We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
1.比如识别段落之间带有编号的latex公式,如 $$ITE_{i}=Y_{i,1}-Y_{i,0} \tag{1}$$
2.希望大佬加入一个更加朴素的主题,类似于墨滴默认主题的方案,我用了他们公布的CSS到网页端,不太起作用
The text was updated successfully, but these errors were encountered:
Sorry, something went wrong.
## 3.1 基本概念 - **匹配倾向得分** 将个体$i$在$X_i$给定的情况下,接受处理的概率$p(T=1|X_i)$定义为匹配倾向得分。 - **ITE(Individual treatment effect)-个体处理效应** ,对于任一个体$i$而言,由于只能接受一种水平的处理,因此,必然有另一种处理水平下的结果变量是无法观测的。 $$ITE_{i}=Y_{i,1}-Y_{i,0} \tag{1}$$ - **ATE(Average treatment effect)-平均处理效应** 由于所有个体$i$,都只能在受到一种处理水平的影响,平均处理效应被定义为不同处理水平下潜在结果变量均值的差异: $$ATE=E[Y_{i,1}-Y_{i,0}]=E[Y_{i,1}]-E[Y_{i,0}] \tag{2}$$ - **POM(Potential-outcome mean)-潜在结果变量均值** $$POM=E(Y_{i,T_{i}}) \tag{3}$$ - **ATET/ATT(Average treatment effect on the treated)-处理组的平均处理效应** 很多时候,研究关注的是外部冲击对与被处理的样本的影响,ATET被定义为处理组被观测到的结果均值与在未接受处理的情况下的潜在结果变量均值的差异。 $$ATET=E[(Y_{i,1}-Y_{i,0})|T=1] \tag{4}$$ - **ATEU/ATU(Average treatment effect on the control)-对照组的平均处理效应** 对应于ATET,存在未受处理的对照组的平均处理效应,可以定义为 $$ATEU=E[(Y_{i,1}-Y_{i,0})|T=0] \tag{5}$$
比如上面这段markdown,现在网页端渲染出来,公式编号没有了同时公式也变成行内公式。 希望网页端渲染结果的公式排版是如截图那样的。
No branches or pull requests
1.比如识别段落之间带有编号的latex公式,如$$ITE_{i}=Y_{i,1}-Y_{i,0} \tag{1}$$
2.希望大佬加入一个更加朴素的主题,类似于墨滴默认主题的方案,我用了他们公布的CSS到网页端,不太起作用
The text was updated successfully, but these errors were encountered: