-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathdata_loader.py
executable file
·73 lines (62 loc) · 2.18 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import torch
import numpy as np
import os
from PIL import Image
from torch.utils.data import Dataset
from torchvision import transforms
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
class CategoriesSampler():
def __init__(self, label, n_batch, n_cls, n_per):
self.n_batch = n_batch
self.n_cls = n_cls
self.n_per = n_per
label = np.array(label)
print(max(label))
self.m_ind = []
for i in range(max(label) + 1):
ind = np.argwhere(label == i).reshape(-1)
ind = torch.from_numpy(ind)
self.m_ind.append(ind)
def __len__(self):
return self.n_batch
def __iter__(self):
for i_batch in range(self.n_batch):
batch = []
classes = torch.randperm(len(self.m_ind))[:self.n_cls]
for c in classes:
l = self.m_ind[c]
pos = torch.randperm(len(l))[:self.n_per]
batch.append(l[pos])
batch = torch.stack(batch).t().reshape(-1)
yield batch
class MiniImageNet(Dataset):
def __init__(self, root='dataset/mini-imagenet/train', dataset='mini-imagenet', mode='train'):
self.root = root
self.data = []
self.label = []
self.dataset = dataset
self.mode = mode
self._load_dataset()
self.transform = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
def _load_dataset(self):
path = self.root
fw = open(os.path.join('dataset', self.dataset, self.mode+'.txt'))
lines = fw.readlines()
for line in lines:
img_path = os.path.join(path, line.split()[0])
labels = int(line.split()[1])
self.data.append(img_path)
self.label.append(labels)
fw.close()
def __getitem__(self, i):
path, label = self.data[i], self.label[i]
image = self.transform(Image.open(path).convert('RGB'))
return image, label
def __len__(self):
return len(self.data)