-
Notifications
You must be signed in to change notification settings - Fork 1
/
LeetCode-322-Coin-Change.java
367 lines (296 loc) · 11.1 KB
/
LeetCode-322-Coin-Change.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
class Solution {
// 1. Doesn't work
/**
Input:
[186,419,83,408]
6249
Output: -1
Expected: 20
Analysis:
Based on this approach
Coin Num
419 14 5866 383
408 0
186 2 372 11
83
So the strategy that always select large coins doesn't work in a DP problem.
*/
public int coinChange(int[] coins, int amount) {
Arrays.sort(coins);
reverse(coins);
int count = 0;
for (int coin : coins) {
if (amount < coin) continue;
count += amount / coin;
amount = amount % coin;
}
if (amount != 0) return -1;
return count;
}
private void reverse(int[] arr) {
int lo = 0, hi = arr.length - 1;
while (lo < hi) {
int temp = arr[lo];
arr[lo] = arr[hi];
arr[hi] = temp;
lo++;
hi--;
}
}
// 2.DFS
/**
Test cases:
[1]
0
Expected: 0
[1,2147483647]
2
Expected: 2
*/
public int coinChange(int[] coins, int amount) {
Arrays.sort(coins);
int[] res = new int[1];
res[0] = Integer.MAX_VALUE;
helper(coins, coins.length - 1, amount, res, 0);
return res[0] == Integer.MAX_VALUE ? -1 : res[0];
}
private void helper(int[] coins, int start, int amount, int[] res, int count) {
if (start < 0) return;
if (amount % coins[start] == 0) {
// we get an answer, but not sure if it is the minimum answer
res[0] = Math.min(res[0], count + amount / coins[start]);
return;
}
for (int i = amount / coins[start]; i >= 0; i--) {
if (count + i >= res[0]) return;
helper(coins, start - 1, amount - coins[start] * i, res, count + i);
}
}
// public int coinChange(int[] coins, int amount) {
// if (coins == null || coins.length == 0) return -1;
// Arrays.sort(coins);
// int[] res = new int[1];
// res[0] = Integer.MAX_VALUE;
// DFS(coins, amount, coins.length - 1, 0, res);
// return res[0] == Integer.MAX_VALUE ? -1 : res[0];
// }
// private void DFS(int[] coins, int amount, int start, int count, int[] res) {
// if (start < 0) return;
// if (amount % coins[start] == 0) {
// // means the remaining amount could all use coins[i] to fill
// res[0] = Math.min(res[0], count + amount / coins[start]);
// return;
// }
// // amount / coins[start] is number of coins[start] selected. We search from most amount of coins[start] to 0
// // as we are search from largest coins to smallest, so we search in reverse order in order to get most larger coins to make
// // we get the smallest number of coins faster
// for (int i = amount / coins[start]; i >= 0; i--) {
// if (i + count > res[0]) return;
// DFS(coins, amount - i * coins[start], start - 1, count + i, res);
// }
// }
// DFS. recerse order (looks like there is some proble using Arrays.sort, but the approach is viable)
// public int coinChange(int[] coins, int amount) {
// if (coins == null || coins.length == 0) return -1;
// // Arrays.sort(coins);
// Arrays.sort(coins, (a, b) -> (int) b - (int) a);
// int[] res = new int[1];
// res[0] = Integer.MAX_VALUE;
// DFS(coins, amount, 0, 0, res);
// return res[0] == Integer.MAX_VALUE ? -1 : res[0];
// }
// private void DFS(int[] coins, int amount, int start, int count, int[] res) {
// if (amount % coins[start] == 0) {
// // means the remaining amount could all use coins[i] to fill
// res[0] = Math.min(res[0], count + amount / coins[start]);
// return;
// }
// // amount / coins[start] is number of coins[start] selected. We search from most amount of coins[start] to 0
// // as we are search from largest coins to smallest, so we search in reverse order in order to get most larger coins to make
// // we get the smallest number of coins faster
// for (int i = amount / coins[start]; i >= 0; i--) {
// if (i + count > res[0]) return;
// if (start + 1 >= coins.length) return;
// DFS(coins, amount - i * coins[start], start + 1, count + i, res);
// }
// }
// dp without optimization:
/**
[1,2,5]
11
[2]
3
[1]
0
dp:
[0, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
[0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6]
[0, 1, 1, 2, 2, 1, 2, 2, 3, 3, 2, 3]
Time Complexity: O(N * amount * k)
Time: 638 ms
*/
// public int coinChange(int[] coins, int amount) {
// int N = coins.length;
// int[][] dp = new int[N + 1][amount + 1];
// for (int i = 0; i <= N; i++) {
// for (int j = 0; j <= amount; j++) {
// dp[i][j] = amount + 1;
// }
// }
// for (int i = 0; i <= N; i++) {
// dp[i][0] = 0;
// }
// for (int i = 1; i <= N; i++) {
// for (int j = 1; j <= amount; j++) {
// for (int k = 0; k * coins[i - 1] <= j; k++) {
// if (dp[i - 1][j - k * coins[i - 1]] < amount + 1) {
// dp[i][j] = Math.min(dp[i][j], dp[i - 1][j - k * coins[i - 1]] + k);
// }
// }
// }
// }
// // printArray(dp);
// return dp[N][amount] == amount + 1 ? -1 : dp[N][amount];
// }
private void printArray(int[][] arr) {
for (int i = 0; i < arr.length; i++) {
System.out.println(Arrays.toString(arr[i]));
}
}
// Optimize time
/**
dp:
[0, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
[0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6]
[0, 1, 1, 2, 2, 1, 2, 2, 3, 3, 2, 3]
Time Complexity: O(N * amount)
Time: 35 ms
*/
// public int coinChange(int[] coins, int amount) {
// int N = coins.length;
// // sub problem
// int[][] dp = new int[N + 1][amount + 1];
// // init
// for (int i = 0; i <= N; i++) {
// for (int j = 0; j <= amount; j++) {
// dp[i][j] = amount + 1;
// }
// }
// // if amount = 0, the result is always 0
// for (int i = 0; i <= N; i++) {
// dp[i][0] = 0;
// }
// for (int i = 1; i <= N; i++) {
// for (int j = 1; j <= amount; j++) {
// dp[i][j] = dp[i - 1][j];
// if (j >= coins[i - 1]) dp[i][j] = Math.min(dp[i][j], dp[i][j - coins[i - 1]] + 1);
// }
// }
// // printArray(dp);
// return dp[N][amount] == amount + 1 ? -1 : dp[N][amount];
// }
// Optimize Space
/**
dp:
[0, 1, 1, 2, 2, 1, 2, 2, 3, 3, 2, 3]
Time Complexity: O(N * amount)
Time: 10 ms
*/
// public int coinChange(int[] coins, int amount) {
// int N = coins.length;
// // sub problem
// int[] dp = new int[amount + 1];
// for (int i = 1; i <= amount; i++) dp[i] = amount + 1;
// for (int i = 0; i < N; i++) {
// for (int j = 1; j <= amount; j++) {
// if (j >= coins[i]) dp[j] = Math.min(dp[j], dp[j - coins[i]] + 1);
// }
// }
// // System.out.println(Arrays.toString(dp));
// return dp[amount] == amount + 1 ? -1 : dp[amount];
// }
/**
Follow-up: Could output the list of coins that has minimum coins to make up the amount?
*/
// Print the list of coins that has minimum coins to make up the amount
public int coinChange(int[] coins, int amount) {
int N = coins.length;
int[] coinsPos = new int[amount + 1];
for (int i = 0; i < N; i++) coinsPos[i] = coins[i];
// sub problem
int[] dp = new int[amount + 1];
for (int i = 1; i <= amount; i++) dp[i] = amount + 1;
for (int i = 0; i < N; i++) {
for (int j = 1; j <= amount; j++) {
if (j >= coins[i]) {
if (dp[j] > dp[j - coins[i]] + 1) {
dp[j] = dp[j - coins[i]] + 1;
coinsPos[j] = coins[i];
}
}
}
}
List<Integer> list = new ArrayList<>();
int pos = amount;
while (pos > 0) {
list.add(0, coinsPos[pos]);
pos -= coinsPos[pos];
}
System.out.println(Arrays.toString(coinsPos));
System.out.println(list);
return dp[amount] == amount + 1 ? -1 : dp[amount];
}
// 3.DP (pull)
/*
https://www.cnblogs.com/grandyang/p/5138186.html
https://leetcode.com/problems/coin-change/discuss/77360/C%2B%2B-O(n*amount)-time-O(amount)-space-DP-solution
subproblem:
dp[i] - the min number of coins to construct amount i
recurrence relation:
Assuming that dp [0, i - 1] has already been the most optimized number of coins to change
dp[i] = min(dp[i], dp[i - coins[j]]), i belongs to [1, amount], j belongs to [0, coins.length)
example: for i amount, it could be transit to three amount: from dp[i - 1] plus 1, from dp[i - 2] plus 2, from dp[i - 5] plus 5
init:
dp[0] = 0; // amount is 0, so the number of coins is 0
ans:
dp[amount]
*/
// public int coinChange(int[] coins, int amount) {
// // subproblem:
// int[] dp = new int[amount + 1];
// // init
// Arrays.fill(dp, amount + 1);
// dp[0] = 0;
// // recurrence relation
// for (int i = 1; i <= amount; i++) {
// for (int j = 0; j < coins.length; j++) {
// if (i - coins[j] >= 0) {
// dp[i] = Math.min(dp[i], dp[i - coins[j]] + 1);
// }
// }
// }
// // ans
// return dp[amount] == amount + 1 ? -1 : dp[amount];
// }
// 3.DP
/**
http://zxi.mytechroad.com/blog/dynamic-programming/leetcode-322-coin-change/
if num of coins is <<<<< amount, then it's better to loop the coin outside.
*/
public int coinChange(int[] coins, int amount) {
// subproblem
int[] dp = new int[amount + 1];
// init
Arrays.fill(dp, amount + 1);
dp[0] = 0;
for (int coin : coins) {
for (int i = coin; i <= amount; i++) {
dp[i] = Math.min(dp[i], dp[i - coin] + 1);
}
}
// ans
return dp[amount] == amount + 1 ? -1 : dp[amount];
}
}