-
Notifications
You must be signed in to change notification settings - Fork 146
/
shownet.py
306 lines (272 loc) · 14.8 KB
/
shownet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
# Copyright (c) 2011, Alex Krizhevsky ([email protected])
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification,
# are permitted provided that the following conditions are met:
#
# - Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# - Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
# EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import numpy
import sys
import getopt as opt
from util import *
from math import sqrt, ceil, floor
import os
from gpumodel import IGPUModel
import random as r
import numpy.random as nr
from convnet import ConvNet
from options import *
try:
import pylab as pl
except:
print "This script requires the matplotlib python library (Ubuntu/Fedora package name python-matplotlib). Please install it."
sys.exit(1)
class ShowNetError(Exception):
pass
class ShowConvNet(ConvNet):
def __init__(self, op, load_dic):
ConvNet.__init__(self, op, load_dic)
def get_gpus(self):
self.need_gpu = self.op.get_value('show_preds') or self.op.get_value('write_features')
if self.need_gpu:
ConvNet.get_gpus(self)
def init_data_providers(self):
class Dummy:
def advance_batch(self):
pass
if self.need_gpu:
ConvNet.init_data_providers(self)
else:
self.train_data_provider = self.test_data_provider = Dummy()
def import_model(self):
if self.need_gpu:
ConvNet.import_model(self)
def init_model_state(self):
#ConvNet.init_model_state(self)
if self.op.get_value('show_preds'):
self.sotmax_idx = self.get_layer_idx(self.op.get_value('show_preds'), check_type='softmax')
if self.op.get_value('write_features'):
self.ftr_layer_idx = self.get_layer_idx(self.op.get_value('write_features'))
def init_model_lib(self):
if self.need_gpu:
ConvNet.init_model_lib(self)
def plot_cost(self):
if self.show_cost not in self.train_outputs[0][0]:
raise ShowNetError("Cost function with name '%s' not defined by given convnet." % self.show_cost)
train_errors = [o[0][self.show_cost][self.cost_idx] for o in self.train_outputs]
test_errors = [o[0][self.show_cost][self.cost_idx] for o in self.test_outputs]
numbatches = len(self.train_batch_range)
test_errors = numpy.row_stack(test_errors)
test_errors = numpy.tile(test_errors, (1, self.testing_freq))
test_errors = list(test_errors.flatten())
test_errors += [test_errors[-1]] * max(0,len(train_errors) - len(test_errors))
test_errors = test_errors[:len(train_errors)]
numepochs = len(train_errors) / float(numbatches)
pl.figure(1)
x = range(0, len(train_errors))
pl.plot(x, train_errors, 'k-', label='Training set')
pl.plot(x, test_errors, 'r-', label='Test set')
pl.legend()
ticklocs = range(numbatches, len(train_errors) - len(train_errors) % numbatches + 1, numbatches)
epoch_label_gran = int(ceil(numepochs / 20.)) # aim for about 20 labels
epoch_label_gran = int(ceil(float(epoch_label_gran) / 10) * 10) # but round to nearest 10
ticklabels = map(lambda x: str((x[1] / numbatches)) if x[0] % epoch_label_gran == epoch_label_gran-1 else '', enumerate(ticklocs))
pl.xticks(ticklocs, ticklabels)
pl.xlabel('Epoch')
# pl.ylabel(self.show_cost)
pl.title(self.show_cost)
def make_filter_fig(self, filters, filter_start, fignum, _title, num_filters, combine_chans):
FILTERS_PER_ROW = 16
MAX_ROWS = 16
MAX_FILTERS = FILTERS_PER_ROW * MAX_ROWS
num_colors = filters.shape[0]
f_per_row = int(ceil(FILTERS_PER_ROW / float(1 if combine_chans else num_colors)))
filter_end = min(filter_start+MAX_FILTERS, num_filters)
filter_rows = int(ceil(float(filter_end - filter_start) / f_per_row))
filter_size = int(sqrt(filters.shape[1]))
fig = pl.figure(fignum)
fig.text(.5, .95, '%s %dx%d filters %d-%d' % (_title, filter_size, filter_size, filter_start, filter_end-1), horizontalalignment='center')
num_filters = filter_end - filter_start
if not combine_chans:
bigpic = n.zeros((filter_size * filter_rows + filter_rows + 1, filter_size*num_colors * f_per_row + f_per_row + 1), dtype=n.single)
else:
bigpic = n.zeros((3, filter_size * filter_rows + filter_rows + 1, filter_size * f_per_row + f_per_row + 1), dtype=n.single)
for m in xrange(filter_start,filter_end ):
filter = filters[:,:,m]
y, x = (m - filter_start) / f_per_row, (m - filter_start) % f_per_row
if not combine_chans:
for c in xrange(num_colors):
filter_pic = filter[c,:].reshape((filter_size,filter_size))
bigpic[1 + (1 + filter_size) * y:1 + (1 + filter_size) * y + filter_size,
1 + (1 + filter_size*num_colors) * x + filter_size*c:1 + (1 + filter_size*num_colors) * x + filter_size*(c+1)] = filter_pic
else:
filter_pic = filter.reshape((3, filter_size,filter_size))
bigpic[:,
1 + (1 + filter_size) * y:1 + (1 + filter_size) * y + filter_size,
1 + (1 + filter_size) * x:1 + (1 + filter_size) * x + filter_size] = filter_pic
pl.xticks([])
pl.yticks([])
if not combine_chans:
pl.imshow(bigpic, cmap=pl.cm.gray, interpolation='nearest')
else:
bigpic = bigpic.swapaxes(0,2).swapaxes(0,1)
pl.imshow(bigpic, interpolation='nearest')
def plot_filters(self):
filter_start = 0 # First filter to show
layer_names = [l['name'] for l in self.layers]
if self.show_filters not in layer_names:
raise ShowNetError("Layer with name '%s' not defined by given convnet." % self.show_filters)
layer = self.layers[layer_names.index(self.show_filters)]
filters = layer['weights'][self.input_idx]
if layer['type'] == 'fc': # Fully-connected layer
num_filters = layer['outputs']
channels = self.channels
elif layer['type'] in ('conv', 'local'): # Conv layer
num_filters = layer['filters']
channels = layer['filterChannels'][self.input_idx]
if layer['type'] == 'local':
filters = filters.reshape((layer['modules'], layer['filterPixels'][self.input_idx] * channels, num_filters))
filter_start = r.randint(0, layer['modules']-1)*num_filters # pick out some random modules
filters = filters.swapaxes(0,1).reshape(channels * layer['filterPixels'][self.input_idx], num_filters * layer['modules'])
num_filters *= layer['modules']
filters = filters.reshape(channels, filters.shape[0]/channels, filters.shape[1])
# Convert YUV filters to RGB
if self.yuv_to_rgb and channels == 3:
R = filters[0,:,:] + 1.28033 * filters[2,:,:]
G = filters[0,:,:] + -0.21482 * filters[1,:,:] + -0.38059 * filters[2,:,:]
B = filters[0,:,:] + 2.12798 * filters[1,:,:]
filters[0,:,:], filters[1,:,:], filters[2,:,:] = R, G, B
combine_chans = not self.no_rgb and channels == 3
# Make sure you don't modify the backing array itself here -- so no -= or /=
filters = filters - filters.min()
filters = filters / filters.max()
self.make_filter_fig(filters, filter_start, 2, 'Layer %s' % self.show_filters, num_filters, combine_chans)
def plot_predictions(self):
data = self.get_next_batch(train=False)[2] # get a test batch
num_classes = self.test_data_provider.get_num_classes()
NUM_ROWS = 2
NUM_COLS = 4
NUM_IMGS = NUM_ROWS * NUM_COLS
NUM_TOP_CLASSES = min(num_classes, 4) # show this many top labels
label_names = self.test_data_provider.batch_meta['label_names']
if self.only_errors:
preds = n.zeros((data[0].shape[1], num_classes), dtype=n.single)
else:
preds = n.zeros((NUM_IMGS, num_classes), dtype=n.single)
rand_idx = nr.randint(0, data[0].shape[1], NUM_IMGS)
data[0] = n.require(data[0][:,rand_idx], requirements='C')
data[1] = n.require(data[1][:,rand_idx], requirements='C')
data += [preds]
# Run the model
self.libmodel.startFeatureWriter(data, self.sotmax_idx)
self.finish_batch()
fig = pl.figure(3)
fig.text(.4, .95, '%s test case predictions' % ('Mistaken' if self.only_errors else 'Random'))
if self.only_errors:
err_idx = nr.permutation(n.where(preds.argmax(axis=1) != data[1][0,:])[0])[:NUM_IMGS] # what the net got wrong
data[0], data[1], preds = data[0][:,err_idx], data[1][:,err_idx], preds[err_idx,:]
data[0] = self.test_data_provider.get_plottable_data(data[0])
for r in xrange(NUM_ROWS):
for c in xrange(NUM_COLS):
img_idx = r * NUM_COLS + c
if data[0].shape[0] <= img_idx:
break
pl.subplot(NUM_ROWS*2, NUM_COLS, r * 2 * NUM_COLS + c + 1)
pl.xticks([])
pl.yticks([])
try:
img = data[0][img_idx,:,:,:]
except IndexError:
# maybe greyscale?
img = data[0][img_idx,:,:]
pl.imshow(img, interpolation='nearest')
true_label = int(data[1][0,img_idx])
img_labels = sorted(zip(preds[img_idx,:], label_names), key=lambda x: x[0])[-NUM_TOP_CLASSES:]
pl.subplot(NUM_ROWS*2, NUM_COLS, (r * 2 + 1) * NUM_COLS + c + 1, aspect='equal')
ylocs = n.array(range(NUM_TOP_CLASSES)) + 0.5
height = 0.5
width = max(ylocs)
pl.barh(ylocs, [l[0]*width for l in img_labels], height=height, \
color=['r' if l[1] == label_names[true_label] else 'b' for l in img_labels])
pl.title(label_names[true_label])
pl.yticks(ylocs + height/2, [l[1] for l in img_labels])
pl.xticks([width/2.0, width], ['50%', ''])
pl.ylim(0, ylocs[-1] + height*2)
def do_write_features(self):
if not os.path.exists(self.feature_path):
os.makedirs(self.feature_path)
next_data = self.get_next_batch(train=False)
b1 = next_data[1]
num_ftrs = self.layers[self.ftr_layer_idx]['outputs']
while True:
batch = next_data[1]
data = next_data[2]
ftrs = n.zeros((data[0].shape[1], num_ftrs), dtype=n.single)
self.libmodel.startFeatureWriter(data + [ftrs], self.ftr_layer_idx)
# load the next batch while the current one is computing
next_data = self.get_next_batch(train=False)
self.finish_batch()
path_out = os.path.join(self.feature_path, 'data_batch_%d' % batch)
pickle(path_out, {'data': ftrs, 'labels': data[1]})
print "Wrote feature file %s" % path_out
if next_data[1] == b1:
break
pickle(os.path.join(self.feature_path, 'batches.meta'), {'source_model':self.load_file,
'num_vis':num_ftrs})
def start(self):
self.op.print_values()
if self.show_cost:
self.plot_cost()
if self.show_filters:
self.plot_filters()
if self.show_preds:
self.plot_predictions()
if self.write_features:
self.do_write_features()
pl.show()
sys.exit(0)
@classmethod
def get_options_parser(cls):
op = ConvNet.get_options_parser()
for option in list(op.options):
if option not in ('gpu', 'load_file', 'train_batch_range', 'test_batch_range'):
op.delete_option(option)
op.add_option("show-cost", "show_cost", StringOptionParser, "Show specified objective function", default="")
op.add_option("show-filters", "show_filters", StringOptionParser, "Show learned filters in specified layer", default="")
op.add_option("input-idx", "input_idx", IntegerOptionParser, "Input index for layer given to --show-filters", default=0)
op.add_option("cost-idx", "cost_idx", IntegerOptionParser, "Cost function return value index for --show-cost", default=0)
op.add_option("no-rgb", "no_rgb", BooleanOptionParser, "Don't combine filter channels into RGB in layer given to --show-filters", default=False)
op.add_option("yuv-to-rgb", "yuv_to_rgb", BooleanOptionParser, "Convert RGB filters to YUV in layer given to --show-filters", default=False)
op.add_option("channels", "channels", IntegerOptionParser, "Number of channels in layer given to --show-filters (fully-connected layers only)", default=0)
op.add_option("show-preds", "show_preds", StringOptionParser, "Show predictions made by given softmax on test set", default="")
op.add_option("only-errors", "only_errors", BooleanOptionParser, "Show only mistaken predictions (to be used with --show-preds)", default=False, requires=['show_preds'])
op.add_option("write-features", "write_features", StringOptionParser, "Write test data features from given layer", default="", requires=['feature-path'])
op.add_option("feature-path", "feature_path", StringOptionParser, "Write test data features to this path (to be used with --write-features)", default="")
op.options['load_file'].default = None
return op
if __name__ == "__main__":
try:
op = ShowConvNet.get_options_parser()
op, load_dic = IGPUModel.parse_options(op)
model = ShowConvNet(op, load_dic)
model.start()
except (UnpickleError, ShowNetError, opt.GetoptError), e:
print "----------------"
print "Error:"
print e