-
Notifications
You must be signed in to change notification settings - Fork 1
/
gen_performance.py
143 lines (115 loc) · 5.59 KB
/
gen_performance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import pandas as pd
from pathlib import Path
BASE_FOLDER = Path('/home/diegopc/projects/robot_formation_in_turbulence/results/performance')
BOUNDS = [-5, 5]
DT = 0.066
def plot_error(data, title, labels, name, results_folder, y_label='', y_lim=None, legend_dict=None, colors=None, smooth=False, linestyle=None):
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
x = np.arange(data.shape[-1]) * DT
num_plots = data.shape[1]
# colors = cm.rainbow(np.linspace(0, 1, eval_data.shape[0]))
if colors is None:
colors = cm.Set1(np.linspace(0, 1, data.shape[1]))
#colors = cm.Dark2(np.linspace(0, 1, data.shape[1]))
if linestyle is None:
linestyle = data.shape[1] * ['solid']
for i in range(num_plots):
mean_data = data.mean(axis=0)
sdt_data = data.std(axis=0)
if smooth:
#apply_along_axis(func1d, axis, arr, *args, **kwargs)
pass
#import pdb
#pdb.set_trace()
ax.plot(x, mean_data[i, :], label=labels[i], color=colors[i], linestyle=linestyle[i])
ax.fill_between(x, mean_data[i] - sdt_data[i], mean_data[i] + sdt_data[i], color=colors[i],
alpha=0.1)
if legend_dict is not None:
#ax.legend(loc=legend_dict['loc'], bbox_to_anchor=(1.1, 1.05), prop={'size': legend_dict['size']})
ax.legend(loc=legend_dict['loc'], bbox_to_anchor=legend_dict['anchor'], prop={'size': legend_dict['size']})
ax.grid()
ax.set_xlabel('Time (s)')
ax.set_ylabel(y_label)
if y_lim is not None:
ax.set_ylim(y_lim[0], y_lim[1])
ax.set_title(f'{title}')
fig.savefig(results_folder / f'{name}.png')
plt.close(fig)
# robot error figure
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.boxplot(np.transpose(data, axes=[0, 2, 1]).reshape(-1, num_plots))
ax.legend(loc='upper right', prop={'size': 6})
ax.grid()
ax.set_ylim(0.05 * BOUNDS[0], 0.3 * BOUNDS[1])
ax.set_title(f'{title} per robot')
fig.savefig(results_folder / f'{name}_per_robot.png')
plt.close(fig)
if __name__ == '__main__':
# Ablation study
ablation_folders = {
'Ours': BASE_FOLDER / 'ours',
'Only trajectory tracking': BASE_FOLDER / 'pd',
#'ours k8': BASE_FOLDER / 'ours',
#'ours k8 more r': BASE_FOLDER / 'ours_k8_more_r',
}
data_dict = {}
for bs_name, bs_folder in ablation_folders.items():
bs_data = np.load(bs_folder / 'eval_result_data.npy', allow_pickle=True).item()
if len(data_dict) <= 0:
for k, v in bs_data.items():
data_dict[k] = v[None]
else:
for k, v in bs_data.items():
data_dict[k] = np.concatenate([data_dict[k], v[None]], axis=0)
for metric in ['position_error', 'velocity_error', 'velocity_dir_error', 'pred_actions']:
data = data_dict[metric]
num_bs, num_eval, num_robots, total_t = data.shape[:4]
#data = np.transpose(data[..., [6, 7, 8, 11, 12, 13, 16, 17, 18], :], (1, 2, 0, 3)).reshape(-1, num_bs, total_t)
#data = np.transpose(data[..., 12, :], (1, 0, 2))[:15]
if metric == 'position_error':
data = np.transpose(data, (1, 2, 0, 3)).reshape(-1, num_bs, total_t)
plot_error(
data, title=metric.capitalize().replace('_', ' '), name=metric, labels=list(ablation_folders.keys()),
y_lim=[-0.02, 1.4], y_label='Error (m)',
results_folder=BASE_FOLDER,
legend_dict={'loc': 'upper left', 'size': 8, 'anchor': (0.01, 0.99)},
colors=['red', 'purple'], #linestyle=['solid', 'dashed'],
)
table = pd.DataFrame(data.mean(axis=0)[:, [0, 150, 300, 450, 600, 750, 899]])
table['method'] = list(ablation_folders.keys())
with open(BASE_FOLDER / 'position_error_table.tex', 'w') as tb:
tb.write(table.to_latex(index=False))
elif metric == 'velocity_error':
data = np.transpose(data, (1, 2, 0, 3)).reshape(-1, num_bs, total_t)
plot_error(
data, title=metric.capitalize().replace('_', ' '), name=metric, labels=list(ablation_folders.keys()),
y_lim=[-0.00, 0.22], y_label='Error (m/s)',
results_folder=BASE_FOLDER,
legend_dict={'loc': 'upper left', 'size': 8, 'anchor': (0.01, 0.99)},
colors=['red', 'purple'], smooth=True,
)
elif metric == 'velocity_dir_error':
data = np.transpose(data, (1, 2, 0, 3)).reshape(-1, num_bs, total_t)
plot_error(
np.arccos(-data + 1), title=metric.capitalize().replace('_', ' '), name=metric, labels=list(ablation_folders.keys()),
y_lim=[-0.05, 1.05], y_label='Error (m)',
results_folder=BASE_FOLDER,
legend_dict={'loc': 'upper left', 'size': 8, 'anchor': (0.01, 0.99)},
colors=['red', 'blue', 'green', 'orange', 'brown', 'purple'],
)
elif metric == 'pred_actions':
#import pdb
#pdb.set_trace()
data = np.transpose(np.linalg.norm(data, axis=-1), (1, 2, 0, 3)).reshape(-1, num_bs, total_t)
plot_error(
data, title=metric.capitalize().replace('_', ' '), name=metric, labels=list(ablation_folders.keys()),
#y_lim=[-0.05, 1.05], y_label='Error (m)',
results_folder=BASE_FOLDER,
legend_dict={'loc': 'upper left', 'size': 8, 'anchor': (0.01, 0.99)},
colors=['red', 'purple'],
)