diff --git a/tsne_dim_reduction.ipynb b/tsne_dim_reduction.ipynb index 0c471de..ac99eb5 100644 --- a/tsne_dim_reduction.ipynb +++ b/tsne_dim_reduction.ipynb @@ -51,12 +51,12 @@ "tsne_normalized = scaler.fit_transform(tsne_results)\n", "\n", "# Add the normalized 2D coordinates back to your DataFrame\n", - "df['x_norm'] = tsne_normalized[:,0]\n", + "df['x'] = tsne_normalized[:,0]\n", "df['y'] = tsne_normalized[:,1]\n", "\n", "# Now you can plot the normalized results using matplotlib\n", "plt.figure(figsize=(8, 6))\n", - "plt.scatter(df['x_norm'], df['y'], s=1) # You can also color the points by some label using the `c` argument\n", + "plt.scatter(df['x'], df['y'], s=1) # You can also color the points by some label using the `c` argument\n", "plt.xlabel('Normalized t-SNE 2D One')\n", "plt.ylabel('Normalized t-SNE 2D Two')\n", "plt.title('2D t-SNE Visualization of Normalized Embeddings')\n", @@ -94,7 +94,7 @@ " TargetsNumber\n", " Targets\n", " jina-embeddings-v2-base-en\n", - " x_norm\n", + " x\n", " y_norm\n", " \n", " \n", @@ -241,7 +241,7 @@ "167 By 2020, enhance capacity-building support to... \n", "168 By 2030, build on existing initiatives to dev... \n", "\n", - " jina-embeddings-v2-base-en x_norm y_norm \n", + " jina-embeddings-v2-base-en x y_norm \n", "0 [0.013646188200000001, -0.8851571083, 0.273902... 0.474702 0.237202 \n", "1 [-0.5175303221, -0.1017927676, 0.1907873154000... 0.508123 0.238149 \n", "2 [-0.0685161054, -0.188393563, 0.4002646804, 0.... 0.702829 0.147774 \n",