-
Notifications
You must be signed in to change notification settings - Fork 73
/
skensemble_io.go
187 lines (171 loc) · 5.86 KB
/
skensemble_io.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
package leaves
import (
"bufio"
"fmt"
"os"
"github.com/dmitryikh/leaves/internal/pickle"
"github.com/dmitryikh/leaves/transformation"
)
func lgTreeFromSklearnDecisionTreeRegressor(tree pickle.SklearnDecisionTreeRegressor, scale float64, base float64) (lgTree, error) {
t := lgTree{}
// no support for categorical features in sklearn trees
t.nCategorical = 0
numLeaves := 0
numNodes := 0
for _, n := range tree.Tree.Nodes {
if n.LeftChild < 0 {
numLeaves++
} else {
numNodes++
}
}
if numLeaves-1 != numNodes {
return t, fmt.Errorf("unexpected number of leaves (%d) and nodes (%d)", numLeaves, numNodes)
}
if numNodes == 0 {
// special case
// we mimic decision rule but left and right childs lead to the same result
t.nodes = make([]lgNode, 0, 1)
node := numericalNode(0, 0, 0.0, 0)
node.Flags |= leftLeaf
node.Flags |= rightLeaf
node.Left = uint32(len(t.leafValues))
node.Right = uint32(len(t.leafValues))
t.nodes = append(t.nodes, node)
t.leafValues = append(t.leafValues, tree.Tree.Values[0]*scale+base)
return t, nil
}
// Numerical only
createNode := func(idx int) (lgNode, error) {
node := lgNode{}
refNode := &tree.Tree.Nodes[idx]
missingType := uint8(0)
defaultType := uint8(0)
node = numericalNode(uint32(refNode.Feature), missingType, refNode.Threshold, defaultType)
if tree.Tree.Nodes[refNode.LeftChild].LeftChild < 0 {
node.Flags |= leftLeaf
node.Left = uint32(len(t.leafValues))
t.leafValues = append(t.leafValues, tree.Tree.Values[refNode.LeftChild]*scale+base)
}
if tree.Tree.Nodes[refNode.RightChild].LeftChild < 0 {
node.Flags |= rightLeaf
node.Right = uint32(len(t.leafValues))
t.leafValues = append(t.leafValues, tree.Tree.Values[refNode.RightChild]*scale+base)
}
return node, nil
}
origNodeIdxStack := make([]uint32, 0, numNodes)
convNodeIdxStack := make([]uint32, 0, numNodes)
visited := make([]bool, tree.Tree.NNodes)
t.nodes = make([]lgNode, 0, numNodes)
node, err := createNode(0)
if err != nil {
return t, err
}
t.nodes = append(t.nodes, node)
origNodeIdxStack = append(origNodeIdxStack, 0)
convNodeIdxStack = append(convNodeIdxStack, 0)
for len(origNodeIdxStack) > 0 {
convIdx := convNodeIdxStack[len(convNodeIdxStack)-1]
if t.nodes[convIdx].Flags&rightLeaf == 0 {
origIdx := tree.Tree.Nodes[origNodeIdxStack[len(origNodeIdxStack)-1]].RightChild
if !visited[origIdx] {
node, err := createNode(origIdx)
if err != nil {
return t, err
}
t.nodes = append(t.nodes, node)
convNewIdx := len(t.nodes) - 1
convNodeIdxStack = append(convNodeIdxStack, uint32(convNewIdx))
origNodeIdxStack = append(origNodeIdxStack, uint32(origIdx))
visited[origIdx] = true
t.nodes[convIdx].Right = uint32(convNewIdx)
continue
}
}
if t.nodes[convIdx].Flags&leftLeaf == 0 {
origIdx := tree.Tree.Nodes[origNodeIdxStack[len(origNodeIdxStack)-1]].LeftChild
if !visited[origIdx] {
node, err := createNode(origIdx)
if err != nil {
return t, err
}
t.nodes = append(t.nodes, node)
convNewIdx := len(t.nodes) - 1
convNodeIdxStack = append(convNodeIdxStack, uint32(convNewIdx))
origNodeIdxStack = append(origNodeIdxStack, uint32(origIdx))
visited[origIdx] = true
t.nodes[convIdx].Left = uint32(convNewIdx)
continue
}
}
origNodeIdxStack = origNodeIdxStack[:len(origNodeIdxStack)-1]
convNodeIdxStack = convNodeIdxStack[:len(convNodeIdxStack)-1]
}
return t, nil
}
// SKEnsembleFromReader reads sklearn tree ensemble model from `reader`
func SKEnsembleFromReader(reader *bufio.Reader, loadTransformation bool) (*Ensemble, error) {
e := &lgEnsemble{name: "sklearn.ensemble.GradientBoostingClassifier"}
decoder := pickle.NewDecoder(reader)
res, err := decoder.Decode()
if err != nil {
return nil, fmt.Errorf("error while decoding: %s", err.Error())
}
gbdt := pickle.SklearnGradientBoosting{}
err = pickle.ParseClass(&gbdt, res)
if err != nil {
return nil, fmt.Errorf("error while parsing gradient boosting class: %s", err.Error())
}
e.nRawOutputGroups = gbdt.NClasses
if e.nRawOutputGroups == 2 {
e.nRawOutputGroups = 1
}
e.MaxFeatureIdx = gbdt.MaxFeatures - 1
nTrees := gbdt.NEstimators
if nTrees == 0 {
return nil, fmt.Errorf("no trees in file")
}
if gbdt.NEstimators*e.nRawOutputGroups != len(gbdt.Estimators) {
return nil, fmt.Errorf("unexpected number of trees (NEstimators = %d, nRawOutputGroups = %d, len(Estimatoers) = %d", gbdt.NEstimators, e.nRawOutputGroups, len(gbdt.Estimators))
}
scale := gbdt.LearningRate
base := make([]float64, e.nRawOutputGroups)
if gbdt.InitEstimator.Name == "LogOddsEstimator" {
for i := 0; i < e.nRawOutputGroups; i++ {
base[i] = gbdt.InitEstimator.Prior[0]
}
} else if gbdt.InitEstimator.Name == "PriorProbabilityEstimator" {
if len(gbdt.InitEstimator.Prior) != len(base) {
return nil, fmt.Errorf("len(gbdt.InitEstimator.Prior) != len(base)")
}
base = gbdt.InitEstimator.Prior
} else {
return nil, fmt.Errorf("unknown initial estimator \"%s\"", gbdt.InitEstimator.Name)
}
e.Trees = make([]lgTree, 0, gbdt.NEstimators*gbdt.NClasses)
for i := 0; i < gbdt.NEstimators; i++ {
for j := 0; j < e.nRawOutputGroups; j++ {
treeNum := i*e.nRawOutputGroups + j
tree, err := lgTreeFromSklearnDecisionTreeRegressor(gbdt.Estimators[treeNum], scale, base[j])
if err != nil {
return nil, fmt.Errorf("error while creating %d tree: %s", treeNum, err.Error())
}
e.Trees = append(e.Trees, tree)
}
for k := range base {
base[k] = 0.0
}
}
return &Ensemble{e, &transformation.TransformRaw{e.nRawOutputGroups}}, nil
}
// SKEnsembleFromFile reads sklearn tree ensemble model from pickle file
func SKEnsembleFromFile(filename string, loadTransformation bool) (*Ensemble, error) {
reader, err := os.Open(filename)
if err != nil {
return nil, err
}
defer reader.Close()
bufReader := bufio.NewReader(reader)
return SKEnsembleFromReader(bufReader, loadTransformation)
}