-
Notifications
You must be signed in to change notification settings - Fork 3k
/
Copy pathmodel.py
208 lines (182 loc) · 6.38 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import dgl.function as fn
import numpy as np
import torch as th
import torch.nn as nn
class CAREConv(nn.Module):
"""One layer of CARE-GNN."""
def __init__(
self,
in_dim,
out_dim,
num_classes,
edges,
activation=None,
step_size=0.02,
):
super(CAREConv, self).__init__()
self.activation = activation
self.step_size = step_size
self.in_dim = in_dim
self.out_dim = out_dim
self.num_classes = num_classes
self.edges = edges
self.dist = {}
self.linear = nn.Linear(self.in_dim, self.out_dim)
self.MLP = nn.Linear(self.in_dim, self.num_classes)
self.p = {}
self.last_avg_dist = {}
self.f = {}
self.cvg = {}
for etype in edges:
self.p[etype] = 0.5
self.last_avg_dist[etype] = 0
self.f[etype] = []
self.cvg[etype] = False
def _calc_distance(self, edges):
# formula 2
d = th.norm(
th.tanh(self.MLP(edges.src["h"]))
- th.tanh(self.MLP(edges.dst["h"])),
1,
1,
)
return {"d": d}
def _top_p_sampling(self, g, p):
# this implementation is low efficient
# optimization requires dgl.sampling.select_top_p requested in issue #3100
dist = g.edata["d"]
neigh_list = []
for node in g.nodes():
edges = g.in_edges(node, form="eid")
num_neigh = th.ceil(g.in_degrees(node) * p).int().item()
neigh_dist = dist[edges]
if neigh_dist.shape[0] > num_neigh:
neigh_index = np.argpartition(
neigh_dist.cpu().detach(), num_neigh
)[:num_neigh]
else:
neigh_index = np.arange(num_neigh)
neigh_list.append(edges[neigh_index])
return th.cat(neigh_list)
def forward(self, g, feat):
with g.local_scope():
g.ndata["h"] = feat
hr = {}
for i, etype in enumerate(g.canonical_etypes):
g.apply_edges(self._calc_distance, etype=etype)
self.dist[etype] = g.edges[etype].data["d"]
sampled_edges = self._top_p_sampling(g[etype], self.p[etype])
# formula 8
g.send_and_recv(
sampled_edges,
fn.copy_u("h", "m"),
fn.mean("m", "h_%s" % etype[1]),
etype=etype,
)
hr[etype] = g.ndata["h_%s" % etype[1]]
if self.activation is not None:
hr[etype] = self.activation(hr[etype])
# formula 9 using mean as inter-relation aggregator
p_tensor = (
th.Tensor(list(self.p.values())).view(-1, 1, 1).to(g.device)
)
h_homo = th.sum(th.stack(list(hr.values())) * p_tensor, dim=0)
h_homo += feat
if self.activation is not None:
h_homo = self.activation(h_homo)
return self.linear(h_homo)
class CAREGNN(nn.Module):
def __init__(
self,
in_dim,
num_classes,
hid_dim=64,
edges=None,
num_layers=2,
activation=None,
step_size=0.02,
):
super(CAREGNN, self).__init__()
self.in_dim = in_dim
self.hid_dim = hid_dim
self.num_classes = num_classes
self.edges = edges
self.activation = activation
self.step_size = step_size
self.num_layers = num_layers
self.layers = nn.ModuleList()
if self.num_layers == 1:
# Single layer
self.layers.append(
CAREConv(
self.in_dim,
self.num_classes,
self.num_classes,
self.edges,
activation=self.activation,
step_size=self.step_size,
)
)
else:
# Input layer
self.layers.append(
CAREConv(
self.in_dim,
self.hid_dim,
self.num_classes,
self.edges,
activation=self.activation,
step_size=self.step_size,
)
)
# Hidden layers with n - 2 layers
for i in range(self.num_layers - 2):
self.layers.append(
CAREConv(
self.hid_dim,
self.hid_dim,
self.num_classes,
self.edges,
activation=self.activation,
step_size=self.step_size,
)
)
# Output layer
self.layers.append(
CAREConv(
self.hid_dim,
self.num_classes,
self.num_classes,
self.edges,
activation=self.activation,
step_size=self.step_size,
)
)
def forward(self, graph, feat):
# For full graph training, directly use the graph
# formula 4
sim = th.tanh(self.layers[0].MLP(feat))
# Forward of n layers of CARE-GNN
for layer in self.layers:
feat = layer(graph, feat)
return feat, sim
def RLModule(self, graph, epoch, idx):
for layer in self.layers:
for etype in self.edges:
if not layer.cvg[etype]:
# formula 5
eid = graph.in_edges(idx, form="eid", etype=etype)
avg_dist = th.mean(layer.dist[etype][eid])
# formula 6
if layer.last_avg_dist[etype] < avg_dist:
if layer.p[etype] - self.step_size > 0:
layer.p[etype] -= self.step_size
layer.f[etype].append(-1)
else:
if layer.p[etype] + self.step_size <= 1:
layer.p[etype] += self.step_size
layer.f[etype].append(+1)
layer.last_avg_dist[etype] = avg_dist
# formula 7
if epoch >= 9 and abs(sum(layer.f[etype][-10:])) <= 2:
layer.cvg[etype] = True