-
Notifications
You must be signed in to change notification settings - Fork 223
/
Copy pathcensus_income_demo.py
223 lines (184 loc) · 8.48 KB
/
census_income_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
"""
Multi-gate Mixture-of-Experts demo with census income data.
Copyright (c) 2018 Drawbridge, Inc
Licensed under the MIT License (see LICENSE for details)
Written by Alvin Deng
"""
import random
import pandas as pd
import numpy as np
import tensorflow as tf
from tensorflow.keras import backend as K
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.initializers import VarianceScaling
from tensorflow.keras.layers import Input, Dense
from tensorflow.keras.models import Model
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.callbacks import Callback
from sklearn.metrics import roc_auc_score
from mmoe import MMoE
SEED = 1
# Fix numpy seed for reproducibility
np.random.seed(SEED)
# Fix random seed for reproducibility
random.seed(SEED)
# Fix TensorFlow graph-level seed for reproducibility
tf.random.set_seed(SEED)
# Simple callback to print out ROC-AUC
class ROCCallback(Callback):
def __init__(self, training_data, validation_data, test_data):
self.train_X = training_data[0]
self.train_Y = training_data[1]
self.validation_X = validation_data[0]
self.validation_Y = validation_data[1]
self.test_X = test_data[0]
self.test_Y = test_data[1]
def on_train_begin(self, logs={}):
return
def on_train_end(self, logs={}):
return
def on_epoch_begin(self, epoch, logs={}):
return
def on_epoch_end(self, epoch, logs={}):
train_prediction = self.model.predict(self.train_X)
validation_prediction = self.model.predict(self.validation_X)
test_prediction = self.model.predict(self.test_X)
# Iterate through each task and output their ROC-AUC across different datasets
for index, output_name in enumerate(self.model.output_names):
train_roc_auc = roc_auc_score(self.train_Y[index], train_prediction[index])
validation_roc_auc = roc_auc_score(self.validation_Y[index], validation_prediction[index])
test_roc_auc = roc_auc_score(self.test_Y[index], test_prediction[index])
print(
'ROC-AUC-{}-Train: {} ROC-AUC-{}-Validation: {} ROC-AUC-{}-Test: {}'.format(
output_name, round(train_roc_auc, 4),
output_name, round(validation_roc_auc, 4),
output_name, round(test_roc_auc, 4)
)
)
return
def on_batch_begin(self, batch, logs={}):
return
def on_batch_end(self, batch, logs={}):
return
def data_preparation():
# The column names are from
# https://www2.1010data.com/documentationcenter/prod/Tutorials/MachineLearningExamples/CensusIncomeDataSet.html
column_names = ['age', 'class_worker', 'det_ind_code', 'det_occ_code', 'education', 'wage_per_hour', 'hs_college',
'marital_stat', 'major_ind_code', 'major_occ_code', 'race', 'hisp_origin', 'sex', 'union_member',
'unemp_reason', 'full_or_part_emp', 'capital_gains', 'capital_losses', 'stock_dividends',
'tax_filer_stat', 'region_prev_res', 'state_prev_res', 'det_hh_fam_stat', 'det_hh_summ',
'instance_weight', 'mig_chg_msa', 'mig_chg_reg', 'mig_move_reg', 'mig_same', 'mig_prev_sunbelt',
'num_emp', 'fam_under_18', 'country_father', 'country_mother', 'country_self', 'citizenship',
'own_or_self', 'vet_question', 'vet_benefits', 'weeks_worked', 'year', 'income_50k']
# Load the dataset in Pandas
train_df = pd.read_csv(
'data/census-income.data.gz',
delimiter=',',
header=None,
index_col=None,
names=column_names
)
other_df = pd.read_csv(
'data/census-income.test.gz',
delimiter=',',
header=None,
index_col=None,
names=column_names
)
# First group of tasks according to the paper
label_columns = ['income_50k', 'marital_stat']
# One-hot encoding categorical columns
categorical_columns = ['class_worker', 'det_ind_code', 'det_occ_code', 'education', 'hs_college', 'major_ind_code',
'major_occ_code', 'race', 'hisp_origin', 'sex', 'union_member', 'unemp_reason',
'full_or_part_emp', 'tax_filer_stat', 'region_prev_res', 'state_prev_res', 'det_hh_fam_stat',
'det_hh_summ', 'mig_chg_msa', 'mig_chg_reg', 'mig_move_reg', 'mig_same', 'mig_prev_sunbelt',
'fam_under_18', 'country_father', 'country_mother', 'country_self', 'citizenship',
'vet_question']
train_raw_labels = train_df[label_columns]
other_raw_labels = other_df[label_columns]
transformed_train = pd.get_dummies(train_df.drop(label_columns, axis=1), columns=categorical_columns)
transformed_other = pd.get_dummies(other_df.drop(label_columns, axis=1), columns=categorical_columns)
# Filling the missing column in the other set
transformed_other['det_hh_fam_stat_ Grandchild <18 ever marr not in subfamily'] = 0
# One-hot encoding categorical labels
train_income = to_categorical((train_raw_labels.income_50k == ' 50000+.').astype(int), num_classes=2)
train_marital = to_categorical((train_raw_labels.marital_stat == ' Never married').astype(int), num_classes=2)
other_income = to_categorical((other_raw_labels.income_50k == ' 50000+.').astype(int), num_classes=2)
other_marital = to_categorical((other_raw_labels.marital_stat == ' Never married').astype(int), num_classes=2)
dict_outputs = {
'income': train_income.shape[1],
'marital': train_marital.shape[1]
}
dict_train_labels = {
'income': train_income,
'marital': train_marital
}
dict_other_labels = {
'income': other_income,
'marital': other_marital
}
output_info = [(dict_outputs[key], key) for key in sorted(dict_outputs.keys())]
# Split the other dataset into 1:1 validation to test according to the paper
validation_indices = transformed_other.sample(frac=0.5, replace=False, random_state=SEED).index
test_indices = list(set(transformed_other.index) - set(validation_indices))
validation_data = transformed_other.iloc[validation_indices]
validation_label = [dict_other_labels[key][validation_indices] for key in sorted(dict_other_labels.keys())]
test_data = transformed_other.iloc[test_indices]
test_label = [dict_other_labels[key][test_indices] for key in sorted(dict_other_labels.keys())]
train_data = transformed_train
train_label = [dict_train_labels[key] for key in sorted(dict_train_labels.keys())]
return train_data, train_label, validation_data, validation_label, test_data, test_label, output_info
def main():
# Load the data
train_data, train_label, validation_data, validation_label, test_data, test_label, output_info = data_preparation()
num_features = train_data.shape[1]
print('Training data shape = {}'.format(train_data.shape))
print('Validation data shape = {}'.format(validation_data.shape))
print('Test data shape = {}'.format(test_data.shape))
# Set up the input layer
input_layer = Input(shape=(num_features,))
# Set up MMoE layer
mmoe_layers = MMoE(
units=4,
num_experts=8,
num_tasks=2
)(input_layer)
output_layers = []
# Build tower layer from MMoE layer
for index, task_layer in enumerate(mmoe_layers):
tower_layer = Dense(
units=8,
activation='relu',
kernel_initializer=VarianceScaling())(task_layer)
output_layer = Dense(
units=output_info[index][0],
name=output_info[index][1],
activation='softmax',
kernel_initializer=VarianceScaling())(tower_layer)
output_layers.append(output_layer)
# Compile model
model = Model(inputs=[input_layer], outputs=output_layers)
adam_optimizer = Adam()
model.compile(
loss={'income': 'binary_crossentropy', 'marital': 'binary_crossentropy'},
optimizer=adam_optimizer,
metrics=['accuracy']
)
# Print out model architecture summary
model.summary()
# Train the model
model.fit(
x=train_data,
y=train_label,
validation_data=(validation_data, validation_label),
callbacks=[
ROCCallback(
training_data=(train_data, train_label),
validation_data=(validation_data, validation_label),
test_data=(test_data, test_label)
)
],
epochs=100
)
if __name__ == '__main__':
main()