-
Notifications
You must be signed in to change notification settings - Fork 3k
/
Copy pathmain.py
136 lines (109 loc) · 3.88 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import argparse
import warnings
import numpy as np
import torch as th
import torch.nn as nn
from aug import aug
from dataset import load
from eval import label_classification
from model import Grace
warnings.filterwarnings("ignore")
def count_parameters(model):
return sum(
[np.prod(p.size()) for p in model.parameters() if p.requires_grad]
)
parser = argparse.ArgumentParser()
parser.add_argument("--dataname", type=str, default="cora")
parser.add_argument("--gpu", type=int, default=0)
parser.add_argument("--split", type=str, default="random")
parser.add_argument(
"--epochs", type=int, default=500, help="Number of training periods."
)
parser.add_argument("--lr", type=float, default=0.001, help="Learning rate.")
parser.add_argument("--wd", type=float, default=1e-5, help="Weight decay.")
parser.add_argument("--temp", type=float, default=1.0, help="Temperature.")
parser.add_argument("--act_fn", type=str, default="relu")
parser.add_argument(
"--hid_dim", type=int, default=256, help="Hidden layer dim."
)
parser.add_argument(
"--out_dim", type=int, default=256, help="Output layer dim."
)
parser.add_argument(
"--num_layers", type=int, default=2, help="Number of GNN layers."
)
parser.add_argument(
"--der1",
type=float,
default=0.2,
help="Drop edge ratio of the 1st augmentation.",
)
parser.add_argument(
"--der2",
type=float,
default=0.2,
help="Drop edge ratio of the 2nd augmentation.",
)
parser.add_argument(
"--dfr1",
type=float,
default=0.2,
help="Drop feature ratio of the 1st augmentation.",
)
parser.add_argument(
"--dfr2",
type=float,
default=0.2,
help="Drop feature ratio of the 2nd augmentation.",
)
args = parser.parse_args()
if args.gpu != -1 and th.cuda.is_available():
args.device = "cuda:{}".format(args.gpu)
else:
args.device = "cpu"
if __name__ == "__main__":
# Step 1: Load hyperparameters =================================================================== #
lr = args.lr
hid_dim = args.hid_dim
out_dim = args.out_dim
num_layers = args.num_layers
act_fn = ({"relu": nn.ReLU(), "prelu": nn.PReLU()})[args.act_fn]
drop_edge_rate_1 = args.der1
drop_edge_rate_2 = args.der2
drop_feature_rate_1 = args.dfr1
drop_feature_rate_2 = args.dfr2
temp = args.temp
epochs = args.epochs
wd = args.wd
# Step 2: Prepare data =================================================================== #
graph, feat, labels, train_mask, test_mask = load(args.dataname)
in_dim = feat.shape[1]
# Step 3: Create model =================================================================== #
model = Grace(in_dim, hid_dim, out_dim, num_layers, act_fn, temp)
model = model.to(args.device)
print(f"# params: {count_parameters(model)}")
optimizer = th.optim.Adam(model.parameters(), lr=lr, weight_decay=wd)
# Step 4: Training =======================================================================
for epoch in range(epochs):
model.train()
optimizer.zero_grad()
graph1, feat1 = aug(graph, feat, drop_feature_rate_1, drop_edge_rate_1)
graph2, feat2 = aug(graph, feat, drop_feature_rate_2, drop_edge_rate_2)
graph1 = graph1.to(args.device)
graph2 = graph2.to(args.device)
feat1 = feat1.to(args.device)
feat2 = feat2.to(args.device)
loss = model(graph1, graph2, feat1, feat2)
loss.backward()
optimizer.step()
print(f"Epoch={epoch:03d}, loss={loss.item():.4f}")
# Step 5: Linear evaluation ============================================================== #
print("=== Final ===")
graph = graph.add_self_loop()
graph = graph.to(args.device)
feat = feat.to(args.device)
embeds = model.get_embedding(graph, feat)
"""Evaluation Embeddings """
label_classification(
embeds, labels, train_mask, test_mask, split=args.split
)