-
Notifications
You must be signed in to change notification settings - Fork 422
/
meta.py
228 lines (171 loc) · 7.53 KB
/
meta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import torch
from torch import nn
from torch import optim
from torch.nn import functional as F
from torch.utils.data import TensorDataset, DataLoader
from torch import optim
import numpy as np
from learner import Learner
from copy import deepcopy
class Meta(nn.Module):
"""
Meta Learner
"""
def __init__(self, args, config):
"""
:param args:
"""
super(Meta, self).__init__()
self.update_lr = args.update_lr
self.meta_lr = args.meta_lr
self.n_way = args.n_way
self.k_spt = args.k_spt
self.k_qry = args.k_qry
self.task_num = args.task_num
self.update_step = args.update_step
self.update_step_test = args.update_step_test
self.net = Learner(config, args.imgc, args.imgsz)
self.meta_optim = optim.Adam(self.net.parameters(), lr=self.meta_lr)
def clip_grad_by_norm_(self, grad, max_norm):
"""
in-place gradient clipping.
:param grad: list of gradients
:param max_norm: maximum norm allowable
:return:
"""
total_norm = 0
counter = 0
for g in grad:
param_norm = g.data.norm(2)
total_norm += param_norm.item() ** 2
counter += 1
total_norm = total_norm ** (1. / 2)
clip_coef = max_norm / (total_norm + 1e-6)
if clip_coef < 1:
for g in grad:
g.data.mul_(clip_coef)
return total_norm/counter
def forward(self, x_spt, y_spt, x_qry, y_qry):
"""
:param x_spt: [b, setsz, c_, h, w]
:param y_spt: [b, setsz]
:param x_qry: [b, querysz, c_, h, w]
:param y_qry: [b, querysz]
:return:
"""
task_num, setsz, c_, h, w = x_spt.size()
querysz = x_qry.size(1)
losses_q = [0 for _ in range(self.update_step + 1)] # losses_q[i] is the loss on step i
corrects = [0 for _ in range(self.update_step + 1)]
for i in range(task_num):
# 1. run the i-th task and compute loss for k=0
logits = self.net(x_spt[i], vars=None, bn_training=True)
loss = F.cross_entropy(logits, y_spt[i])
grad = torch.autograd.grad(loss, self.net.parameters())
fast_weights = list(map(lambda p: p[1] - self.update_lr * p[0], zip(grad, self.net.parameters())))
# this is the loss and accuracy before first update
with torch.no_grad():
# [setsz, nway]
logits_q = self.net(x_qry[i], self.net.parameters(), bn_training=True)
loss_q = F.cross_entropy(logits_q, y_qry[i])
losses_q[0] += loss_q
pred_q = F.softmax(logits_q, dim=1).argmax(dim=1)
correct = torch.eq(pred_q, y_qry[i]).sum().item()
corrects[0] = corrects[0] + correct
# this is the loss and accuracy after the first update
with torch.no_grad():
# [setsz, nway]
logits_q = self.net(x_qry[i], fast_weights, bn_training=True)
loss_q = F.cross_entropy(logits_q, y_qry[i])
losses_q[1] += loss_q
# [setsz]
pred_q = F.softmax(logits_q, dim=1).argmax(dim=1)
correct = torch.eq(pred_q, y_qry[i]).sum().item()
corrects[1] = corrects[1] + correct
for k in range(1, self.update_step):
# 1. run the i-th task and compute loss for k=1~K-1
logits = self.net(x_spt[i], fast_weights, bn_training=True)
loss = F.cross_entropy(logits, y_spt[i])
# 2. compute grad on theta_pi
grad = torch.autograd.grad(loss, fast_weights)
# 3. theta_pi = theta_pi - train_lr * grad
fast_weights = list(map(lambda p: p[1] - self.update_lr * p[0], zip(grad, fast_weights)))
logits_q = self.net(x_qry[i], fast_weights, bn_training=True)
# loss_q will be overwritten and just keep the loss_q on last update step.
loss_q = F.cross_entropy(logits_q, y_qry[i])
losses_q[k + 1] += loss_q
with torch.no_grad():
pred_q = F.softmax(logits_q, dim=1).argmax(dim=1)
correct = torch.eq(pred_q, y_qry[i]).sum().item() # convert to numpy
corrects[k + 1] = corrects[k + 1] + correct
# end of all tasks
# sum over all losses on query set across all tasks
loss_q = losses_q[-1] / task_num
# optimize theta parameters
self.meta_optim.zero_grad()
loss_q.backward()
# print('meta update')
# for p in self.net.parameters()[:5]:
# print(torch.norm(p).item())
self.meta_optim.step()
accs = np.array(corrects) / (querysz * task_num)
return accs
def finetunning(self, x_spt, y_spt, x_qry, y_qry):
"""
:param x_spt: [setsz, c_, h, w]
:param y_spt: [setsz]
:param x_qry: [querysz, c_, h, w]
:param y_qry: [querysz]
:return:
"""
assert len(x_spt.shape) == 4
querysz = x_qry.size(0)
corrects = [0 for _ in range(self.update_step_test + 1)]
# in order to not ruin the state of running_mean/variance and bn_weight/bias
# we finetunning on the copied model instead of self.net
net = deepcopy(self.net)
# 1. run the i-th task and compute loss for k=0
logits = net(x_spt)
loss = F.cross_entropy(logits, y_spt)
grad = torch.autograd.grad(loss, net.parameters())
fast_weights = list(map(lambda p: p[1] - self.update_lr * p[0], zip(grad, net.parameters())))
# this is the loss and accuracy before first update
with torch.no_grad():
# [setsz, nway]
logits_q = net(x_qry, net.parameters(), bn_training=True)
# [setsz]
pred_q = F.softmax(logits_q, dim=1).argmax(dim=1)
# scalar
correct = torch.eq(pred_q, y_qry).sum().item()
corrects[0] = corrects[0] + correct
# this is the loss and accuracy after the first update
with torch.no_grad():
# [setsz, nway]
logits_q = net(x_qry, fast_weights, bn_training=True)
# [setsz]
pred_q = F.softmax(logits_q, dim=1).argmax(dim=1)
# scalar
correct = torch.eq(pred_q, y_qry).sum().item()
corrects[1] = corrects[1] + correct
for k in range(1, self.update_step_test):
# 1. run the i-th task and compute loss for k=1~K-1
logits = net(x_spt, fast_weights, bn_training=True)
loss = F.cross_entropy(logits, y_spt)
# 2. compute grad on theta_pi
grad = torch.autograd.grad(loss, fast_weights)
# 3. theta_pi = theta_pi - train_lr * grad
fast_weights = list(map(lambda p: p[1] - self.update_lr * p[0], zip(grad, fast_weights)))
logits_q = net(x_qry, fast_weights, bn_training=True)
# loss_q will be overwritten and just keep the loss_q on last update step.
loss_q = F.cross_entropy(logits_q, y_qry)
with torch.no_grad():
pred_q = F.softmax(logits_q, dim=1).argmax(dim=1)
correct = torch.eq(pred_q, y_qry).sum().item() # convert to numpy
corrects[k + 1] = corrects[k + 1] + correct
del net
accs = np.array(corrects) / querysz
return accs
def main():
pass
if __name__ == '__main__':
main()