-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcalc.py
45 lines (38 loc) · 1.3 KB
/
calc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import os
def kflod_plot(filename=None):
file_path = "/path/to/result/2022/"
if filename is None:
files = [i for i in os.listdir(file_path) if i.endswith(".txt")]
files.sort()
files = files[-5:]
else:
files = [f"{filename}_{i}_loss.txt" for i in range(5)]
print(files)
# 创建一个全零的DF,与所有文件相加
data_fold = pd.DataFrame(np.zeros((200, 5)))
for i in files:
data = pd.read_table(file_path+i, header=None)
data_fold += data
data_fold = data_fold/5
epoch, train_loss, train_acc, test_loss, test_acc = \
data_fold[0], data_fold[1], data_fold[2], data_fold[3], data_fold[4]
# 插子图,两图
plt.figure(figsize=(16, 9))
plt.subplot(221)
save_path = file_path+files[0][:9]
plt.plot(epoch, train_acc, label="train")
plt.plot(epoch, test_acc, label="test")
plt.title("Accuracy")
plt.legend()
plt.subplot(222)
plt.plot(epoch, train_loss, label="train")
plt.plot(epoch, test_loss, label="test")
plt.title("Loss")
plt.legend()
plt.savefig(save_path+"loss.png", dpi=300)
data_fold.to_csv(save_path+"loss.txt", index=False)
if __name__=="__main__":
kflod_plot("0221_1941")