-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinsilico2.py
executable file
·474 lines (410 loc) · 18.1 KB
/
insilico2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import re, regex, math, sys, os.path, pickle, getopt
#fasta = "/home/david/Documents/complete_genomes/brucellaceae"
#primers = "/home/david/downloads/primers_brucella"
"""
if len(sys.argv)>1 :
fasta_path = sys.argv[1]
else :
fasta_path = input("Enter a fasta files directory : ")
#fasta_path = "/home/david/Documents/complete_genomes/brucellaceae"
files = os.listdir(fasta_path)
if len(sys.argv)>2 :
primers_path = sys.argv[2]
else :
primers_path = input("Enter a primers file : ")
#primers_path = "/home/david/downloads/primers_brucella"
Primers = open(primers_path,"r").read()
if len(sys.argv)>3 :
nb_mismatch = int(sys.argv[3])
else :
nb_mismatch = 2
log = open("/home/david/Documents/MLVA/mlva_results/"+fasta_path.split("/")[-1]+"_output.txt","w")
log = open("/home/david/Documents/MLVA/mlva_results/"+fasta_path.split("/")[-1]+"_output.txt","a")
"""
#dictionnary to create complementary DNA sequences
dico_comp = {'A':'T','C':'G',"G":"C","T":"A","M":"K","R":"Y","W":"W","S":"S","Y":"R","K":"M","V":"B","H":"D","D":"H","B":"V","X":"X","N":"X",".":".","|":"|"}
dico_ref = pickle.load(open("/home/david/Documents/MLVA/dico_table_ref","r"))
def inverComp (seq) : #return the inversed complementary sequence
seq = seq.upper() #acgt -> ACGT
seq_comp = ""
for nuc in seq : #nuc stand for nucleotide
seq_comp += dico_comp[nuc] #use of the dictionnary to have the complementary nucleotide
seq_comp = "".join(reversed(seq_comp)) #we reverse the sequence
return (seq_comp)
def positionsOfMatches (result,seq) : #get the matches positions in the fasta sequence
pos = []
for res in result :
pos.append([seq.find(res),res])
return (pos)
def search_matches(nbmismatch,primer, seq) : #return all match(es) in the fasta sequence
return (regex.findall("("+primer+"){e<="+str(nbmismatch)+"}",seq,overlapped=True))
def pretty_mismatch (primer, found) :
if len(found) == len(primer) :
tmp=[]
for i,nuc in enumerate(primer) :
if found[i] != nuc :
tmp += found[i].lower()
else :
tmp += found[i]
found = "".join(tmp)
else :
diff = primer.find(found)
if diff == 0 :
found = found+(len(primer)-len(found))*"."
else :
found = (len(primer)-len(found))*"."+found
return(found)
def clean_mismatches (primer1,primer2,sense,found1,found2) :
if sense == "norm" :
primer2 = inverComp(primer2)
else :
primer1 = inverComp(primer1)
res_found1 = []
res_found2 = []
for found in found1 :
if len(found)<=len(primer1) :
res_found1.append(pretty_mismatch(primer1,found))
for found in found2 :
if len(found)<=len(primer2) and found != primer2 :
res_found2.append(pretty_mismatch(primer2,found))
return (res_found1,res_found2)
def mismatch (nb,primer,seq) : #function to find match(s) with a mismatch
match = []
sense = []
tmp_res = set()
mismatches = []
if nb==1 :
invP=inverComp(primer)
for i in range(len(primer)): #for each nucleotide of the primer
reg1=primer[:i]
reg2=primer[i+1:]
reg = str(reg1) + "["+"".join(dico_comp.keys()).replace("|","").replace(".","")+"]" + str(reg2)
searchseq = re.compile(reg) #search request for finditer (Primer with a mismatch)
tmpfinditer = searchseq.finditer(seq) #tmpfinder : objects list with start() end() and group(0) functions
tmp= set()
for m in tmpfinditer : #for each result
tmp.add("_".join([str(m.start()),"norm",m.group()])) #add the result in the tmp list
if tmp : #if results, we add the first result in listFind
for res in tmp :
tmp_res.add(res)
else : #same search with the complementary reversed primer
reg1=invP[:i]
reg2=invP[i+1:]
reg = str(reg1) + "["+"".join(dico_comp.keys()).replace("|","").replace(".","")+"]" + str(reg2) #search request for one mismatch
searchseq = re.compile(reg)
tmpfinditer = searchseq.finditer(seq)
for m in tmpfinditer :
tmp.add("_".join([str(m.start()),"inv",m.group()]))
if tmp :
for res in tmp :
tmp_res.add(res)
elif nb==2 : #search only in the forward sense
for i in range(len(primer)):
reg1=primer[:i]
reg2=primer[i+1:]
reg = str(reg1) + "["+"".join(dico_comp.keys()).replace("|","").replace(".","")+"]" + str(reg2)
searchseq = re.compile(reg)
tmpfinditer = searchseq.finditer(seq)
if tmpfinditer !=[] :
tmp= set()
for m in tmpfinditer :
tmp.add("_".join([str(m.start()),"norm",m.group()]))
if tmp :
for res in tmp :
tmp_res.add(res)
for e in tmp_res :
match.append(int(e.split("_")[0]))
sense.append(e.split("_")[1])
mismatches.append(e.split("_")[2])
return(match,sense,mismatches)
def mismatches (nb,primer,seq,nbmismatch) : #function to find match(es) with at least two mismatches
match = []
sense = []
invP=inverComp(primer)
if nb==1 :
tmpfind = search_matches(nbmismatch,primer,seq) #get all matches (with mismatches)
positions_f = positionsOfMatches(tmpfind,seq) #get positions of matches
if tmpfind == [] :
tmpfind = search_matches(nbmismatch,invP,seq) #get the match(es) with mismatches (use of regex.findall())
positions_r = positionsOfMatches(tmpfind,seq) #get the position(s) of match(es)
if tmpfind != [] :
for res in positions_r :
match.append(res[0])
sense.append("inv")
else :
for res in positions_f :
match.append(res[0])
sense.append("norm")
elif nb==2 :
tmpfind = search_matches(2,primer,seq) #get all matches
positions_f = positionsOfMatches(tmpfind,seq) #get positions of matches
if tmpfind != [] :
for res in positions_f :
match.append(res[0])
sense.append("norm")
return (match,sense,tmpfind) #return results (position of match + sense of primer)
def findFirst (primer,seq,nbmismatch) : #first search of the primer on the sequence (use inverComp() and mismatch())
match = []
sense = [] #to store the sense of search (normal or inversed)
mismatchs = []
if nbmismatch == 0 :
result=seq.find(primer)
while (result!=-1) : #while the search has not been made on the entire sequence
match.append(result)
position=result+1 #next search will start one nucleotide after the position of the last match
sense.append("norm")
result=seq.find(primer,position) #next search, if no more match : resul = -1 -> end of the loop
if match == [] : #if no perfect match found with the regular primer
primer_inv=inverComp(primer) #get the inversed complementary primer with inverComp()
result=seq.find(primer_inv)
while(result!=-1): #same search with the converted primer
match.append(result)
position=result+1
sense.append("inv")
result=seq.find(primer_inv,position)
if nbmismatch == 1 and match == [] : #if still no matches (perfect match)
match,sense,mismatchs = mismatch(1,primer,seq) #search with a mismatch
if nbmismatch >= 2 and match == [] :
match,sense,mismatchs = mismatches(1,primer,seq,nbmismatch)
return (match,sense,mismatchs)
def findSec(primer,seq,sense,nbmismatch) : #search a match for the second primer
match = []
mismatchs = []
if sense == "norm" : primer=inverComp(primer)
if nbmismatch == 0 :
result=seq.find(primer)
while(result!=-1) : #while there's a result
match.append(result)
position=result+1 #indlook get the position of the following nucleotide for the next search
result=seq.find(primer,position)
if nbmismatch == 1 and match == [] : #if no perfect match
match,trash,mismatchs = mismatch(2,primer,seq)
if nbmismatch >= 2 and match == [] :
match,trash,mismatchs = mismatches(2,primer,seq,nbmismatch)
return match,mismatchs
def table_ref (primer,size) : #return the sizeU value if the size is indexed in the table
if primer in dico_ref.keys() :
values = dico_ref[primer]
sizes = []
U = []
for val in values :
if "-" in val.split(" ")[0] :
sizes.append(val.split(" ")[0].split("-")[0])
sizes.append(val.split(" ")[0].split("-")[1])
U.append(val.split(" ")[1].replace('(','').replace(")",""))
U.append(val.split(" ")[1].replace('(','').replace(")",""))
else :
sizes.append(val.split(" ")[0])
U.append(val.split(" ")[1].replace('(','').replace(")",""))
if str(size) in sizes :
ind = sizes.index(str(size))
sizeU = U[ind]
return sizeU
def find2(primers,fasta,round,nbmismatch) : #return the result of the matches
fasta = fasta.replace(" ","").replace("\t","") #delete spaces and tabulations
mismatchs2 = []
if type(round) is str :
round = round.replace(",",".")
round = float(round)
sequences = fasta.split('>') #split the fasta files into a list of fasta file
del sequences[0] #delete the '' created
dico_res = {}
for s,seq in enumerate(sequences) : #for each chromosome in the fasta file
tmp_seq = seq.split("\n")
title_seq = tmp_seq[0]
del tmp_seq[0]
seq = "".join(tmp_seq).upper()
if primers : #if primers had been entered
for p,primer in enumerate(primers) : #for each couple of primers
primer = primer.replace(" ",";").replace("\t",";").split(";")
primer_info = primer[0].split('_')
tmp1, tmp2, mismatchs = findFirst(primer[1],seq,nbmismatch)
first_match = tmp1, tmp2 #search match(es) for the first primer
second_match = []
result = []
insert=""
for i,pos_match in enumerate(first_match[0]) : #for each match of the first primer
tmp, mismatchs2 = findSec(primer[2],seq,first_match[1][i],nbmismatch) #search match(es) for the second primer
second_match.extend(tmp)
if second_match != [] : #if there is a match with the second primer on the complementary DNA sequence
for pos_match2 in second_match : #for each match found for the second primer
if first_match[1][i] == "inv" :
size = abs(int(pos_match)-int(pos_match2)+len(primer[1]))
size2 = int(pos_match)+len(primer[1])+(len(seq)-pos_match2) #if primers are separated by the splitted area in the sequence (circular chromosome)
if size2 < size : size = size2
else :
size = abs(int(pos_match2)-int(pos_match)+len(primer[2]))
size2 =int(pos_match2)+len(primer[2])+(len(seq)-pos_match)
if size2 < size : size = size2
if size2==size :
if pos_match < pos_match2 :insert = seq[int(pos_match2):]+seq[:int(pos_match)+len(primer[1])]
else : insert = seq[int(pos_match):]+seq[:int(pos_match2)+len(primer[2])]
else :
if pos_match < pos_match2 : insert = seq[int(pos_match):int(pos_match2)+len(primer[2])]
else : insert = seq[int(pos_match2):int(pos_match)+len(primer[1])]
sizeU = abs(float(primer_info[3].upper().replace("U",""))-\
((float(primer_info[2].lower().replace("bp",""))-size)\
/float(primer_info[1].lower().replace("bp","")))) #computation of sizeU
mismatchs, mismatchs2 = clean_mismatches(primer[1],primer[2],first_match[1][i],mismatchs,mismatchs2)
result.append([primer[0],pos_match,pos_match2,size,sizeU,sequence+str(s+1),nbmismatch,primer[1],mismatchs,primer[2],mismatchs2,insert])
if len(result) == 0 and primer_info[0] not in dico_res.keys() : #if no result
dico_res[primer_info[0]]=["\t".join([primer[0],primer[1],primer[2]]),"","","","",sequence+str(s+1),nbmismatch,primer[1],mismatchs,primer[2],mismatchs2,insert]
elif len(result) > 0 : #if result(s)
best_res = result[0]
for res in result : #keep the result with the minimum sizeU value
if res[4]<best_res[4] : best_res=res
if round !="" and round>0 : #round of the sizeU value
sizeU=best_res[4]
if sizeU>=math.floor(sizeU) and sizeU<(math.floor(sizeU)+round) :
sizeU = math.floor(sizeU)
elif sizeU <= math.ceil(sizeU) and sizeU>(math.ceil(sizeU)-round) :
sizeU=math.ceil(sizeU)
else :
sizeU=math.floor(sizeU)+0.5
best_res[4]=sizeU #set of the rounded sizeU value
if primer_info[0] in dico_res.keys() and dico_res[primer_info[0]][4] != "" :
best_res[5] = best_res[5]+", "+sequence+str(s+1) #if there's already a result with perfect matches
dico_res[primer_info[0]]=best_res #set the best result as a new key : value in the dictionnary #replace the old dictionnary value if there is one
return dico_res
def get_empty_locus (dico_result) :
tmpprimers = []
for locus in dico_result.keys() :
if dico_result[locus][4] == '' :
tmpprimers.append(dico_result[locus][0])
return tmpprimers
def run (Primers,fasta,round,nbmismatch) :
tmp = len(Primers)
tmpPrimers = Primers
result = {}
for mismatch_allowed in range(int(nbmismatch)+1) :
tmp_dico = find2(tmpPrimers,fasta,round,mismatch_allowed) #no mismacth
result = dict(result.items() + tmp_dico.items())
tmpPrimers = get_empty_locus(result)
nb_match = tmp -len(tmpPrimers)
print "results with",mismatch_allowed,"mismatch : ",nb_match,"/",len(Primers)
log.write("".join(["results with ",str(mismatch_allowed)," mismatch : ",str(nb_match),"/",str(len(Primers))])+"\n")
tmp = len(tmpPrimers)
if len(tmpPrimers) == 0 :
break
if len(tmpPrimers) != 0 :
print "no match : ", tmp
log.write("".join(["no match : ",str(tmp)])+"\n")
return result
def usage() :
print "./insilico2.py -i <input_directory> -o <output_directory> -p <primers_file>"
def main() : #run find2() for each genome file in the directory with all primers in the primers file
try:
opts, args = getopt.getopt(sys.argv[1:], "hm:i:o:p:c", ["help", "mismatch=", "input=", "output=", "primer=", "contig"])
except getopt.GetoptError as err:
usage()
sys.exit(2)
nb_mismatch = 2
global sequence
sequence = "chr"
global contig
contig = False
for opt, arg in opts:
if opt in ("-h", "--help"):
usage()
sys.exit()
elif opt in ("-i", "--input"):
fasta_path = arg
files = os.listdir(fasta_path)
elif opt in ("-p", "--primer"):
Primers = open(arg,"r").read()
elif opt in ("-o", "--output"):
output_path = arg
if output_path[-1] != "/" : output_path=output_path+"/"
elif opt in ("-m","--mismatch"):
nb_mismatch = int(arg)
elif opt in ("-c", "--contig"):
contig = True
sequence = "contig"
else:
assert False, "unhandled option"
global log
log = open(output_path+fasta_path.split("/")[-1]+"_output.txt","w")
log = open(output_path+fasta_path.split("/")[-1]+"_output.txt","a")
csv = open(output_path+fasta_path.split("/")[-1]+"_output.csv","w")
csv = open(output_path+fasta_path.split("/")[-1]+"_output.csv","w")
header = ";".join(["strain","primer","position1","position2","size","score","contig"
,"nb_mismatch","primer1","match1","primer2","match2","insert\n"])
csv.write(header)
Primers = Primers.split("\n")
if Primers[-1]=="" : del Primers[-1]
Primers_short = [ pri.split("_")[0] for pri in Primers ]
for i,file in enumerate(files) :
print file, "\t strain ",i+1,"/",len(files)
log.write("".join([file, "\t strain ",str(i+1),"/",str(len(files))])+"\n")
pathfile = fasta_path+"/"+file
fasta = open(pathfile,"r").read()
fasta_names = []
for line in fasta.split("\n") :
if ">" in line :
fasta_names.append(line.replace("\n","").split("|"))
result = run(Primers,fasta,0.25,nb_mismatch) #use find for each number of mismatch
locus = []
mlva_score = []
ch = []
header_ch = []
mismatch = []
header_mismatch = []
for Primer in Primers_short :
tmp = ";".join([str(res) for res in result[Primer][1:]]).replace("[","").replace("]","").replace("'","")
csv.write(";".join([file,result[Primer][0].split("\t")[0],tmp])+"\n")
if result[Primer][1]=="" :
result[Primer][6] = 99
if result[Primer][6] not in [0,99] :
print " ".join([Primer]+[" P1 :"]+[result[Primer][7]]+["\nmmatch(s):"]+result[Primer][8]+["\n\n"]+[Primer]+["P2 :"]+[result[Primer][9]]+["\nmmatch(s):"]+result[Primer][10]+["\n"])
log.write(" ".join([Primer]+[" P1 :"]+[result[Primer][7]]+["\nmmatch(s):"]+result[Primer][8]+["\n\n"]+[Primer]+["P2 :"]+[result[Primer][9]]+["\nmmatch(s):"]+result[Primer][10]+["\n\n"]))
locus.append(Primer.split("_")[0])
mlva_score.append(str(result[Primer][4])) #scores
header_ch.append("ch_"+Primer.split("_")[0])
ch.append(result[Primer][5]) #chromosome of the result
header_mismatch.append("nbmis_"+Primer.split("_")[0])
mismatch.append(str(result[Primer][6])) #number of mismatch allowed for each locus
if len(fasta_names)>1 and contig is False : #make firsts column of file depending on the number of chromosomes
fasta_chr=[]
fchr = []
gi_chr = []
gchr = []
ref_chr = []
rchr = []
for r in range(len(fasta_names)) :
fasta_chr.append("fasta_chr"+str(r+1))
fchr.append(fasta_names[r][4][1:])
gi_chr.append("gi_chr"+str(r+1))
gchr.append(fasta_names[r][1])
ref_chr.append("ref_chr"+str(r+1))
rchr.append(fasta_names[r][3])
header = fasta_chr+gi_chr+ref_chr
infos = fchr+gchr+rchr
if contig is False :
if i==0 :
pathfile = output_path+"MLVA_analysis_"+fasta_path.split("/")[-1]+".csv"
output = open(pathfile,"w") #output is a csv file (delimiter=";")
if len(fasta_names)>1 :
output.write(";".join(header+locus+header_ch+header_mismatch)+"\n") #header
else :
output.write(";".join(["fasta","gi","ref"]+locus+header_mismatch)+"\n") #header
output = open(pathfile,"a")
if len(fasta_names) >1 :
output.write(";".join(infos+mlva_score+ch+mismatch)+"\n")
else :
output.write(";".join([fasta_names[0][4][1:],fasta_names[0][1]\
,fasta_names[0][3]]+mlva_score+mismatch)+"\n")
else :
if i==0 :
pathfile = output_path+"MLVA_analysis_test_"+fasta_path.split("/")[-1]+".csv"
output = open(pathfile,"w") #output is a csv file (delimiter=";")
output.write(";".join(["Access_number"]+locus+header_mismatch)+"\n") #header
output = open(pathfile,"a")
output.write(file+";"+";".join(mlva_score+mismatch) + "\n")
output.close()
print "MLVA analysis finished for "+fasta_path.split("/")[-1]
log.write("MLVA analysis finished for "+fasta_path.split("/")[-1])
log.close()
if __name__ == "__main__" :
main()