forked from xuhao1/TaichiSLAM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTaichiSLAM_demo.py
172 lines (141 loc) · 6.35 KB
/
TaichiSLAM_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
from taichi_slam.mapping import *
from taichi_slam.utils.visualization import *
from taichi_slam.utils.ros_pcl_transfer import *
import numpy as np
import rospy
import sensor_msgs.point_cloud2 as pc2
from geometry_msgs.msg import TransformStamped
from sensor_msgs.msg import PointCloud2, PointCloud
import ros_numpy
import tina
import time
cur_trans = None
pub = None
project_in_taichi = True
disp_in_rviz = False
count = 0
Rdb = np.array([
[0.971048, -0.120915, 0.206023, 0.00114049],
[0.15701, 0.973037, -0.168959, 0.0450936],
[-0.180038, 0.196415, 0.96385, 0.0430765],
[0, 0, 0, 1]
])
def rendering(mapping):
global level
level, t_v2p = mapping.handle_render(scene, gui, pars1, level, pars_sdf=pars2, substeps = 1)
return t_v2p
def taichimapping_pcl_callback(mapping, cur_trans, msg, enable_rendering):
global count
if cur_trans is None:
return
start_time = time.time()
if mapping.enable_texture:
xyz_array, rgb_array = pointcloud2_to_xyz_rgb_array(msg)
else:
xyz_array = ros_numpy.point_cloud2.pointcloud2_to_xyz_array(msg)
rgb_array = np.array([], dtype=int)
_R, _T = transform_msg_to_numpy(cur_trans, Rdb)
for i in range(3):
mapping.input_T[None][i] = _T[i]
for j in range(3):
mapping.input_R[None][i, j] = _R[i, j]
t_pcl2npy = (time.time() - start_time)*1000
start_time = time.time()
mapping.recast_pcl_to_map(xyz_array[::5], rgb_array[::5], len(xyz_array[::5]))
t_recast = (time.time() - start_time)*1000
start_time = time.time()
if disp_in_rviz:
pub_to_ros(pub, mapping.export_x.to_numpy(), mapping.export_color.to_numpy(), mapping.enable_texture)
t_pubros = (time.time() - start_time)*1000
start_time = time.time()
t_v2p = 0
if enable_rendering:
t_v2p = rendering(mapping)
t_render = (time.time() - start_time)*1000
count += 1
print(f"Time: pcl2npy {t_pcl2npy:.1f}ms t_recast {t_recast:.1f}ms ms t_v2p {t_v2p:.1f}ms t_pubros {t_pubros:.1f}ms t_render {t_render:.1f}ms")
def pub_to_ros(pub, pos_, colors_, enable_texture):
if enable_texture:
pts = np.concatenate((pos_, colors_.astype(float)/255.0), axis=1)
pub.publish(point_cloud(pts, '/world', has_rgb=True))
else:
pub.publish(point_cloud(pos_, '/world'))
def pose_call_back(msg):
global cur_trans
cur_trans = msg
def ros_subscribe_pcl():
sub2 = rospy.Subscriber("/kinect/vrpn_client/estimated_transform", TransformStamped, pose_call_back)
sub1 = rospy.Subscriber("/camera/depth_registered/points", PointCloud2, pcl_callback)
r = rospy.Rate(10) # 10hz
while not rospy.is_shutdown():
try:
r.sleep()
except KeyboardInterrupt:
break
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description='Taichi slam fast demo')
parser.add_argument("-r","--resolution", nargs=2, type=int, help="display resolution", default=[1024, 768])
parser.add_argument("-m","--method", type=str, help="dense mapping method: octo/esdf", default="octo")
parser.add_argument("-c","--cuda", help="enable cuda acceleration if applicable", action='store_true')
parser.add_argument("-t","--texture-enabled", help="showing the point cloud's texture", action='store_true')
parser.add_argument("--rviz", help="output to rviz", action='store_true')
parser.add_argument("-p", "--max-disp-particles", help="max output voxels", type=int,default=1000000)
parser.add_argument("-b","--bagpath", help="path of bag", type=str,default='')
parser.add_argument("-o","--occupy-thres", help="thresold for occupy", type=int,default=2)
parser.add_argument("-s","--map-size", help="size of map xy,z in meter", nargs=2, type=float, default=[100, 10])
parser.add_argument("--blk", help="block size of esdf, if blk==1; then dense", type=int, default=16)
parser.add_argument("-v","--voxel-size", help="size of voxel", type=float, default=0.05)
parser.add_argument("-K", help="division each axis of octomap, when K>2, octomap will be K**3-map", type=int, default=2)
parser.add_argument("-f", "--rendering-final", help="only rendering the final state", action='store_true')
parser.add_argument("--record", help="record to C code", action='store_true')
args = parser.parse_args()
RES_X = args.resolution[0]
RES_Y = args.resolution[1]
disp_in_rviz = args.rviz
print(f"Res [{RES_X}x{RES_Y}] GPU {args.cuda} RVIZ {disp_in_rviz} size of map {args.map_size} grid {args.voxel_scale} ")
if args.record:
ti.core.start_recording('./export/TaichiSLAM.yml')
ti.init(arch=ti.cc)
else:
if args.cuda:
ti.init(arch=ti.cuda)
else:
ti.init(arch=ti.cpu, debug=True)
gui = ti.GUI('TaichiSLAM', (RES_X, RES_Y))
level = 1
scene = tina.Scene(RES_X, RES_Y, bgcolor=(0.1, 0.1, 0.1))
pars1 = tina.SimpleParticles(maxpars=args.max_disp_particles)
pars2 = tina.SimpleParticles(maxpars=args.max_disp_particles)
material1 = tina.Lamp()
material2 = tina.Lamp()
scene.add_object(pars1, material1)
scene.add_object(pars2, material2)
if args.method == "octo":
mapping = Octomap(texture_enabled=args.texture_enabled,
max_disp_particles=args.max_disp_particles,
min_occupy_thres = args.occupy_thres,
map_scale=args.map_size,
voxel_scale=args.voxel_scale,
K=args.K)
elif args.method == "esdf":
mapping = DenseTSDF(texture_enabled=args.texture_enabled,
max_disp_particles=args.max_disp_particles,
min_occupy_thres = args.occupy_thres,
map_scale=args.map_size,
voxel_scale=args.voxel_scale,
num_voxel_per_blk_axis=args.blk)
scene.init_control(gui, radius=6, theta=-math.pi/4,center=(0, 0, 0), is_ortho=True)
if disp_in_rviz:
rospy.init_node("Taichimapping", disable_signals=False)
pub = rospy.Publisher('/pcl', PointCloud2, queue_size=10)
if args.bagpath == "":
print("No data input, using random generate maps")
mapping.random_init_octo(1000)
while gui.running:
rendering(mapping)
else:
iteration_over_bag(args.bagpath,
lambda _1, _2: taichimapping_pcl_callback(mapping, _1, _2, not args.rendering_final))
while gui.running:
rendering(mapping)