forked from hyseob/PyMDNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
170 lines (136 loc) · 6.01 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import os
import scipy.io
import numpy as np
from collections import OrderedDict
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import torch
def append_params(params, module, prefix):
for child in module.children():
for k,p in child._parameters.iteritems():
if p is None: continue
if isinstance(child, nn.BatchNorm2d):
name = prefix + '_bn_' + k
else:
name = prefix + '_' + k
if name not in params:
params[name] = p
else:
raise RuntimeError("Duplicated param name: %s" % (name))
class LRN(nn.Module):
def __init__(self):
super(LRN, self).__init__()
def forward(self, x):
#
# x: N x C x H x W
pad = Variable(x.data.new(x.size(0), 1, 1, x.size(2), x.size(3)).zero_())
x_sq = (x**2).unsqueeze(dim=1)
x_tile = torch.cat((torch.cat((x_sq,pad,pad,pad,pad),2),
torch.cat((pad,x_sq,pad,pad,pad),2),
torch.cat((pad,pad,x_sq,pad,pad),2),
torch.cat((pad,pad,pad,x_sq,pad),2),
torch.cat((pad,pad,pad,pad,x_sq),2)),1)
x_sumsq = x_tile.sum(dim=1).squeeze(dim=1)[:,2:-2,:,:]
x = x / ((2.+0.0001*x_sumsq)**0.75)
return x
class MDNet(nn.Module):
def __init__(self, model_path=None, K=1):
super(MDNet, self).__init__()
self.K = K
self.layers = nn.Sequential(OrderedDict([
('conv1', nn.Sequential(nn.Conv2d(3, 96, kernel_size=7, stride=2),
nn.ReLU(),
LRN(),
nn.MaxPool2d(kernel_size=3, stride=2))),
('conv2', nn.Sequential(nn.Conv2d(96, 256, kernel_size=5, stride=2),
nn.ReLU(),
LRN(),
nn.MaxPool2d(kernel_size=3, stride=2))),
('conv3', nn.Sequential(nn.Conv2d(256, 512, kernel_size=3, stride=1),
nn.ReLU())),
('fc4', nn.Sequential(nn.Dropout(0.5),
nn.Linear(512 * 3 * 3, 512),
nn.ReLU())),
('fc5', nn.Sequential(nn.Dropout(0.5),
nn.Linear(512, 512),
nn.ReLU()))]))
self.branches = nn.ModuleList([nn.Sequential(nn.Dropout(0.5),
nn.Linear(512, 2)) for _ in range(K)])
if model_path is not None:
if os.path.splitext(model_path)[1] == '.pth':
self.load_model(model_path)
elif os.path.splitext(model_path)[1] == '.mat':
self.load_mat_model(model_path)
else:
raise RuntimeError("Unkown model format: %s" % (model_path))
self.build_param_dict()
def build_param_dict(self):
self.params = OrderedDict()
for name, module in self.layers.named_children():
append_params(self.params, module, name)
for k, module in enumerate(self.branches):
append_params(self.params, module, 'fc6_%d'%(k))
def set_learnable_params(self, layers):
for k, p in self.params.iteritems():
if any([k.startswith(l) for l in layers]):
p.requires_grad = True
else:
p.requires_grad = False
def get_learnable_params(self):
params = OrderedDict()
for k, p in self.params.iteritems():
if p.requires_grad:
params[k] = p
return params
def forward(self, x, k=0, in_layer='conv1', out_layer='fc6'):
#
# forward model from in_layer to out_layer
run = False
for name, module in self.layers.named_children():
if name == in_layer:
run = True
if run:
x = module(x)
if name == 'conv3':
x = x.view(x.size(0),-1)
if name == out_layer:
return x
x = self.branches[k](x)
if out_layer=='fc6':
return x
elif out_layer=='fc6_softmax':
return F.softmax(x)
def load_model(self, model_path):
states = torch.load(model_path)
shared_layers = states['shared_layers']
self.layers.load_state_dict(shared_layers)
def load_mat_model(self, matfile):
mat = scipy.io.loadmat(matfile)
mat_layers = list(mat['layers'])[0]
# copy conv weights
for i in range(3):
weight, bias = mat_layers[i*4]['weights'].item()[0]
self.layers[i][0].weight.data = torch.from_numpy(np.transpose(weight, (3,2,0,1)))
self.layers[i][0].bias.data = torch.from_numpy(bias[:,0])
class BinaryLoss(nn.Module):
def __init__(self):
super(BinaryLoss, self).__init__()
def forward(self, pos_score, neg_score):
pos_loss = -F.log_softmax(pos_score)[:,1]
neg_loss = -F.log_softmax(neg_score)[:,0]
loss = pos_loss.sum() + neg_loss.sum()
return loss
class Accuracy():
def __call__(self, pos_score, neg_score):
pos_correct = (pos_score[:,1] > pos_score[:,0]).sum().float()
neg_correct = (neg_score[:,1] < neg_score[:,0]).sum().float()
pos_acc = pos_correct / (pos_score.size(0) + 1e-8)
neg_acc = neg_correct / (neg_score.size(0) + 1e-8)
return pos_acc.data[0], neg_acc.data[0]
class Precision():
def __call__(self, pos_score, neg_score):
scores = torch.cat((pos_score[:,1], neg_score[:,1]), 0)
topk = torch.topk(scores, pos_score.size(0))[1]
prec = (topk < pos_score.size(0)).float().sum() / (pos_score.size(0)+1e-8)
return prec.data[0]