-
Notifications
You must be signed in to change notification settings - Fork 3
/
m_numerical_tools.f90
932 lines (820 loc) · 22.3 KB
/
m_numerical_tools.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
!--------------------------------------------------------------------------------
!
! Copyright (C) 2017 L. J. Allen, H. G. Brown, A. J. D’Alfonso, S.D. Findlay, B. D. Forbes
!
! This program is free software: you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or
! (at your option) any later version.
!
! This program is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with this program. If not, see <http://www.gnu.org/licenses/>.
!
!--------------------------------------------------------------------------------
!This module contains routines for statistical sampling of a Gaussian function (normal
!distribution), adapted from the library prob.f90 available from the website
!<http://people.sc.fsu.edu/~jburkardt/f_src/prob/prob.html> and for cubic interpolation,
!adapted from the library pppack.f90 abailable from the website
!<http://people.sc.fsu.edu/~jburkardt/f_src/pppack/pppack.html>. Only the required routines
!were taken from these libraries and no modifications were made to those routines.
!The original MuSTEM codes used equivalent routines described in the book "Numerical Recipes
!in FORTRAN: The Art of Scientific Computing" by Press et al. (1986), however the copyright
!conditions of that work prevented those routines being included in this open source
!implementation of MuSTEM.
module m_numerical_tools
use m_precision
interface ran1
module procedure r8_uniform_01
end interface
contains
subroutine displace(tauin, tauout, urms, a0, idum)
use m_precision
implicit none
real(fp_kind) tauin(3), tauout(3), a0(3)
real(fp_kind) urms
integer(4) idum
real(fp_kind) xran, yran, zran
!real(fp_kind) gasdev
xran = gasdev(idum)
yran = gasdev(idum)
!zran = gasdev(idum)
xran = xran * urms / a0(1)
yran = yran * urms / a0(2)
!zran = zran * urms / a0(3)
tauout(1) = tauin(1) + xran
tauout(2) = tauin(2) + yran
tauout(3) = tauin(3)
! tauout(3) = tauin(3) + zran
end subroutine displace
subroutine normal_sample ( a, b, seed, x )
!*****************************************************************************80
!
!! NORMAL_SAMPLE samples the Normal PDF.
!
! Discussion:
!
! The Box-Muller method is used.
!
! Licensing:
!
! This code is distributed under the GNU LGPL license.
!
! Modified:
!
! 10 October 2004
!
! Author:
!
! John Burkardt
!
! Parameters:
!
! Input, real ( kind = 8 ) A, B, the parameters of the PDF.
! 0.0 < B.
!
! Input/output, integer ( kind = 4 ) SEED, a seed for the random number
! generator.
!
! Output, real ( kind = 8 ) X, a sample of the PDF.
!
implicit none
real ( kind = 8 ) a
real ( kind = 8 ) b
integer ( kind = 4 ) seed
real ( kind = 8 ) x
call normal_01_sample ( seed, x )
x = a + b * x
return
end subroutine
!This function is a wrapper to the routine normal_01_sample that mimics
!the interface to the gasdev function from Numerical Recipes (see comment
!at the beginning of this file).
function gasdev(seed)
real(fp_kind)::gasdev
real*8::x
integer*4,intent(inout)::seed
call normal_01_sample(seed,x)
gasdev = real(x, fp_kind)
end function
subroutine normal_01_sample ( seed, x )
!*****************************************************************************80
!
!! NORMAL_01_SAMPLE samples the standard normal probability distribution.
!
! Discussion:
!
! The standard normal probability distribution function (PDF) has
! mean 0 and standard deviation 1.
!
! The Box-Muller method is used, which is efficient, but
! generates two values at a time.
!
! Licensing:
!
! This code is distributed under the GNU LGPL license.
!
! Modified:
!
! 26 August 2013
!
! Author:
!
! John Burkardt
!
! Parameters:
!
! Input/output, integer ( kind = 4 ) SEED, a seed for the random number
! generator.
!
! Output, real ( kind = 8 ) X, a sample of the standard normal PDF.
!
implicit none
real ( kind = 8 ) r1
real ( kind = 8 ) r2
real ( kind = 8 ), parameter :: r8_pi = 3.141592653589793D+00
!real ( kind = 8 ) r8_uniform_01
integer ( kind = 4 ) seed
real ( kind = 8 ) x
r1 = r8_uniform_01 ( seed )
r2 = r8_uniform_01 ( seed )
x = sqrt ( -2.0D+00 * log ( r1 ) ) * cos ( 2.0D+00 * r8_pi * r2 )
return
end subroutine
function r8_uniform_01 ( seed )
!*****************************************************************************80
!
!! R8_UNIFORM_01 returns a unit pseudorandom R8.
!
! Discussion:
!
! An R8 is a real ( kind = 8 ) value.
!
! For now, the input quantity SEED is an integer ( kind = 4 ) variable.
!
! This routine implements the recursion
!
! seed = 16807 * seed mod ( 2^31 - 1 )
! r8_uniform_01 = seed / ( 2^31 - 1 )
!
! The integer arithmetic never requires more than 32 bits,
! including a sign bit.
!
! If the initial seed is 12345, then the first three computations are
!
! Input Output R8_UNIFORM_01
! SEED SEED
!
! 12345 207482415 0.096616
! 207482415 1790989824 0.833995
! 1790989824 2035175616 0.947702
!
! Licensing:
!
! This code is distributed under the GNU LGPL license.
!
! Modified:
!
! 05 July 2006
!
! Author:
!
! John Burkardt
!
! Reference:
!
! Paul Bratley, Bennett Fox, Linus Schrage,
! A Guide to Simulation,
! Springer Verlag, pages 201-202, 1983.
!
! Pierre L'Ecuyer,
! Random Number Generation,
! in Handbook of Simulation,
! edited by Jerry Banks,
! Wiley Interscience, page 95, 1998.
!
! Bennett Fox,
! Algorithm 647:
! Implementation and Relative Efficiency of Quasirandom
! Sequence Generators,
! ACM Transactions on Mathematical Software,
! Volume 12, Number 4, pages 362-376, 1986.
!
! Peter Lewis, Allen Goodman, James Miller
! A Pseudo-Random Number Generator for the System/360,
! IBM Systems Journal,
! Volume 8, pages 136-143, 1969.
!
! Parameters:
!
! Input/output, integer ( kind = 4 ) SEED, the "seed" value, which should
! NOT be 0. On output, SEED has been updated.
!
! Output, real ( kind = 8 ) R8_UNIFORM_01, a new pseudorandom variate,
! strictly between 0 and 1.
!
implicit none
!integer ( kind = 4 ) i4_huge
integer ( kind = 4 ) k
real ( kind = 8 ) r8_uniform_01
integer ( kind = 4 ) seed
if ( seed == 0 ) then
write ( *, '(a)' ) ' '
write ( *, '(a)' ) 'R8_UNIFORM_01 - Fatal error!'
write ( *, '(a)' ) ' Input value of SEED = 0.'
stop 1
end if
k = seed / 127773
seed = 16807 * ( seed - k * 127773 ) - k * 2836
if ( seed < 0 ) then
seed = seed + i4_huge ( )
end if
!
! Although SEED can be represented exactly as a 32 bit integer,
! it generally cannot be represented exactly as a 32 bit real number!
!
r8_uniform_01 = real ( seed, kind = 8 ) * 4.656612875D-10
return
end function
function i4_huge ( )
!*****************************************************************************80
!
!! I4_HUGE returns a "huge" I4.
!
! Discussion:
!
! On an IEEE 32 bit machine, I4_HUGE should be 2^31 - 1, and its
! bit pattern should be
!
! 01111111111111111111111111111111
!
! In this case, its numerical value is 2147483647.
!
! Using the Dec/Compaq/HP Alpha FORTRAN compiler FORT, I could
! use I4_HUGE() and HUGE interchangeably.
!
! However, when using the G95, the values returned by HUGE were
! not equal to 2147483647, apparently, and were causing severe
! and obscure errors in my random number generator, which needs to
! add I4_HUGE to the seed whenever the seed is negative. So I
! am backing away from invoking HUGE, whereas I4_HUGE is under
! my control.
!
! Explanation: because under G95 the default integer type is 64 bits!
! So HUGE ( 1 ) = a very very huge integer indeed, whereas
! I4_HUGE ( ) = the same old 32 bit big value.
!
! An I4 is an integer ( kind = 4 ) value.
!
! Licensing:
!
! This code is distributed under the GNU LGPL license.
!
! Modified:
!
! 26 January 2007
!
! Author:
!
! John Burkardt
!
! Parameters:
!
! Output, integer ( kind = 4 ) I4_HUGE, a "huge" I4.
!
implicit none
integer ( kind = 4 ) i4
integer ( kind = 4 ) i4_huge
i4_huge = 2147483647
return
end function
subroutine cubspl ( tau, c, n, ibcbeg, ibcend )
!*****************************************************************************80
!
!! CUBSPL defines an interpolatory cubic spline.
!
! Discussion:
!
! A tridiagonal linear system for the unknown slopes S(I) of
! F at TAU(I), I=1,..., N, is generated and then solved by Gauss
! elimination, with S(I) ending up in C(2,I), for all I.
!
! Modified:
!
! 14 February 2007
!
! Author:
!
! Original FORTRAN77 version by Carl de Boor.
! FORTRAN90 version by John Burkardt.
!
! Reference:
!
! Carl de Boor,
! A Practical Guide to Splines,
! Springer, 2001,
! ISBN: 0387953663,
! LC: QA1.A647.v27.
!
! Parameters:
!
! Input, real ( kind = 8 ) TAU(N), the abscissas or X values of
! the data points. The entries of TAU are assumed to be
! strictly increasing.
!
! Input, integer ( kind = 4 ) N, the number of data points. N is
! assumed to be at least 2.
!
! Input/output, real ( kind = 8 ) C(4,N).
! On input, if IBCBEG or IBCBEG is 1 or 2, then C(2,1)
! or C(2,N) should have been set to the desired derivative
! values, as described further under IBCBEG and IBCEND.
! On output, C contains the polynomial coefficients of
! the cubic interpolating spline with interior knots
! TAU(2) through TAU(N-1).
! In the interval interval (TAU(I), TAU(I+1)), the spline
! F is given by
! F(X) =
! C(1,I) +
! C(2,I) * H +
! C(3,I) * H^2 / 2 +
! C(4,I) * H^3 / 6.
! where H=X-TAU(I). The routine PPVALU may be used to
! evaluate F or its derivatives from TAU, C, L=N-1,
! and K=4.
!
! Input, integer ( kind = 4 ) IBCBEG, IBCEND, boundary condition indicators.
! IBCBEG = 0 means no boundary condition at TAU(1) is given.
! In this case, the "not-a-knot condition" is used. That
! is, the jump in the third derivative across TAU(2) is
! forced to zero. Thus the first and the second cubic
! polynomial pieces are made to coincide.
! IBCBEG = 1 means the slope at TAU(1) is to equal the
! input value C(2,1).
! IBCBEG = 2 means the second derivative at TAU(1) is
! to equal C(2,1).
! IBCEND = 0, 1, or 2 has analogous meaning concerning the
! boundary condition at TAU(N), with the additional
! information taken from C(2,N).
!
implicit none
integer ( kind = 4 ) n
real ( kind = fp_kind ) c(4,n)
real ( kind = fp_kind ) divdf1
real ( kind = fp_kind ) divdf3
real ( kind = fp_kind ) dtau
real ( kind = fp_kind ) g
integer ( kind = 4 ) i
integer ( kind = 4 ) ibcbeg
integer ( kind = 4 ) ibcend
real ( kind = fp_kind ) tau(n)
!
! C(3,*) and C(4,*) are used initially for temporary storage.
!
! Store first differences of the TAU sequence in C(3,*).
!
! Store first divided difference of data in C(4,*).
!
do i = 2, n
c(3,i) = tau(i) - tau(i-1)
end do
do i = 2, n
c(4,i) = ( c(1,i) - c(1,i-1) ) / ( tau(i) - tau(i-1) )
end do
!
! Construct the first equation from the boundary condition
! at the left endpoint, of the form:
!
! C(4,1) * S(1) + C(3,1) * S(2) = C(2,1)
!
! IBCBEG = 0: Not-a-knot
!
if ( ibcbeg == 0 ) then
if ( n <= 2 ) then
c(4,1) = 1.0D+00
c(3,1) = 1.0D+00
c(2,1) = 2.0D+00 * c(4,2)
go to 120
end if
c(4,1) = c(3,3)
c(3,1) = c(3,2) + c(3,3)
c(2,1) = ( ( c(3,2) + 2.0D+00 * c(3,1) ) * c(4,2) * c(3,3) &
+ c(3,2)**2 * c(4,3) ) / c(3,1)
!
! IBCBEG = 1: derivative specified.
!
else if ( ibcbeg == 1 ) then
c(4,1) = 1.0D+00
c(3,1) = 0.0D+00
if ( n == 2 ) then
go to 120
end if
!
! Second derivative prescribed at left end.
!
else
c(4,1) = 2.0D+00
c(3,1) = 1.0D+00
c(2,1) = 3.0D+00 * c(4,2) - c(3,2) / 2.0D+00 * c(2,1)
if ( n == 2 ) then
go to 120
end if
end if
!
! If there are interior knots, generate the corresponding
! equations and carry out the forward pass of Gauss elimination,
! after which the I-th equation reads:
!
! C(4,I) * S(I) + C(3,I) * S(I+1) = C(2,I).
!
do i = 2, n-1
g = -c(3,i+1) / c(4,i-1)
c(2,i) = g * c(2,i-1) + 3.0D+00 * ( c(3,i) * c(4,i+1) + c(3,i+1) * c(4,i) )
c(4,i) = g * c(3,i-1) + 2.0D+00 * ( c(3,i) + c(3,i+1))
end do
!
! Construct the last equation from the second boundary condition, of
! the form
!
! -G * C(4,N-1) * S(N-1) + C(4,N) * S(N) = C(2,N)
!
! If slope is prescribed at right end, one can go directly to
! back-substitution, since the C array happens to be set up just
! right for it at this point.
!
if ( ibcend == 1 ) then
go to 160
end if
if ( 1 < ibcend ) then
go to 110
end if
90 continue
!
! Not-a-knot and 3 <= N, and either 3 < N or also not-a-knot
! at left end point.
!
if ( n /= 3 .or. ibcbeg /= 0 ) then
g = c(3,n-1) + c(3,n)
c(2,n) = ( ( c(3,n) + 2.0D+00 * g ) * c(4,n) * c(3,n-1) + c(3,n)**2 &
* ( c(1,n-1) - c(1,n-2) ) / c(3,n-1) ) / g
g = - g / c(4,n-1)
c(4,n) = c(3,n-1)
c(4,n) = c(4,n) + g * c(3,n-1)
c(2,n) = ( g * c(2,n-1) + c(2,n) ) / c(4,n)
go to 160
end if
!
! N = 3 and not-a-knot also at left.
!
100 continue
c(2,n) = 2.0D+00 * c(4,n)
c(4,n) = 1.0D+00
g = -1.0D+00 / c(4,n-1)
c(4,n) = c(4,n) - c(3,n-1) / c(4,n-1)
c(2,n) = ( g * c(2,n-1) + c(2,n) ) / c(4,n)
go to 160
!
! IBCEND = 2: Second derivative prescribed at right endpoint.
!
110 continue
c(2,n) = 3.0D+00 * c(4,n) + c(3,n) / 2.0D+00 * c(2,n)
c(4,n) = 2.0D+00
g = -1.0D+00 / c(4,n-1)
c(4,n) = c(4,n) - c(3,n-1) / c(4,n-1)
c(2,n) = ( g * c(2,n-1) + c(2,n) ) / c(4,n)
go to 160
!
! N = 2.
!
120 continue
if ( ibcend == 2 ) then
c(2,n) = 3.0D+00 * c(4,n) + c(3,n) / 2.0D+00 * c(2,n)
c(4,n) = 2.0D+00
g = -1.0D+00 / c(4,n-1)
c(4,n) = c(4,n) - c(3,n-1) / c(4,n-1)
c(2,n) = ( g * c(2,n-1) + c(2,n) ) / c(4,n)
else if ( ibcend == 0 .and. ibcbeg /= 0 ) then
c(2,n) = 2.0D+00 * c(4,n)
c(4,n) = 1.0D+00
g = -1.0D+00 / c(4,n-1)
c(4,n) = c(4,n) - c(3,n-1) / c(4,n-1)
c(2,n) = ( g * c(2,n-1) + c(2,n) ) / c(4,n)
else if ( ibcend == 0 .and. ibcbeg == 0 ) then
c(2,n) = c(4,n)
end if
!
! Back solve the upper triangular system
!
! C(4,I) * S(I) + C(3,I) * S(I+1) = B(I)
!
! for the slopes C(2,I), given that S(N) is already known.
!
160 continue
do i = n-1, 1, -1
c(2,i) = ( c(2,i) - c(3,i) * c(2,i+1) ) / c(4,i)
end do
!
! Generate cubic coefficients in each interval, that is, the
! derivatives at its left endpoint, from value and slope at its
! endpoints.
!
do i = 2, n
dtau = c(3,i)
divdf1 = ( c(1,i) - c(1,i-1) ) / dtau
divdf3 = c(2,i-1) + c(2,i) - 2.0D+00 * divdf1
c(3,i-1) = 2.0D+00 * ( divdf1 - c(2,i-1) - divdf3 ) / dtau
c(4,i-1) = 6.0D+00 * divdf3 / dtau**2
end do
return
end subroutine
function ppvalu ( break, coef, l, k, x, jderiv )
!*****************************************************************************80
!
!! PPVALU evaluates a piecewise polynomial function or its derivative.
!
! Discussion:
!
! PPVALU calculates the value at X of the JDERIV-th derivative of
! the piecewise polynomial function F from its piecewise
! polynomial representation.
!
! The interval index I, appropriate for X, is found through a
! call to INTERV. The formula for the JDERIV-th derivative
! of F is then evaluated by nested multiplication.
!
! The J-th derivative of F is given by:
! (d^J) F(X) =
! COEF(J+1,I) + H * (
! COEF(J+2,I) + H * (
! ...
! COEF(K-1,I) + H * (
! COEF(K, I) / (K-J-1) ) / (K-J-2) ... ) / 2 ) / 1
! with
! H = X - BREAK(I)
! and
! I = max ( 1, max ( J, BREAK(J) <= X, 1 <= J <= L ) ).
!
! Modified:
!
! 16 February 2007
!
! Author:
!
! Original FORTRAN77 version by Carl de Boor.
! FORTRAN90 version by John Burkardt.
!
! Reference:
!
! Carl de Boor,
! A Practical Guide to Splines,
! Springer, 2001,
! ISBN: 0387953663,
! LC: QA1.A647.v27.
!
! Parameters:
!
! Input, real ( kind = 8 ) BREAK(L+1), real COEF(*), integer L, the
! piecewise polynomial representation of the function F to be evaluated.
!
! Input, integer ( kind = 4 ) K, the order of the polynomial pieces that
! make up the function F. The usual value for K is 4, signifying a
! piecewise cubic polynomial.
!
! Input, real ( kind = 8 ) X, the point at which to evaluate F or
! of its derivatives.
!
! Input, integer ( kind = 4 ) JDERIV, the order of the derivative to be
! evaluated. If JDERIV is 0, then F itself is evaluated,
! which is actually the most common case. It is assumed
! that JDERIV is zero or positive.
!
! Output, real ( kind = 8 ) PPVALU, the value of the JDERIV-th
! derivative of F at X.
!
implicit none
integer ( kind = 4 ) k
integer ( kind = 4 ) l
real ( kind = fp_kind ) break(l+1)
real ( kind = fp_kind ) coef(k,l)
real ( kind = fp_kind ) fmmjdr
real ( kind = fp_kind ) h
integer ( kind = 4 ) i
integer ( kind = 4 ) jderiv
integer ( kind = 4 ) m
integer ( kind = 4 ) ndummy
real ( kind = fp_kind ) ppvalu
real ( kind = fp_kind ) value
real ( kind = fp_kind ) x
value = 0.0D+00
fmmjdr = k - jderiv
!
! Derivatives of order K or higher are identically zero.
!
if ( k <= jderiv ) then
return
end if
!
! Find the index I of the largest breakpoint to the left of X.
!
call interv ( break, l+1, x, i, ndummy )
!
! Evaluate the JDERIV-th derivative of the I-th polynomial piece at X.
!
h = x - break(i)
m = k
do
value = ( value / fmmjdr ) * h + coef(m,i)
m = m - 1
fmmjdr = fmmjdr - 1.0D+00
if ( fmmjdr <= 0.0D+00 ) then
exit
end if
end do
ppvalu = value
return
end function
subroutine interv ( xt, lxt, x, left, mflag )
!*****************************************************************************80
!
!! INTERV brackets a real value in an ascending vector of values.
!
! Discussion:
!
! The XT array is a set of increasing values. The goal of the routine
! is to determine the largest index I so that
!
! XT(I) < XT(LXT) and XT(I) <= X.
!
! The routine is designed to be efficient in the common situation
! that it is called repeatedly, with X taken from an increasing
! or decreasing sequence.
!
! This will happen when a piecewise polynomial is to be graphed.
! The first guess for LEFT is therefore taken to be the value
! returned at the previous call and stored in the local variable ILO.
!
! A first check ascertains that ILO < LXT. This is necessary
! since the present call may have nothing to do with the previous
! call. Then, if
! XT(ILO) <= X < XT(ILO+1),
! we set LEFT = ILO and are done after just three comparisons.
!
! Otherwise, we repeatedly double the difference ISTEP = IHI - ILO
! while also moving ILO and IHI in the direction of X, until
! XT(ILO) <= X < XT(IHI)
! after which we use bisection to get, in addition, ILO + 1 = IHI.
! The value LEFT = ILO is then returned.
!
! Thanks to Daniel Gloger for pointing out an important modification
! to the routine, so that the piecewise polynomial in B-form is
! left-continuous at the right endpoint of the basic interval,
! 17 April 2014.
!
! Modified:
!
! 17 April 2014
!
! Author:
!
! Original FORTRAN77 version by Carl de Boor.
! FORTRAN90 version by John Burkardt.
!
! Reference:
!
! Carl de Boor,
! A Practical Guide to Splines,
! Springer, 2001,
! ISBN: 0387953663,
! LC: QA1.A647.v27.
!
! Parameters:
!
! Input, real ( kind = 8 ) XT(LXT), a nondecreasing sequence of values.
!
! Input, integer ( kind = 4 ) LXT, the dimension of XT.
!
! Input, real ( kind = 8 ) X, the point whose location with
! respect to the sequence XT is to be determined.
!
! Output, integer ( kind = 4 ) LEFT, the index of the bracketing value:
! 1 if X < XT(1)
! I if XT(I) <= X < XT(I+1)
! I if XT(I) < X == XT(I+1) == XT(LXT)
!
! Output, integer ( kind = 4 ) MFLAG, indicates whether X lies within the
! range of the data.
! -1: X < XT(1)
! 0: XT(I) <= X < XT(I+1)
! +1: XT(LXT) < X
!
implicit none
integer ( kind = 4 ) lxt
integer ( kind = 4 ) left
integer ( kind = 4 ) mflag
integer ( kind = 4 ) ihi
integer ( kind = 4 ), save :: ilo = 1
integer ( kind = 4 ) istep
integer ( kind = 4 ) middle
real ( kind = fp_kind ) x
real ( kind = fp_kind ) xt(lxt)
ihi = ilo + 1
if ( lxt <= ihi ) then
if ( xt(lxt) <= x ) then
go to 110
end if
if ( lxt <= 1 ) then
mflag = -1
left = 1
return
end if
ilo = lxt - 1
ihi = lxt
end if
if ( xt(ihi) <= x ) then
go to 20
end if
if ( xt(ilo) <= x ) then
mflag = 0
left = ilo
return
end if
!
! Now X < XT(ILO). Decrease ILO to capture X.
!
istep = 1
10 continue
ihi = ilo
ilo = ihi - istep
if ( 1 < ilo ) then
if ( xt(ilo) <= x ) then
go to 50
end if
istep = istep * 2
go to 10
end if
ilo = 1
if ( x < xt(1) ) then
mflag = -1
left = 1
return
end if
go to 50
!
! Now XT(IHI) <= X. Increase IHI to capture X.
!
20 continue
istep = 1
30 continue
ilo = ihi
ihi = ilo + istep
if ( ihi < lxt ) then
if ( x < xt(ihi) ) then
go to 50
end if
istep = istep * 2
go to 30
end if
if ( xt(lxt) <= x ) then
go to 110
end if
!
! Now XT(ILO) < = X < XT(IHI). Narrow the interval.
!
ihi = lxt
50 continue
do
middle = ( ilo + ihi ) / 2
if ( middle == ilo ) then
mflag = 0
left = ilo
return
end if
!
! It is assumed that MIDDLE = ILO in case IHI = ILO+1.
!
if ( xt(middle) <= x ) then
ilo = middle
else
ihi = middle
end if
end do
!
! Set output and return.
!
110 continue
mflag = 1
if ( x == xt(lxt) ) then
mflag = 0
end if
do left = lxt - 1, 1, -1
if ( xt(left) < xt(lxt) ) then
return
end if
end do
return
end subroutine
end module