-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevit.py
774 lines (655 loc) · 34.8 KB
/
evit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
""" Vision Transformer (ViT) in PyTorch
A PyTorch implement of Vision Transformers as described in:
'An Image Is Worth 16 x 16 Words: Transformers for Image Recognition at Scale'
- https://arxiv.org/abs/2010.11929
`How to train your ViT? Data, Augmentation, and Regularization in Vision Transformers`
- https://arxiv.org/abs/2106.10270
The official jax code is released and available at https://github.com/google-research/vision_transformer
DeiT model defs and weights from https://github.com/facebookresearch/deit,
paper `DeiT: Data-efficient Image Transformers` - https://arxiv.org/abs/2012.12877
Acknowledgments:
* The paper authors for releasing code and weights, thanks!
* I fixed my class token impl based on Phil Wang's https://github.com/lucidrains/vit-pytorch ... check it out
for some einops/einsum fun
* Simple transformer style inspired by Andrej Karpathy's https://github.com/karpathy/minGPT
* Bert reference code checks against Huggingface Transformers and Tensorflow Bert
Hacked together by / Copyright 2021 Ross Wightman
# ------------------------------------------
# Modification:
# Added code for EViT training -- Copyright 2022 Youwei Liang
"""
import math
import logging
from functools import partial
from collections import OrderedDict
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
from timm.models.helpers import build_model_with_cfg,named_apply, adapt_input_conv
from timm.models.layers import trunc_normal_, lecun_normal_, to_2tuple
from timm.models.registry import register_model
from helpers import complement_idx
_logger = logging.getLogger(__name__)
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True,
'mean': IMAGENET_INCEPTION_MEAN, 'std': IMAGENET_INCEPTION_STD,
'first_conv': 'patch_embed.proj', 'classifier': 'head',
**kwargs
}
default_cfgs = {
'deit_small_patch16_304': _cfg(
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD,
input_size=(3, 304, 304)),
'deit_small_patch16_288': _cfg(
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD,
input_size=(3, 288, 288)),
'deit_small_patch16_272': _cfg(
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD,
input_size=(3, 272, 272)),
# patch models (weights from official Google JAX impl)
# deit models (FB weights)
'deit_tiny_patch16_224': _cfg(
url='https://dl.fbaipublicfiles.com/deit/deit_tiny_patch16_224-a1311bcf.pth',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD),
'deit_small_patch16_224': _cfg(
url='https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD),
'deit_base_patch16_224': _cfg(
url='https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD),
'deit_base_patch16_384': _cfg(
url='https://dl.fbaipublicfiles.com/deit/deit_base_patch16_384-8de9b5d1.pth',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, input_size=(3, 384, 384), crop_pct=1.0),
'deit_tiny_distilled_patch16_224': _cfg(
url='https://dl.fbaipublicfiles.com/deit/deit_tiny_distilled_patch16_224-b40b3cf7.pth',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, classifier=('head', 'head_dist')),
'deit_small_distilled_patch16_224': _cfg(
url='https://dl.fbaipublicfiles.com/deit/deit_small_distilled_patch16_224-649709d9.pth',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, classifier=('head', 'head_dist')),
'deit_base_distilled_patch16_224': _cfg(
url='https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_224-df68dfff.pth',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, classifier=('head', 'head_dist')),
'deit_base_distilled_patch16_384': _cfg(
url='https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_384-d0272ac0.pth',
mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD, input_size=(3, 384, 384), crop_pct=1.0,
classifier=('head', 'head_dist')),
}
def drop_path(x, drop_prob: float = 0., training: bool = False):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
'survival rate' as the argument.
"""
if drop_prob == 0. or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
random_tensor.floor_() # binarize
output = x.div(keep_prob) * random_tensor
return output
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
class Mlp(nn.Module):
""" MLP as used in Vision Transformer, MLP-Mixer and related networks
"""
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class PatchEmbed(nn.Module):
""" 2D Image to Patch Embedding
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, norm_layer=None, flatten=True):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
self.img_size = img_size
self.patch_size = patch_size
self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
self.num_patches = self.grid_size[0] * self.grid_size[1]
self.flatten = flatten
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
self.norm_layer = norm_layer
def forward(self, x):
x = self.proj(x)
if self.flatten:
x = x.flatten(2).transpose(1, 2) # BCHW -> BNC
x = self.norm(x)
return x
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0., keep_rate=1.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.keep_rate = keep_rate
self.attn = None
self.attn_gradients = None
assert 0 < keep_rate <= 1, "keep_rate must > 0 and <= 1, got {0}".format(keep_rate)
def get_attn_map(self):
return self.attn
def save_attn_map(self, attn):
self.attn = attn
def save_attn_map_gradients(self, attn_gradients):
self.attn_gradients = attn_gradients
def get_attn_map_gradients(self):
return self.attn_gradients
def forward(self, x, keep_rate=None, tokens=None):
if keep_rate is None:
keep_rate = self.keep_rate
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) # (N,D) \dot (D,D') = (N,D')
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
attn = (q @ k.transpose(-2, -1)) * self.scale # (N,D') \dot (D',N) = (N,N)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
self.save_attn_map(attn)
if attn.requires_grad == True:
attn.register_hook(self.save_attn_map_gradients)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
left_tokens = N - 1
if self.keep_rate < 1 and keep_rate < 1 or tokens is not None: # double check the keep rate
left_tokens = math.ceil(keep_rate * (N - 1))
if tokens is not None:
left_tokens = tokens
if left_tokens == N - 1:
return x, None, None, None, left_tokens
assert left_tokens >= 1
cls_attn = attn[:, :, 0, 1:] # [B, H, N-1]
cls_attn = cls_attn.mean(dim=1) # [B, N-1]
_, idx = torch.topk(cls_attn, left_tokens, dim=1, largest=True, sorted=True) # [B, left_tokens]
index = idx.unsqueeze(-1).expand(-1, -1, C) # [B, left_tokens, C]
return x, index, idx, cls_attn, left_tokens
return x, None, None, None, left_tokens
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, keep_rate=0.,
fuse_token=False):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias,
attn_drop=attn_drop, proj_drop=drop, keep_rate=keep_rate)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() # nn.Dropout(drop_path)
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
self.keep_rate = keep_rate
self.mlp_hidden_dim = mlp_hidden_dim
self.fuse_token = fuse_token
def forward(self, x, keep_rate=None, tokens=None, get_idx=False):
if keep_rate is None:
keep_rate = self.keep_rate # this is for inference, use the default keep rate
B, N, C = x.shape
tmp, index, idx, cls_attn, left_tokens = self.attn(self.norm1(x), keep_rate, tokens)
x = x + self.drop_path(tmp)
if index is not None:
# B, N, C = x.shape
non_cls = x[:, 1:]
x_others = torch.gather(non_cls, dim=1, index=index) # [B, left_tokens, C]
if self.fuse_token:
compl = complement_idx(idx, N - 1) # [B, N-1-left_tokens]
non_topk = torch.gather(non_cls, dim=1, index=compl.unsqueeze(-1).expand(-1, -1, C)) # [B, N-1-left_tokens, C]
non_topk_attn = torch.gather(cls_attn, dim=1, index=compl) # [B, N-1-left_tokens]
extra_token = torch.sum(non_topk * non_topk_attn.unsqueeze(-1), dim=1, keepdim=True) # [B, 1, C]
x = torch.cat([x[:, 0:1], x_others, extra_token], dim=1)
else:
x = torch.cat([x[:, 0:1], x_others], dim=1)
x = x + self.drop_path(self.mlp(self.norm2(x)))
n_tokens = x.shape[1] - 1
if get_idx and index is not None:
return x, n_tokens, idx
return x, n_tokens, None
class EViT(nn.Module):
""" EViT """
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
num_heads=12, mlp_ratio=4., qkv_bias=True, representation_size=None, distilled=False,
drop_rate=0., attn_drop_rate=0., drop_path_rate=0., embed_layer=PatchEmbed, norm_layer=None,
act_layer=None, weight_init='', keep_rate=(1, ), fuse_token=False, pos_embedding=True):
"""
Args:
img_size (int, tuple): input image size
patch_size (int, tuple): patch size
in_chans (int): number of input channels
num_classes (int): number of classes for classification head
embed_dim (int): embedding dimension
depth (int): depth of transformer
num_heads (int): number of attention heads
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
qkv_bias (bool): enable bias for qkv if True
representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set
distilled (bool): model includes a distillation token and head as in DeiT models
drop_rate (float): dropout rate
attn_drop_rate (float): attention dropout rate
drop_path_rate (float): stochastic depth rate
embed_layer (nn.Module): patch embedding layer
norm_layer: (nn.Module): normalization layer
weight_init: (str): weight init scheme
"""
super().__init__()
self.img_size = img_size
if len(keep_rate) == 1:
keep_rate = keep_rate * depth
self.keep_rate = keep_rate
self.depth = depth
self.first_shrink_idx = depth
for i, s in enumerate(keep_rate):
if s < 1:
self.first_shrink_idx = i
break
self.num_classes = num_classes
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
self.num_tokens = 2 if distilled else 1
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
act_layer = act_layer or nn.GELU
self.patch_embed = embed_layer(
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.dist_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if distilled else None
self.pos_embed_flag = pos_embedding
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))
self.pos_drop = nn.Dropout(p=drop_rate)
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
self.blocks = nn.ModuleList([
Block(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate,
attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, act_layer=act_layer,
keep_rate=keep_rate[i], fuse_token=fuse_token)
for i in range(depth)])
self.norm = norm_layer(embed_dim)
# Representation layer
if representation_size and not distilled:
self.num_features = representation_size
self.pre_logits = nn.Sequential(OrderedDict([
('fc', nn.Linear(embed_dim, representation_size)),
('act', nn.Tanh())
]))
else:
self.pre_logits = nn.Identity()
# Classifier head(s)
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
self.head_dist = None
if distilled:
self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity()
self.init_weights(weight_init)
self.left_tokens = None
def init_weights(self, mode=''):
assert mode in ('jax', 'jax_nlhb', 'nlhb', '')
head_bias = -math.log(self.num_classes) if 'nlhb' in mode else 0.
trunc_normal_(self.pos_embed, std=.02)
if self.dist_token is not None:
trunc_normal_(self.dist_token, std=.02)
if mode.startswith('jax'):
# leave cls token as zeros to match jax impl
named_apply(partial(_init_vit_weights, head_bias=head_bias, jax_impl=True), self)
else:
trunc_normal_(self.cls_token, std=.02)
self.apply(_init_vit_weights)
def _init_weights(self, m):
# this fn left here for compat with downstream users
_init_vit_weights(m)
@torch.jit.ignore()
def load_pretrained(self, checkpoint_path, prefix=''):
_load_weights(self, checkpoint_path, prefix)
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed', 'cls_token', 'dist_token'}
def get_classifier(self):
if self.dist_token is None:
return self.head
else:
return self.head, self.head_dist
def reset_classifier(self, num_classes, global_pool=''):
self.num_classes = num_classes
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
if self.num_tokens == 2:
self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity()
@property
def name(self):
return "EViT"
def forward_features(self, x, keep_rate=None, tokens=None, get_idx=False, grad_cam=False):
_, _, h, w = x.shape
if not isinstance(keep_rate, (tuple, list)):
keep_rate = (keep_rate, ) * self.depth
if not isinstance(tokens, (tuple, list)):
tokens = (tokens, ) * self.depth
assert len(keep_rate) == self.depth
assert len(tokens) == self.depth
x = self.patch_embed(x)
cls_token = self.cls_token.expand(x.shape[0], -1, -1) # stole cls_tokens impl from Phil Wang, thanks
if self.dist_token is None:
x = torch.cat((cls_token, x), dim=1)
else:
x = torch.cat((cls_token, self.dist_token.expand(x.shape[0], -1, -1), x), dim=1)
# for input with another resolution, interpolate the positional embedding.
# used for finetining a ViT on images with larger size.
if self.pos_embed_flag:
pos_embed = self.pos_embed
if x.shape[1] != pos_embed.shape[1]:
assert h == w # for simplicity assume h == w
real_pos = pos_embed[:, self.num_tokens:]
hw = int(math.sqrt(real_pos.shape[1]))
true_hw = int(math.sqrt(x.shape[1] - self.num_tokens))
real_pos = real_pos.transpose(1, 2).reshape(1, self.embed_dim, hw, hw)
new_pos = F.interpolate(real_pos, size=true_hw, mode='bicubic', align_corners=False)
new_pos = new_pos.reshape(1, self.embed_dim, -1).transpose(1, 2)
pos_embed = torch.cat([pos_embed[:, :self.num_tokens], new_pos], dim=1)
x = self.pos_drop(x + pos_embed)
else:
x = self.pos_drop(x)
left_tokens = []
idxs = []
for i, blk in enumerate(self.blocks):
x, left_token, idx = blk(x, keep_rate[i], tokens[i], get_idx) # Here shouldn't be self.keep_rate[i] ? No! See line 204
left_tokens.append(left_token)
if idx is not None:
idxs.append(idx)
x = self.norm(x)
if self.dist_token is None:
return self.pre_logits(x[:, 0]), left_tokens, idxs
else:
return x[:, 0], x[:, 1], idxs
def forward(self, x, keep_rate=None, tokens=None, get_idx=False):
x, left_tokens, idxs = self.forward_features(x, keep_rate, tokens, get_idx)
self.left_tokens = left_tokens
if self.head_dist is not None:
x, x_dist = self.head(x[0]), self.head_dist(x[1]) # x must be a tuple
if self.training and not torch.jit.is_scripting():
# during inference, return the average of both classifier predictions
return x, x_dist
else:
return (x + x_dist) / 2
else:
x = self.head(x)
if get_idx:
return x, idxs
return x
def _init_vit_weights(module: nn.Module, name: str = '', head_bias: float = 0., jax_impl: bool = False):
""" ViT weight initialization
* When called without n, head_bias, jax_impl args it will behave exactly the same
as my original init for compatibility with prev hparam / downstream use cases (ie DeiT).
* When called w/ valid n (module name) and jax_impl=True, will (hopefully) match JAX impl
"""
if isinstance(module, nn.Linear):
if name.startswith('head'):
nn.init.zeros_(module.weight)
nn.init.constant_(module.bias, head_bias)
elif name.startswith('pre_logits'):
lecun_normal_(module.weight)
nn.init.zeros_(module.bias)
else:
if jax_impl:
nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
if 'mlp' in name:
nn.init.normal_(module.bias, std=1e-6)
else:
nn.init.zeros_(module.bias)
else:
trunc_normal_(module.weight, std=.02)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif jax_impl and isinstance(module, nn.Conv2d):
# NOTE conv was left to pytorch default in my original init
lecun_normal_(module.weight)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, (nn.LayerNorm, nn.GroupNorm, nn.BatchNorm2d)):
nn.init.zeros_(module.bias)
nn.init.ones_(module.weight)
@torch.no_grad()
def _load_weights(model: EViT, checkpoint_path: str, prefix: str = ''):
""" Load weights from .npz checkpoints for official Google Brain Flax implementation
"""
import numpy as np
def _n2p(w, t=True):
if w.ndim == 4 and w.shape[0] == w.shape[1] == w.shape[2] == 1:
w = w.flatten()
if t:
if w.ndim == 4:
w = w.transpose([3, 2, 0, 1])
elif w.ndim == 3:
w = w.transpose([2, 0, 1])
elif w.ndim == 2:
w = w.transpose([1, 0])
return torch.from_numpy(w)
w = np.load(checkpoint_path)
if not prefix and 'opt/target/embedding/kernel' in w:
prefix = 'opt/target/'
if hasattr(model.patch_embed, 'backbone'):
# hybrid
backbone = model.patch_embed.backbone
stem_only = not hasattr(backbone, 'stem')
stem = backbone if stem_only else backbone.stem
stem.conv.weight.copy_(adapt_input_conv(stem.conv.weight.shape[1], _n2p(w[f'{prefix}conv_root/kernel'])))
stem.norm.weight.copy_(_n2p(w[f'{prefix}gn_root/scale']))
stem.norm.bias.copy_(_n2p(w[f'{prefix}gn_root/bias']))
if not stem_only:
for i, stage in enumerate(backbone.stages):
for j, block in enumerate(stage.blocks):
bp = f'{prefix}block{i + 1}/unit{j + 1}/'
for r in range(3):
getattr(block, f'conv{r + 1}').weight.copy_(_n2p(w[f'{bp}conv{r + 1}/kernel']))
getattr(block, f'norm{r + 1}').weight.copy_(_n2p(w[f'{bp}gn{r + 1}/scale']))
getattr(block, f'norm{r + 1}').bias.copy_(_n2p(w[f'{bp}gn{r + 1}/bias']))
if block.downsample is not None:
block.downsample.conv.weight.copy_(_n2p(w[f'{bp}conv_proj/kernel']))
block.downsample.norm.weight.copy_(_n2p(w[f'{bp}gn_proj/scale']))
block.downsample.norm.bias.copy_(_n2p(w[f'{bp}gn_proj/bias']))
embed_conv_w = _n2p(w[f'{prefix}embedding/kernel'])
else:
embed_conv_w = adapt_input_conv(
model.patch_embed.proj.weight.shape[1], _n2p(w[f'{prefix}embedding/kernel']))
model.patch_embed.proj.weight.copy_(embed_conv_w)
model.patch_embed.proj.bias.copy_(_n2p(w[f'{prefix}embedding/bias']))
model.cls_token.copy_(_n2p(w[f'{prefix}cls'], t=False))
pos_embed_w = _n2p(w[f'{prefix}Transformer/posembed_input/pos_embedding'], t=False)
if pos_embed_w.shape != model.pos_embed.shape:
pos_embed_w = resize_pos_embed( # resize pos embedding when different size from pretrained weights
pos_embed_w, model.pos_embed, getattr(model, 'num_tokens', 1), model.patch_embed.grid_size)
model.pos_embed.copy_(pos_embed_w)
model.norm.weight.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/scale']))
model.norm.bias.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/bias']))
if isinstance(model.head, nn.Linear) and model.head.bias.shape[0] == w[f'{prefix}head/bias'].shape[-1]:
model.head.weight.copy_(_n2p(w[f'{prefix}head/kernel']))
model.head.bias.copy_(_n2p(w[f'{prefix}head/bias']))
if isinstance(getattr(model.pre_logits, 'fc', None), nn.Linear) and f'{prefix}pre_logits/bias' in w:
model.pre_logits.fc.weight.copy_(_n2p(w[f'{prefix}pre_logits/kernel']))
model.pre_logits.fc.bias.copy_(_n2p(w[f'{prefix}pre_logits/bias']))
for i, block in enumerate(model.blocks.children()):
block_prefix = f'{prefix}Transformer/encoderblock_{i}/'
mha_prefix = block_prefix + 'MultiHeadDotProductAttention_1/'
block.norm1.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/scale']))
block.norm1.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/bias']))
block.attn.qkv.weight.copy_(torch.cat([
_n2p(w[f'{mha_prefix}{n}/kernel'], t=False).flatten(1).T for n in ('query', 'key', 'value')]))
block.attn.qkv.bias.copy_(torch.cat([
_n2p(w[f'{mha_prefix}{n}/bias'], t=False).reshape(-1) for n in ('query', 'key', 'value')]))
block.attn.proj.weight.copy_(_n2p(w[f'{mha_prefix}out/kernel']).flatten(1))
block.attn.proj.bias.copy_(_n2p(w[f'{mha_prefix}out/bias']))
for r in range(2):
getattr(block.mlp, f'fc{r + 1}').weight.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/kernel']))
getattr(block.mlp, f'fc{r + 1}').bias.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/bias']))
block.norm2.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/scale']))
block.norm2.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/bias']))
def resize_pos_embed(posemb, posemb_new, num_tokens=1, gs_new=()):
# Rescale the grid of position embeddings when loading from state_dict. Adapted from
# https://github.com/google-research/vision_transformer/blob/00883dd691c63a6830751563748663526e811cee/vit_jax/checkpoint.py#L224
_logger.info('Resized position embedding: %s to %s', posemb.shape, posemb_new.shape)
ntok_new = posemb_new.shape[1]
if num_tokens:
posemb_tok, posemb_grid = posemb[:, :num_tokens], posemb[0, num_tokens:]
ntok_new -= num_tokens
else:
posemb_tok, posemb_grid = posemb[:, :0], posemb[0]
gs_old = int(math.sqrt(len(posemb_grid)))
if not len(gs_new): # backwards compatibility
gs_new = [int(math.sqrt(ntok_new))] * 2
assert len(gs_new) >= 2
_logger.info('Position embedding grid-size from %s to %s', [gs_old, gs_old], gs_new)
posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
posemb_grid = F.interpolate(posemb_grid, size=gs_new, mode='bicubic', align_corners=False)
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_new[0] * gs_new[1], -1)
posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
return posemb
def checkpoint_filter_fn(state_dict, model):
""" convert patch embedding weight from manual patchify + linear proj to conv"""
out_dict = {}
if 'model' in state_dict:
# For deit models
state_dict = state_dict['model']
for k, v in state_dict.items():
if 'patch_embed.proj.weight' in k and len(v.shape) < 4:
# For old models that I trained prior to conv based patchification
O, I, H, W = model.patch_embed.proj.weight.shape
v = v.reshape(O, -1, H, W)
elif k == 'pos_embed' and v.shape != model.pos_embed.shape:
# To resize pos embedding when using model at different size from pretrained weights
v = resize_pos_embed(
v, model.pos_embed, getattr(model, 'num_tokens', 1), model.patch_embed.grid_size)
out_dict[k] = v
return out_dict
def _create_evit(variant, pretrained=False, default_cfg=None, **kwargs):
default_cfg = default_cfg or default_cfgs[variant]
default_cfg.update(kwargs)
if kwargs.get('features_only', None):
raise RuntimeError('features_only not implemented for Vision Transformer models.')
# NOTE this extra code to support handling of repr size for in21k pretrained models
default_num_classes = default_cfg['num_classes']
num_classes = kwargs.get('num_classes', default_num_classes)
repr_size = kwargs.pop('representation_size', None)
if repr_size is not None and num_classes != default_num_classes:
# Remove representation layer if fine-tuning. This may not always be the desired action,
# but I feel better than doing nothing by default for fine-tuning. Perhaps a better interface?
_logger.warning("Removing representation layer for fine-tuning.")
repr_size = None
model = build_model_with_cfg(model_cls=EViT,
variant=variant,
pretrained=pretrained,
representation_size=repr_size,
pretrained_filter_fn=checkpoint_filter_fn,
**kwargs)
return model
@register_model
def deit_tiny_patch16_224(pretrained=False, **kwargs):
""" DeiT-tiny model @ 224x224 from paper (https://arxiv.org/abs/2012.12877).
ImageNet-1k weights from https://github.com/facebookresearch/deit.
"""
model_kwargs = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3, **kwargs)
model = _create_evit('deit_tiny_patch16_224', pretrained=pretrained, **model_kwargs)
return model
@register_model
def deit_small_patch16_224(pretrained=False, **kwargs):
""" DeiT-small model @ 224x224 from paper (https://arxiv.org/abs/2012.12877).
ImageNet-1k weights from https://github.com/facebookresearch/deit.
"""
model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, **kwargs)
model = _create_evit('deit_small_patch16_224', pretrained=pretrained, **model_kwargs)
return model
# -------------------------------------------------------------
# EViT prototype models
@register_model
def deit_small_patch16_shrink_base(pretrained=False, base_keep_rate=0.7, drop_loc=(3, 6, 9), **kwargs):
keep_rate = [1] * 12
for loc in drop_loc:
keep_rate[loc] = base_keep_rate
model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, keep_rate=keep_rate)
model_kwargs.update(kwargs)
model = _create_evit('deit_small_patch16_224', pretrained=pretrained, **model_kwargs)
return model
@register_model
def deit_base_patch16_shrink_base(pretrained=False, base_keep_rate=0.7, drop_loc=(3, 6, 9), **kwargs):
keep_rate = [1] * 12
for loc in drop_loc:
keep_rate[loc] = base_keep_rate
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, keep_rate=keep_rate)
model_kwargs.update(kwargs)
model = _create_evit('deit_base_patch16_224', pretrained=pretrained, **model_kwargs)
return model
# -------------------------------------------------------------
# Some example EViT models
@register_model
def deit_small_patch16_224_shrink_base(pretrained=False, base_keep_rate=0.7, **kwargs):
model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6,
keep_rate=(1, 1, 1, base_keep_rate) + (1, 1, base_keep_rate) + (1, 1, base_keep_rate) + (1, 1), **kwargs)
model = _create_evit('deit_small_patch16_224', pretrained=pretrained, **model_kwargs)
return model
@register_model
def deit_small_patch16_224_shrink(pretrained=False, base_keep_rate=0.5, **kwargs):
model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6,
keep_rate=(1, 1, 1, 0.7) + (1, 1, 0.7) + (1, 1, 0.7) + (1, 1), **kwargs)
model = _create_evit('deit_small_patch16_224', pretrained=pretrained, **model_kwargs)
return model
@register_model
def deit_small_patch16_272_shrink(pretrained=False, base_keep_rate=0.5, **kwargs):
model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6,
keep_rate=(1, 1, 1, 0.7) + (1, 1, 0.7) + (1, 1, 0.7) + (1, 1), **kwargs)
model = _create_evit('deit_small_patch16_272', pretrained=pretrained, **model_kwargs)
return model
@register_model
def deit_small_patch16_224_shrink05(pretrained=False, base_keep_rate=0.5, **kwargs):
model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6,
keep_rate=(1, 1, 1, 0.5) + (1, 1, 0.5) + (1, 1, 0.5) + (1, 1), **kwargs)
model = _create_evit('deit_small_patch16_224', pretrained=pretrained, **model_kwargs)
return model
@register_model
def deit_small_patch16_288_shrink06(pretrained=False, base_keep_rate=0.6, **kwargs):
model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6,
keep_rate=(1, 1, 1, 0.6) + (1, 1, 0.6) + (1, 1, 0.6) + (1, 1), **kwargs)
model = _create_evit('deit_small_patch16_288', pretrained=pretrained, **model_kwargs)
return model
@register_model
def deit_small_patch16_304_shrink05(pretrained=False, base_keep_rate=0.5, **kwargs):
model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6,
keep_rate=(1, 1, 1, 0.5) + (1, 1, 0.5) + (1, 1, 0.5) + (1, 1), **kwargs)
model = _create_evit('deit_small_patch16_304', pretrained=pretrained, **model_kwargs)
return model
# -------------------------------------------------------------
@register_model
def deit_base_patch16_224(pretrained=False, **kwargs):
""" DeiT base model @ 224x224 from paper (https://arxiv.org/abs/2012.12877).
ImageNet-1k weights from https://github.com/facebookresearch/deit.
"""
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
model = _create_evit('deit_base_patch16_224', pretrained=pretrained, **model_kwargs)
return model
@register_model
def deit_base_patch16_384(pretrained=False, **kwargs):
""" DeiT base model @ 384x384 from paper (https://arxiv.org/abs/2012.12877).
ImageNet-1k weights from https://github.com/facebookresearch/deit.
"""
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
model = _create_evit('deit_base_patch16_384', pretrained=pretrained, **model_kwargs)
return model