forked from taylanates24/object-detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining.yaml
executable file
·56 lines (52 loc) · 2.26 KB
/
training.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
imgaug: # write the desired values, and append the probability, e.g. [val1, val2, probability] or null if that augmentation won't be used.
num_aug: 3 # number of augmentations that is randomly chosen from list at each iteration.
fliplr: 0.5 # 0.5
scale: [0.95, 1.05] # [0.95, 1.05]
brightness: [-10, 10] # [-10, 10]
saturation: [-10, 10] # [-10, 10]
hue: [-10, 10] # [-10, 10]
add_grayscale: [0, 0.2] # [0, 0.2]
motion_blur: [3, 5] # [3, 5]
contrast: [0.8, 1.2] # [0.8, 1.2]
translate: [[-0.1, 0.1], [-0.1, 0.1]] # [[-0.1, 0.1], [-0.1, 0.1]]
rotate: [-5, 5] # [-5, 5]
shear: [-5, 5] # [-5, 5]
copy_paste: # write the desired values or null if that augmentation won't be used.
bboxes_memory: 20
pasted_bbox_number: 4
augment_box: True
box_augments:
fliplr: 1.0 # 0.5
brightness: [-10, 10] # [-10, 10]
saturation: null #[-10, 10] # [-10, 10]
add_grayscale: [0, 0.2] # [0, 0.2]
hue: null #[-10, 10] # [-10, 10]
contrast: null #[0.8, 1.2] # [0.8, 1.2]
motion_blur: null # [3, 5] # [3, 5]
threshold: 0.5 # if the intersextion of area of labels and pasted bboxes is exceeds the threshold, that bbox is simply dropped out.
cutout:
fill_type: 1 # the index of ['gaussian_noise', 'random_color', 'white', 'black', 'gray']
percentages: [0.15, 0.2, 0.25] # number of percentage is the number of cutout boxes, the value of percentage is the percentage of cutout boxes wrt the image size
threshold: 0.5 # if the intersextion of area of labels and cutout bboxes is exceeds the threshold, that bbox is simply dropped out.
training:
image_path: '/workspaces/object-detection/datasets/coco128/images/train2017'
annotation_path: '/workspaces/object-detection/datasets/coco128_train.json'
image_size: 480
normalize: True
augmentations: ['imgaug', 'cutout']
batch_size: 1
shuffle: False
num_workers: 0
drop_last: True
optimizer: 'adam' # 'adam', 'adamw', 'sgd' or 'asgd'
lr_scheduler: 'cosine' # 'cosine', 'multistep_lr', 'cosine_annealing'
learning_rate: 0.001
val_frequency: 1
epochs: 500
validation:
image_path: '/workspaces/object-detection/datasets/coco128/images/train2017'
annotation_path: '/workspaces/object-detection/datasets/coco128_train.json'
batch_size: 1
shuffle: False
num_workers: 0
drop_last: True