot four panels of data
for k, learner in enumerate(results.keys()):
for j, metric in enumerate(['train_time', 'acc_train', 'f_train', 'pred_time', 'acc_test', 'f_test']):
for i in np.arange(3):
x = bar_width * n_estimators
# Creative plot code
ax[j//3, j%3].bar(i*x+k*(bar_width), results[learner][i][metric], width = bar_width, color = colors[k])
ax[j//3, j%3].set_xticks([x-0.2, x*2-0.2, x*3-0.2])
ax[j//3, j%3].set_xticklabels(["1%", "10%", "100%"])
ax[j//3, j%3].set_xlabel("Training Set Size")
ax[j//3, j%3].set_xlim((-0.2, x*3))
# Add unique y-labels
ax[0, 0].set_ylabel("Time (in seconds)")
ax[0, 1].set_ylabel("Accuracy Score")
ax[0, 2].set_ylabel("F-score")
ax[1, 0].set_ylabel("Time (in seconds)")
ax[1, 1].set_ylabel("Accuracy Score")
ax[1, 2].set_ylabel("F-score")
# Add titles
ax[0, 0].set_title("Model Training")
ax[0, 1].set_title("Accuracy Score on Training Subset")
ax[0, 2].set_title("F-score on Training Subset")
ax[1, 0].set_title("Model Predicting")
ax[1, 1].set_title("Accuracy Score on Testing Set")
ax[1, 2].set_title("F-score on Testing Set")
# Add horizontal lines for naive predictors
ax[0, 1].axhline(y = accuracy, xmin = -0.1, xmax = 3.0, linewidth = 1, color = 'k', linestyle = 'dashed')
ax[1, 1].axhline(y = accuracy, xmin = -0.1, xmax = 3.0, linewidth = 1, color = 'k', linestyle = 'dashed')
ax[0, 2].axhline(y = f1, xmin = -0.1, xmax = 3.0, linewidth = 1, color = 'k', linestyle = 'dashed')
ax[1, 2].axhline(y = f1, xmin = -0.1, xmax = 3.0, linewidth = 1, color = 'k', linestyle = 'dashed')
# Set y-limits for score panels
ax[0, 1].set_ylim((0, 1))
ax[0, 2].set_ylim((0, 1))
ax[1, 1].set_ylim((0, 1))
ax[1, 2].set_ylim((0, 1))
# Set additional plots invisibles
ax[0, 3].set_visible(False)
ax[1, 3].axis('off')
# Create legend
for i, learner in enumerate(results.keys()):
pl.bar(0, 0, color=colors[i], label=learner)
pl.legend()
# Aesthetics
pl.suptitle("Performance Metrics for Three Supervised Learning Models", fontsize = 16, y = 1.10)
pl.tight_layout()
pl.show()