-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathdroid_dataloader.py
94 lines (82 loc) · 3.36 KB
/
droid_dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import tqdm
import torch
from torch.utils.data import DataLoader
import tensorflow as tf
from robomimic.utils.rlds_utils import droid_dataset_transform, robomimic_transform, TorchRLDSDataset
from octo.data.dataset import make_dataset_from_rlds, make_interleaved_dataset
from octo.data.utils.data_utils import combine_dataset_statistics
from octo.utils.spec import ModuleSpec
tf.config.set_visible_devices([], "GPU")
# ------------------------------ Get Dataset Information ------------------------------
DATA_PATH = "" # UPDATE WITH PATH TO RLDS DATASETS
DATASET_NAMES = ["droid"] # You can add additional co-training datasets here
sample_weights = [1] # Add to this if you add additional co-training datasets
# ------------------------------ Construct Dataset ------------------------------
BASE_DATASET_KWARGS = {
"data_dir": DATA_PATH,
"image_obs_keys": {"primary": "exterior_image_1_left", "secondary": "exterior_image_2_left"},
"state_obs_keys": ["cartesian_position", "gripper_position"],
"language_key": "language_instruction",
"norm_skip_keys": ["proprio"],
"action_proprio_normalization_type": "bounds",
"absolute_action_mask": [True] * 10, # droid_dataset_transform uses absolute actions
"action_normalization_mask": [True] * 9 + [False], # don't normalize final (gripper) dimension
"standardize_fn": droid_dataset_transform,
}
# By default, only use success trajectories in DROID
filter_functions = [
[
ModuleSpec.create(
"robomimic.utils.rlds_utils:filter_success"
)
] if d_name == "droid" else [] for d_name in DATASET_NAMES
]
dataset_kwargs_list = [
{
"name": d_name,
"filter_functions": f_functions,
**BASE_DATASET_KWARGS
}
for d_name, f_functions in zip(DATASET_NAMES, filter_functions)
]
# Compute combined normalization stats. Note: can also set this to None to normalize each dataset separately
combined_dataset_statistics = combine_dataset_statistics(
[make_dataset_from_rlds(**dataset_kwargs, train=True)[1] for dataset_kwargs in dataset_kwargs_list]
)
dataset = make_interleaved_dataset(
dataset_kwargs_list,
sample_weights,
train=True,
shuffle_buffer_size=100000, # adjust this based on your system RAM
batch_size=None, # batching will be handled in PyTorch Dataloader object
balance_weights=False,
dataset_statistics=combined_dataset_statistics,
traj_transform_kwargs=dict(
window_size=2,
future_action_window_size=15,
subsample_length=100,
skip_unlabeled=True, # skip all trajectories without language annotation
),
frame_transform_kwargs=dict(
image_augment_kwargs=dict(
),
resize_size=dict(
primary=[128, 128],
secondary=[128, 128],
),
num_parallel_calls=200,
),
traj_transform_threads=48,
traj_read_threads=48,
)
dataset = dataset.map(robomimic_transform, num_parallel_calls=48)
# ------------------------------ Create Dataloader ------------------------------
pytorch_dataset = TorchRLDSDataset(dataset)
train_loader = DataLoader(
pytorch_dataset,
batch_size=128,
num_workers=0, # important to keep this to 0 so PyTorch does not mess with the parallelism
)
for i, sample in tqdm.tqdm(enumerate(train_loader)):
if i == 5000:
break