-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
56 lines (45 loc) · 1.75 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# Databricks notebook source
# MAGIC %pip install openpyxl tqdm
# COMMAND ----------
from glob import glob
from pathlib import Path
import pandas as pd
import os
from tqdm import tqdm
import unicodedata
TOP_DIR = "/Volumes/prd_mega/sboost4/vboost4"
INPUT_DIR = f"{TOP_DIR}/Documents/input/Countries"
RAW_INPUT_DIR = f"{TOP_DIR}/Documents/input/Data from authorities"
WORKSPACE_DIR = f"{TOP_DIR}/Workspace"
# COMMAND ----------
# Microdata extraction helper functions
def input_excel_filename(country_name):
country_excel_files = list(glob(f"{INPUT_DIR}/{country_name}*.xlsx"))
assert len(country_excel_files) == 1, f'expect there to be 1 {country_name} boost data file, found {len(country_excel_files)}'
return country_excel_files[0]
def prepare_microdata_csv_dir(country_name):
microdata_dir = f'{WORKSPACE_DIR}/microdata_csv/{country_name}'
Path(microdata_dir).mkdir(parents=True, exist_ok=True)
return microdata_dir
def prepare_raw_microdata_csv_dir(country_name):
microdata_dir = f'{WORKSPACE_DIR}/raw_microdata_csv/{country_name}'
Path(microdata_dir).mkdir(parents=True, exist_ok=True)
return microdata_dir
def normalize_cell(cell_value):
if pd.notna(cell_value) and isinstance(cell_value, str):
return ''.join(c for c in unicodedata.normalize('NFD', cell_value)
if unicodedata.category(c) != 'Mn')
else:
return cell_value
def is_named_column(column_name):
return column_name is not None and "Unnamed" not in str(column_name) and column_name != ''
# Check if the given file path already exists on DBFS
def dbfs_file_exists(path):
try:
dbutils.fs.ls(path)
return True
except Exception as e:
if 'java.io.FileNotFoundException' in str(e):
return False
else:
raise