-
Notifications
You must be signed in to change notification settings - Fork 0
/
reghdfejl.ado
940 lines (844 loc) · 38.1 KB
/
reghdfejl.ado
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
*! reghdfejl 1.0.9 29 December 2024
// The MIT License (MIT)
//
// Copyright (c) 2023-24 David Roodman
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
* Version history at bottom
cap program drop reghdfejl
program define reghdfejl
version 15
qui jl GetEnv
local env `r(env)'
qui jl SetEnv reghdfejl
cap noi _reghdfejl `0'
local rc = _rc
qui jl SetEnv `env'
if `rc' & "`noncompactfile'"!="" use `noncompactfile'
exit `rc'
end
cap program drop _reghdfejl
program define _reghdfejl, eclass
version 15
if replay() {
if "`e(cmd)'" != "reghdfejl" error 301
if _by() error 190
Display `0'
exit 0
}
local cmdline: copy local 0
if `"`0'"'=="mask" {
cap findfile reghdfe.ado
if _rc {
qui findfile reghdfejl_masker.ado
mata pathsplit("`r(fn)'", _reghdfejlp1="", _reghdfejlp2=""); st_local("dest", _reghdfejlp1+"/reghdfe.ado")
copy "`r(fn)'" "`dest'", replace
di _n as txt "File copied:"
di as res " `r(fn)' -> `dest'"
}
else {
local reghdfeado `r(fn)'
qui mata st_local("firstline", fget(fh = fopen("`r(fn)'", "r"))); _fclose(fh)
if `"`firstline'"'=="*! REGHDFEJLMASKER" {
di as txt "Already masked."
exit 0
}
mata st_local("dest", pathrmsuffix("`reghdfeado'") + "_backup_.ado")
copy "`reghdfeado'" "`dest'", replace
qui findfile reghdfejl_masker.ado
cap noi copy "`r(fn)'" "`reghdfeado'", replace
if _rc==608 {
di as err "If you have run reghdfe in this Stata session, it can't be masked now. Restart Stata first."
error 608
}
di _n as txt "Files copied:"
di as res " `reghdfeado' -> `dest'"
di as res " `r(fn)' -> `reghdfeado'"
}
exit 0
}
if `"`0'"'=="unmask" {
cap findfile reghdfe_backup_.ado
if _rc {
di as err `"Can't find the reghdfe.ado backup file, "reghdfe_backup_.ado". Reinstall reghdfe by typing or clicking on:"'
di "{stata ssc install reghdfe, replace}"
exit 198
}
local source `r(fn)'
cap findfile reghdfe_p.ado
if _rc qui findfile reghdfejl.ado
mata pathsplit("`r(fn)'", _reghdfejlp1="", _reghdfejlp2=""); st_local("dest", _reghdfejlp1+"/reghdfe.ado")
copy "`source'" "`dest'", replace
di _n as txt "File copied:"
di as res " `source' -> `dest'"
di as txt "The change will take effect after you restart Stata."
exit 0
}
syntax anything [if] [in] [aw pw iw/], [Absorb(string) Robust CLuster(string) SMall vce(string) RESIDuals ITerations(integer 16000) gpu THReads(integer 0) ///
noSAMPle TOLerance(string) Level(real `c(level)') NOHEADer NOTABLE compact VERBose INTERruptible noCONStant ///
/*EXPosure(varlist max=1) OFFset(varlist max=1)*/ KEEPSINgletons SEParation(string) FAMily(string) link(string) ivreg2 *]
local sample = "`sample'"==""
local compact = "`compact'"!=""
local ivreg2 = "`ivreg2'"!=""
local GLM = `"`family'`link'"'!=""
_assert `iterations'>0, msg({cmdab:It:erations()} must be positive) rc(198)
local iteropt , maxiter=`iterations'
_get_eformopts, soptions eformopts(`options') allowed(hr shr IRr or RRr)
local eformopts `s(eform)'
_get_diopts diopts _options, `s(options)'
marksample touse
local gpulib = cond(c(os)=="MacOSX", "Metal", "CUDA")
if "`gpu'"!="" local methodopt , method = :`gpulib'
if `threads' local threadsopt , nthreads = `threads'
if "`keepsingletons'"!="" local singletonopt , drop_singletons = false
reghdfejl_load
if `"`exp'"' != "" {
local wtype: copy local weight
local wexp `"=`exp'"'
cap confirm var `exp'
if _rc {
tempname wtvar
gen double `wtvar' = `exp' if `touse'
}
else local wtvar: copy local exp
local wtopt , weights = :`wtvar'
if "`weight'"=="pweight" local robust robust
}
local hasiv 0
gettoken depname anything: anything, bind
while "`anything'"!="" {
gettoken term anything: anything, match(parenflag) bind
if "`parenflag'"=="(" {
_assert !`GLM', msg(IV only for linear models) rc(198)
local hasiv 1
tokenize "`term'", parse("=")
local instdname: copy local 1
local instsname: copy local 3
local inexogname `inexogname' `anything'
continue, break
}
else local inexogname `inexogname' `term'
}
if !`hasiv' local ivreg2 0
markout `touse' `depname' `instdname' `inexogname' `instsname'
if `"`vce'"' != "" {
_assert `"`cluster'"'=="", msg(only one of cluster() and vce() can be specified) rc(198)
_assert `"`robust'"' =="", msg(only one of robust and vce() can be specified ) rc(198)
tokenize `"`vce'"', parse(" ,")
local 0, `1'
syntax, [Robust CLuster UNadjusted ols bs BOOTstrap]
_assert "`robust'`cluster'`unadjusted'`ols'`bs'`bootstrap'"!="", msg("vcetype '`0'' not allowed") rc(198)
local bs = "`bs'`bootstrap'" != ""
macro shift
if `bs' {
_assert !`ivreg2', msg(fast bootstrapping not available when using ivreg2) rc(198)
local 0 `*'
syntax, [CLuster(string) Reps(integer 50) mse seed(string) SIze(integer 0) PROCs(integer 1) SAving(string)]
_assert `reps'>1, msg(reps() must be an integer greater than 1) rc(198)
_assert `size'>=0, msg(size() must be a positive integer) rc(198)
_assert `procs'>=0, msg(procs() must be a positive integer) rc(198)
if `procs'==0 local procs 1
if `"`saving'"'!="" {
_assert c(stata_version)>=16, rc(198) msg(vce(bs, saving()) requires Stata 16 or later)
local 0 using `saving'
syntax using/, [DOUBle replace]
local saving `using'`=cond(regexm("`using'", "^.*\.dta$"),"",".dta")'
if "`replace'"=="" confirm new file `saving'
}
cap confirm numeric var `cluster'
if _rc {
tempvar t
qui egen long `t' = group(`cluster')
local bslcuster: copy local t
}
else local bscluster: copy local cluster
if `"`seed'"'!="" set seed `seed'
}
else if "`cluster'"!="" local cluster `*'
}
if `"`cluster'"'=="" {
if "`robust'"!="" local vcovopt , Vcov.robust()
}
else {
tokenize `"`cluster'"', parse(" #")
local cluster `*' // enforce uniform use of spaces
local cluster: subinstr local cluster " # # " "#", all
local cluster: subinstr local cluster " # " "#", all
foreach term in `cluster' {
cap confirm numeric var `term'
if _rc { // allow clustering on interactions
if strpos(`"`term'"', "#") local term: subinstr local term "#" " ", all
tempvar t
qui egen long `t' = group(`term')
local _cluster `_cluster' `t'
}
else local _cluster `_cluster' `term'
}
markout `touse' `_cluster', strok
mata st_local("vcovopt", " , Vcov.cluster(" + invtokens(":":+tokens("`_cluster'"),",") + ")")
}
if `"`absorb'"' != "" {
local 0 `absorb'
syntax anything(equalok), [SAVEfe]
tokenize `anything', parse(" =")
while `"`1'"' != "" {
local t = "`2'"' == "="
if `t' {
confirm new var `1'
local fenames = `"`fenames'"' + " `1'"
macro shift 2
local namedfe 1
}
fvunab varlist: `1'
local feterms `feterms' `varlist'
local fenames = `"`fenames'"' + `" "" "' * (`:word count `varlist'' - `t')
macro shift
}
local absorb: copy local feterms
local N_hdfe: word count `feterms'
local feterms i.`: subinstr local feterms " " " i.", all'
local absorbvars: copy local feterms
local feterms: subinstr local feterms "##c." ")*(", all
local feterms: subinstr local feterms "#c." ")&(", all
local feterms: subinstr local feterms "##i." ")*fe(", all
local feterms: subinstr local feterms "##" "#", all
local feterms: subinstr local feterms "#" "#i.", all
local feterms: subinstr local feterms "i.i." "i.", all
local feterms: subinstr local feterms "#i." ")&fe(", all
local feterms: subinstr local feterms "i." "fe(", all
local feterms: subinstr local feterms " " ") + ", all
local feterms: subinstr local feterms ")" " )", all
local feterms: subinstr local feterms "(" "( ", all
local feterms + `feterms' )
local absorbvars: subinstr local absorbvars "i." " ", all
local absorbvars: subinstr local absorbvars "c." " ", all
local absorbvars: subinstr local absorbvars "#" " ", all
local absorbvars: list uniq absorbvars
foreach var in `absorbvars' {
cap confirm numeric var `var'
if _rc {
tempvar t
qui egen long `t' = group(`var') if `touse'
local absorbvars: subinstr local absorbvars "`var'" "`t'", word all
local feterms : subinstr local feterms "`var'" "`t'", word all
}
}
markout `touse' `absorbvars'
}
else local feterms + `="`constant'"==""'
if `GLM' {
local nl nl
_assert `"`absorb'"'!="", msg(Doesn't yet accept nonlinear models with no fixed effects. Use {help glm} instead.) rc(198)
_assert !`hasiv', msg(instrumental variables not accepted for nonlinear models) rc(198)
_assert "`wtopt'"=="", msg(weights not yet supported for nonlinear models) rc(198)
_assert "`tolerance'"=="", msg(the tolerance() option is for linear models) rc(198)
if `"`separation'"'!="" {
local 0, `separation'
syntax, [fe ir simplex mu]
_assert "`simplex'"=="", msg(separation(simplex) not yet supported) rc(198)
local separation `fe' `ir' `simplex' `mu'
local sepopt , separation=[:`:subinstr local separation " " ", :", all']
}
local families gaussian igaussian binomial nbinomial poisson gamma bernoulli geometric
if `"`family'"'=="" local family gaussian
else {
tokenize `family'
local 0, `1'
syntax, [GAUssian IGaussian BInomial NBinomial Poisson Gamma BErnoulli GEOmetric]
local family `gaussian' `igaussian' `binomial' `nbinomial' `poisson' `gamma' `bernoulli' `geometric'
_assert `:word count `family''==1, msg(family(`*') not allowed) rc(198)
if "`nbinomial'" != "" {
if "`2'"=="" local 2 1 // default to (negative) binomial with denominator=1
else confirm integer number `2'
local familyopt , NegativeBinomial(`2')
}
else {
if "`binomial'" != "" {
sum `dep' if `touse', meanonly
if r(max) != 1 {
if "`dep'"!="`depname'" replace `dep' = `dep' / r(max) if `touse'
else {
tempname t
gen double `t' = `dep' / r(max) if `touse' // rescale dep var to [0,1]
local dep: copy local t
}
}
}
local n: list posof "`family'" in families
local familyopt , `:word `n' of Normal InverseGuassian Binomial NegativeBinomial Poisson Gamma Bernoulli Geometric'()
}
}
if `"`link'"'=="" {
local n: list posof "`family'" in families
local linkopt , `:word `n' of Identity InverseSquareLink LogitLink LogLink LogLink InverseLink LogitLink LogLink'() // canonical links but log for nbinomial
}
else {
tokenize `0'
local 0, `1'
syntax, [Identity log Logit Probit Cloglog POWer OPOwer NBinomial LOGLog logc]
_assert "`opower'`loglog'`logc'`probit'"=="", msg(link(`link') not supported) rc(198)
local link `identity' `log' `logit' `cloglog' `nbinomial'
_assert `:word count `link''==1, msg(link(`link') not allowed) rc(198)
if "`power'"!="" {
confirm number `2'
local linkopt , PowerLink(`power')
}
else {
local links identity log logit cloglog nbinomial
local n: list posof "`link'" in links
local linkopt , `:word `n' of Identity Log Logit Cloglog NegativeBinomial'Link()
}
}
}
else if `"`tolerance'"'!="" {
_assert `tolerance'>0, msg({cmdab:tol:erance()} must be positive) rc(198)
local tolopt, tol=`tolerance', progress_bar=false
}
if "`residuals'" != "" {
cap drop _reghdfejl_resid
local residuals _reghdfejl_resid
}
else {
local 0, `_options'
syntax, [RESIDuals(name) *]
local _options: copy local options
}
if `"`_options'"' != "" di as inp `"`_options'"' as txt " ignored" _n
if "`residuals'`savefe'`namedfe'"!="" {
_assert !`ivreg2', msg(residuals, savefe, and namedfe features not available when using ivreg2) rc(198)
local saveopt , save = :`=cond("`residuals'"=="", "fe", cond("`savefe'`namedfe'"=="", "residuals", "all"))'
}
_fv_check_depvar `dep'
if `ivreg2' {
foreach varset in dep inexog instd insts {
fvexpand ``varset'name' if `touse'
local `varset'expanded `r(varlist)'
fvrevar ``varset'name' if `touse'
local `varset'vars `r(varlist)'
foreach var of local `varset'vars {
tempname t
local `varset'partialled ``varset'partialled' `t'
}
local allvars `allvars' ``varset'vars'
local allpartialled `allpartialled' ``varset'partialled'
}
}
else {
// translate varlists into StatsModels formulas, translating factor terms directly when possible, fvrevar'ing otherwise; do in main proc because may create temp vars
tempname termtab _termtab dummyrows freqs
mata `termtab' = J(0,3,"") // i/c, ib value, varname
foreach varset in dep inexog instd insts {
if `'"``varset'name'"'!="" {
if `hasiv' {
fvexpand ``varset'name' if `touse'
local `varset'expanded `r(varlist)'
}
fvunab varlist: ``varset'name'
gettoken term varlist: varlist, bind
local goodterms
while "`term'"!="" {
mata `_termtab' = J(0,3,"")
local norevar 1
tokenize `term', parse("#")
local _term `*'
local newterm
foreach factor of local _term {
if "`factor'" != "#" {
if regexm("`factor'", "^i\.(.*)$") {
sum `=regexs(1)' if `touse', meanonly
if r(max)>r(min) mata `_termtab' = `_termtab' \ "i", "nothing", "`=regexs(1)'" // skip i.var if var is constant in the sample
}
else if regexm("`factor'", "^i(b([0-9]+))\.(.*)$") {
sum `=regexs(3)' if `touse', meanonly
if r(max)>r(min) mata `_termtab' = `_termtab' \ "i", "`=regexs(2)'", "`=regexs(3)'"
}
else {
if substr(`"`factor'"',1,2)=="c." local factor = substr("`factor'", 3, .)
cap confirm var `factor'
if _rc { // bad syntax; or ts op or "i()...." that can't be expressed with StatsModels.jl DummyCoding()
fvexpand `term' if `touse'
local `varset'names ``varset'names' `r(varlist)'
foreach var in `r(varlist)' { // equivalent to fvrevar `r(varlist)' but a bit faster on big data sets
tempvar t
qui gen double `t' = `var' if `touse'
local `varset'vars ``varset'vars' `t'
local `varset'formula ``varset'formula' `t'
local putvars `putvars' `t'
}
local norevar 0
continue, break
}
mata `_termtab' = `_termtab' \ "c", "", "`factor'"
}
}
}
if `norevar' {
mata st_local("term", invtokens(`_termtab'[,3]'))
local term: subinstr local term " " "#", all
local `varset'formula ``varset'formula' `term'
local goodterms `goodterms' `term'
mata `termtab' = `termtab' \ `_termtab'
}
gettoken term varlist: varlist, bind
}
fvrevar `goodterms', list
local `varset'vars ``varset'vars' `r(varlist)'
local `varset'names ``varset'names' `r(varlist)'
local putvars `putvars' `r(varlist)'
local `varset'formula: subinstr local `varset'formula " " " + ", all
local `varset'formula: subinstr local `varset'formula "#" "&", all
}
}
mata `termtab' = uniqrows(`termtab')
mata `dummyrows' = selectindex(`termtab'[,1]:=="i")
mata st_local("dummyopt", invtokens(":" :+ `termtab'[`dummyrows',3]' :+ "=>DummyCoding(base=" :+ `termtab'[`dummyrows',2]' :+ "), "))
local dummyopt , contrasts=Dict{Symbol, DummyCoding}(`dummyopt')
mata `dummyrows' = uniqrowsfreq(uniqrows(`termtab'[, 1\3])[,2], `freqs'=.)
cap mata st_local("dups", invtokens(`dummyrows'[selectindex(`freqs':>1)]'))
foreach dup in `dups' { // any vars appearing with both i. and c.? (rare)
tempname t
local dfaliascmds `dfaliascmds' df.`t' = df.`dup';
foreach varset in dep inexog instd insts {
local `varset'formula: subinstr local `varset'formula "c.`dup'" "c.`t'", word all
local `varset'formula: subinstr local `varset'formula "`dup'" "`t'" , word all
local `varset'names ``varset'names' `dup'
local `varset'vars ``varset'vars' `t'
}
}
}
unab putvars: `putvars' `_cluster' `wtvar' `absorbvars' `bscluster'
local putvars: list uniq putvars
if `compact' {
tempfile noncompactfile
save "`noncompactfile'"
c_local noncompactfile `noncompactfile'
keep `putvars' `touse'
qui keep if `touse'
local iftouse
}
else local iftouse if `touse'
jl PutVarsToDF `putvars' `iftouse', nomissing doubleonly nolabel // put all vars in Julia DataFrame named df; making it a global makes it visible to workers, for bs
_jl: `dfaliascmds';
if "`verbose'"!="" jl: df
qui _jl: size(df,1)
_assert `r(ans)', rc(2001) msg(insufficient observations)
if `compact' drop _all
if `ivreg2' {
tempname ic df_a
forvalues i=1/`:word count `allvars'' {
local var: word `i' of `allvars'
_jl: reghdfejl.p = reg(df, @formula(`:word `i' of `allvars'' ~ 1 `feterms') `wtopt' `tolopt' `iteropt' `methodopt', progress_bar=false, save=:residuals);
_jl: reghdfejl.res = residuals(reghdfejl.p); replace!(reghdfejl.res, missing=>NaN);
jl GetVarsFromMat `:word `i' of `allpartialled'' `iftouse', source(reghdfejl.res)
_jl: reghdfejl.res = nothing;
}
_jl: st_numscalar("`df_a'", dof_fes(reghdfejl.p))
_jl: st_numscalar("`ic'", reghdfejl.p.iterations);
di as txt `"({browse "http://scorreia.com/research/hdfe.pdf":MWFE estimator} converged in `=`ic'' iterations)"'
_jl: reghdfejl.esample = Vector{Float64}(reghdfejl.p.esample);
// _jl: reghdfejl.p = partial_out(df, @formula(`:subinstr local allvars " " " + ", all' ~ 1 `feterms') `wtopt' `tolopt' `iteropt' `methodopt');
// jl GetVarsFromDF `allpartialled' `iftouse', source(reghdfejl.p[1]) cols(`allvars')
// _jl: st_numscalar("`df_a'", reghdfejl.p[5] - 1)
// _jl: st_numscalar("`ic'", maximum(reghdfejl.p[3]))
// _jl: reghdfejl.esample = Vector{Float64}(reghdfejl.p[2]);
jl GetVarsFromMat `touse' `iftouse', source(reghdfejl.esample) replace
_jl: reghdfejl.esample = nothing;
local 0, `_options'
syntax, [partial(string) first sfirst ffirst rf level(passthru) NOHEader NOFOoter EForm(passthru) DEPname(passthru) plus *]
if `"`partial'"'!="" {
fvexpand `partial' `iftouse'
foreach var in `r(varlist)' {
cap local _partial `_partial': word `:posof "`var'" in `inexog'expanded' of "`inexog'partialled'"
if _rc _assert 0, msg(variable `var' not found) rc(111)
}
}
* Estimate with ivreg2!
cap ivreg2 `deppartialled' `inexogpartialled' (`instdpartialled' = `instspartialled') if `touse', partial(`_partial') cluster(`_cluster') `robust' `small' `options' nocons sdofminus(`=`df_a'') // XXX other VCE types
if _rc error `=_rc'
tempname M
mat `M' = e(b)
local colnames: colnames `M'
_jl: reghdfejl.D = Dict(x=>y for (x,y) in zip(split("`allpartialled'"), split("`allvars'"))); // mapping from partialled, revar'D var names for ivreg2 back to display names
_jl: st_global("reghdfejl_ans", join(getindex.(Ref(reghdfejl.D), split("`colnames'")), " "))
mat colnames `M' = $reghdfejl_ans
ereturn repost b=`M', rename
foreach mat in S W {
cap mat `M' = e(`mat')
cap mat colnames `M' = `colnames'
cap mat rownames `M' = `colnames'
ereturn matrix `mat' = `M'
}
foreach macro in depvar depvar0 depvar1 instd instd0 instd1 insts insts0 insts1 exexog exexog0 exexog1 inexog inexog0 inexog1 partial partial0 partial1 {
local t `e(`macro')'
if "`t'"!="" {
_jl: st_global("reghdfejl_ans", join(getindex.(Ref(reghdfejl.D), split("`t'")), " "))
ereturn local `macro' $reghdfejl_ans
}
}
ereturn scalar df_a = `df_a'
ereturn scalar N_hdfe = `N_hdfe'
ereturn scalar ic = `ic'
_jl: st_numscalar("`M'", size(df,1) - nobs(reghdfejl.p));
ereturn scalar num_singletons = `M'
if `M' di as txt `"(dropped `e(num_singletons)' {browse "http://scorreia.com/research/singletons.pdf":singleton observations})"'
ereturn local title `e(title)' with Julia
ereturn local cmdline reghdfejl `cmdline'
ivreg2, `diopts' `first' `sfirst' `ffirst' `rf' `level' `noheader' `nofooter' `eform' `depname' `plus'
exit
}
if `hasiv' local ivarg + (`instdformula' ~ `instsformula')
* Estimate!
local flinejl f = @formula(`depformula' ~ `inexogformula' `ivarg' `feterms')
local cmdlinejl `nl'reg(df, f `familyopt' `linkopt' `wtopt' `vcovopt' `methodopt' `threadsopt' `singletonopt' `saveopt' `sepopt' `tolopt' `iteropt' `dummyopt')
_jl: `flinejl';
if "`verbose'"!="" {
di `"`flinejl'"'
di `"`cmdlinejl'"'
jl, `interruptible': m = `cmdlinejl'
}
else _jl, `interruptible': m = `cmdlinejl';
_assert `"`r(ans)'"'!="sample is empty", msg(no observations) rc(2000)
tempname k
_jl: k = length(coef(m)); st_numscalar("`k'", k);
_jl: sizedf = size(df);
if "`wtvar'"!="" _jl: sumweights = mapreduce((w,s)->(s ? w : 0), +, df.`wtvar', m.esample; init = 0);
if `k' & 0`bs' {
local hasclust = "`bscluster'"!=""
qui _jl: nworkers()
if `procs' > `r(ans)' _jl: addprocs(`procs'-`r(ans)'+(`r(ans)'==1), exeflags="-t1 --project=$(Base.active_project())"); /* single-threaded workers */ ///
@everywhere using `=cond(c(os)=="MacOSX", "Metal, AppleAccelerate", "CUDA, BLISBLAS")', DataFrames, FixedEffectModels;
else if `procs' < `r(ans)' _jl: rmprocs(workers()[end-(`r(ans)'-`procs'-(`procs'>1)):end]);
_jl: @everywhere using StableRNGs, SharedArrays;
_jl: @everywhere module reghdfejlbs global rng, id, wt end; // worker-specific storage
if "`saving'"!="" _jl: _reghdfejl_saving = SharedMatrix{Float64}(`reps', k);
_jl: @everywhere reghdfejlbs.rng = StableRNG(`=runiformint(0, 1e6)' * findfirst(==(myid()), procs()) + 42); // different, ~deterministic seeds for each worker
_jl: _reghdfejl_df = DataFrame(SharedMatrix(Matrix(df)), names(df)) // copy of df shareable across workers
if `hasclust' {
_jl: reghdfejl.s = Set(df.`bscluster'); _reghdfejl_Nclust = length(reghdfejl.s);
_jl: _reghdfejl_id = getindex.(Ref(Dict(zip(reghdfejl.s, 1:_reghdfejl_Nclust))), df.`bscluster'); /* ordinalize cluster id, in Main so workers can access*/
_jl: reghdfejl.s = nothing
}
else _jl: _reghdfejl_Nclust = size(df,1); reghdfejlbs.id = Colon();
_jl: _reghdfejl_bssize = iszero(0`size') ? _reghdfejl_Nclust : 0`size'; reghdfejl.reps = `reps'
_jl: Distributed.remotecall_eval(Main, procs(), :(reghdfejlbs.wt = Vector{Int}(undef, $(_reghdfejl_Nclust)))); ///
retval = @distributed (+) for m in 1:reghdfejl.reps ///
fill!(reghdfejlbs.wt, 0); ///
@inbounds for i in 1:_reghdfejl_bssize ///
reghdfejlbs.wt[rand(reghdfejlbs.rng, 1:_reghdfejl_Nclust)] += 1 ///
end; ///
_reghdfejl_df.__reghdfejl_bswt = reghdfejlbs.wt[_reghdfejl_id]; ///
`=cond("`wtopt'"!="", "_reghdfejl_df.__reghdfejl_bswt .*= _reghdfejl_df.`wtvar';", "")' ///
b = coef(`nl'reg(_reghdfejl_df, f `familyopt' `linkopt', weights=:__reghdfejl_bswt `methodopt' `threadsopt' `sepopt' `tolopt' `dummyopt')); ///
`=cond("`saving'"!="","_reghdfejl_saving[m,:] = b;", "")' ///
[b, b*b'] ///
end; ///
reghdfejl.Vbs = retval[1]; ///
reghdfejl.Vbs = (retval[2] .- reghdfejl.Vbs' ./ reghdfejl.reps .* reghdfejl.Vbs) ./ (reghdfejl.reps - `="`mse'"==""'); ///
Distributed.clear!((:rng, :id, :wt); mod=reghdfejlbs); ///
_reghdfejl_id = _reghdfejl_df = nothing;
}
if "`verbose'"=="" _jl: df = nothing; // yield memory
if `compact' {
_jl: GC.gc();
use `noncompactfile'
c_local noncompactfile
}
if "`savefe'`namedfe'" != "" {
_jl: FEs = fe(m); rename!(FEs, "FE" .* string.(1:`N_hdfe'));
forvalues a = 1/`N_hdfe' {
local fename: word `a' of `fenames'
if "`savefe'`fename'"!="" {
if "`fename"=="" local fename __hdfe`a'__
jl GetVarsFromDF `fename' if `touse', source(FEs) col(FE`a')
label var `fename' "[FE] `:word `a' of `absorb''"
}
}
_jl: FEs = nothing;
}
if "`residuals'"!="" {
_jl: res = residuals(m); replace!(res, missing=>NaN);
jl GetVarsFromMat `residuals' if `touse', source(res)
label var `residuals' "Residuals"
_jl: res = nothing;
}
tempname t N I
_jl: st_numscalar("`N'", nobs(m));
if `sample' {
tempname esample
_jl: reghdfejl.esample = Vector{Float64}(m.esample);
jl GetVarsFromMat `touse' if `touse', source(reghdfejl.esample) replace
_jl: reghdfejl.esample = nothing;
}
if `k' {
tempname b V
_assert `"`r(ans)'"'!="sample is empty", msg(no coefficients estimated) rc(111)
_jl: st_numscalar("`t'", coefnames(m)[1]=="(Intercept)");
local hascons = `t'
_jl: reghdfejl.b = coef(m);
_jl: reghdfejl.V = iszero(0`bs') ? vcov(m) : reghdfejl.Vbs;
_jl: reghdfejl.V = replace!(reghdfejl.V, NaN=>0.);
_jl: st_global("reghdfejl_ans", join(coefnames(m), "|"))
varlistJ2S, jlcoefnames($reghdfejl_ans) vars(`inexogvars' `instdvars') varnames(`inexognames' `instdnames')
global reghdfejl__coefnames `r(stcoefs)'
global reghdfejl__instdnames `instdnames'
_jl: reghdfejl.coefnames = "reghdfejl__coefnames" |> st_global |> split
_jl: `I' = [s=="_cons" ? 3 : s in split(st_global("reghdfejl__instdnames")) ? 1 : 2 for s in reghdfejl.coefnames] |> sortperm; // order endog-exog-cons
_jl: reghdfejl.b = collect(reghdfejl.b[`I']')
_jl: reghdfejl.V = reghdfejl.V[`I',`I'];
_jl: st_global("reghdfejl__coefnames", join(reghdfejl.coefnames[`I'], " "))
jl GetMatFromMat `b', source(reghdfejl.b)
jl GetMatFromMat `V', source(reghdfejl.V)
mat colnames `b' = $reghdfejl__coefnames
mat colnames `V' = $reghdfejl__coefnames
mat rownames `V' = $reghdfejl__coefnames
global reghdfejl__coefnames
global reghdfejl__instdnames
forvalues i=1/`:word count `coefnames'' {
if `V'[`i',`i']==0 di as txt "note: `:word `i' of `coefnames'' omitted because of collinearity"
}
if 0`bs' & "`saving'"!="" {
qui pwf
local currentframe `r(currentframe)'
tempname frame
cap frame drop `frame'
frame create `frame'
cap noi {
cwf `frame'
qui set obs `reps'
forvalues i=1/`=`k'' {
local coefname: word `i' of `coefnames'
local savvar = cond(strpos("`coefname'","."), "_bs_`i'", "_b_`coefname'")
local savvars `savvars' `savvar'
qui gen `double' `savvar' = .
label var `savvar' "_b[`coefname']"
}
jl GetVarsFromMat `savvars', source(view(_reghdfejl_saving,:,`I')) replace
_jl: _reghdfejl_saving = nothing
save `saving', replace
}
cwf `currentframe'
frame drop `frame'
if _rc error _rc
}
}
else local hascons = 0
ereturn post `b' `V', depname(`depname') obs(`=`N'') buildfvinfo findomitted `=cond(`sample', "esample(`touse')", "")'
ereturn local wtype: copy local wtype
ereturn local wexp: copy local wexp
ereturn scalar N_hdfe = 0`N_hdfe'
_jl: st_numscalar("`t'", sizedf[1]);
ereturn scalar N_full = `t'
mata st_numscalar("e(rank)", rank(st_matrix("e(V)")))
ereturn scalar df_m = e(rank)
_jl: st_numscalar("`t'", m.iterations);
ereturn scalar ic = `t'
_jl: st_numscalar("`t'", m.converged);
ereturn scalar converged = `t'
_jl: st_numscalar("`t'", sizedf[1] - nobs(m));
ereturn scalar num_singletons = `t'
if "`nl'"!="" {
_jl: st_numscalar("`t'", m.loglikelihood);
ereturn scalar ll = `t'
_jl: st_numscalar("`t'", m.nullloglikelihood);
ereturn scalar ll0 = `t'
ereturn local family `family'
ereturn local link `link'
}
else {
_jl: st_numscalar("`t'", dof_fes(m));
ereturn scalar df_a = `t'
_jl: st_numscalar("`t'", dof_residual(m));
ereturn scalar df_r = `t'
_jl: st_numscalar("`t'", rss(m));
ereturn scalar rss = `t'
_jl: st_numscalar("`t'", mss(m));
ereturn scalar mss = `t'
_jl: st_numscalar("`t'", r2(m));
ereturn scalar r2`' = `t'
_jl: st_numscalar("`t'", adjr2(m));
ereturn scalar r2_a = `t'
_jl: st_numscalar("`t'", m.F);
ereturn scalar F = `t'
if `hasiv' {
_jl: st_numscalar("`t'", m.F_kp);
ereturn scalar widstat = `t'
}
ereturn scalar rmse = sqrt(e(rss) / (e(N) - e(df_a) - e(rank)))
ereturn scalar ll = -e(N)/2*(1 + log(2*_pi / e(N) * e(rss) ))
ereturn scalar ll0 = -e(N)/2*(1 + log(2*_pi / e(N) * (e(rss) + e(mss))))
if 0`N_hdfe' {
_jl: st_numscalar("`t'", m.r2_within);
ereturn scalar r2_within = `t'
}
}
if "`wtvar'"=="" ereturn scalar sumweights = e(N)
else {
_jl: st_numscalar("`t'", sumweights);
ereturn scalar sumweights = `t'
}
if 0`bs' {
ereturn local vce bootstrap
ereturn local vcetype Bootstrap
_jl: st_numscalar("`t'", _reghdfejl_Nclust);
ereturn scalar N_clust = `t'
ereturn scalar N_clust1 = `t'
if "`bscluster'"!="" {
ereturn local cluster: copy local bscluster
ereturn local clustvar1: copy local bscluster
ereturn local title3 Statistics cluster-robust
}
else ereturn local title3 Statistics robust to heteroskedasticity
}
else if "`cluster'`robust'"=="" ereturn local vce ols
else {
ereturn local vcetype Robust
if "`cluster'"=="" {
ereturn local vce robust
ereturn local title3 Statistics robust to heteroskedasticity
}
else {
ereturn local vce cluster
ereturn local clustvar: copy local cluster
ereturn scalar N_clustervars = `:word count `cluster''
tokenize `cluster'
forvalues i=1/`e(N_clustervars)' {
ereturn local clustvar`i': copy local `i'
_jl: st_numscalar("`t'", m.nclusters[`i']);
ereturn scalar N_clust`i' = `t'
}
_jl: st_numscalar("`t'", minimum(m.nclusters));
ereturn scalar N_clust = `t'
ereturn local title3 Statistics cluster-robust
}
}
ereturn scalar drop_singletons = "`keepsingletons'"==""
ereturn scalar report_constant = `hascons'
ereturn local depvar: copy local depname
ereturn local indepvars `inexogname' `instdname'
ereturn local resid: copy local residuals
if `hasiv' {
ereturn local model iv
ereturn local inexog: copy local inexogexpanded
ereturn local instd: copy local instdexpanded
ereturn local insts: copy local instsexpanded
}
else ereturn local model ols
ereturn local title HDFE `=cond(`hasiv', "2SLS", cond("`nl'"=="","linear","nonlinear"))' regression with Julia
if 0`N_hdfe' ereturn local title2 Absorbing `N_hdfe' HDFE `=plural(0`N_hdfe', "group")'
ereturn local absvars: copy local absorb
ereturn local marginsnotok Residuals SCore
ereturn local predict reghdfejl_p
ereturn local estat_cmd reghdfejl_estat
ereturn local cmdline reghdfejl `cmdline'
ereturn local flinejl: copy local flinejl
ereturn local cmdlinejl: copy local cmdlinejl
ereturn local cmd reghdfejl
// ereturn local exposure `exposure'
// ereturn local offset `offset'
Display, `diopts' `eformopts' level(`level') `noheader' `notable'
end
// translate a pipe-delimited coefficient list back to Stata syntax, and replace temp vars with their names
cap program drop varlistJ2S
program define varlistJ2S, rclass
version 15
syntax, jlcoefnames(string) [vars(string) varnames(string)]
gettoken jlcoef jlcoefnames: jlcoefnames, parse("|")
while "`jlcoef'"!="" {
if "`jlcoef'"=="(Intercept)" {
return local hascons 1
return local stcoefs `return(stcoefs)' _cons
}
else if "`jlcoef'"!="|" {
tokenize `jlcoef', parse("&")
local cdot = cond("`2'"!="", "c.", "")
local stcoef
while "`1'"!="" {
if regexm(strtrim("`1'"), "^([^:&]*)$") { // "[coef]"
local stcoef `=cond("`stcoef'"=="","","`stcoef'#")'`:word `:list posof "`=regexs(1)'" in vars' of `varnames''
}
else if regexm(strtrim("`1'"), "^([^:&]*)(:(.*))$") { // "[coef]: [x]"
local stcoef `=cond("`stcoef'"=="","","`stcoef'#")'`=cond(regexs(3)!="","`=real(regexs(3))'.", "`cdot'")'`:word `:list posof "`=regexs(1)'" in vars' of `varnames''
}
macro shift
}
return local stcoefs `return(stcoefs)' `stcoef'
}
gettoken jlcoef jlcoefnames: jlcoefnames, parse("|")
}
end
// cap program drop Display
program define Display
version 15
syntax [, Level(real `c(level)') noHEADer notable *]
if !e(drop_singletons) di as err `"WARNING: Singleton observations not dropped; statistical significance is biased {browse "http://scorreia.com/reghdfe/nested_within_cluster.pdf":(link)}"'
if e(num_singletons) di as txt `"(dropped `e(num_singletons)' {browse "http://scorreia.com/research/singletons.pdf":singleton observations})"'
di as txt `"({browse "http://scorreia.com/research/hdfe.pdf":MWFE estimator} converged in `e(ic)' iterations)"'
di
if "`header'"=="" {
di as txt "`e(title)' " _col(51) "Number of obs" _col(67) "= " as res %10.0fc e(N)
di as txt "`e(title2)'" _col(51) "F(" as res %4.0f e(df_m) as txt "," as res %7.0f e(df_r)-e(report_constant) as txt ")" _col(67) "= " as res %10.2f e(F)
di as txt "`e(title3)'" _col(51) "Prob > F" _col(67) "= " as res %10.4f Ftail(e(df_m), e(df_r)-e(report_constant), e(F))
di as txt _col(51) "R-squared" _col(67) "= " as res %10.4f e(r2)
di as txt _col(51) "Adj R-squared" _col(67) "= " as res %10.4f e(r2_a)
forvalues i=1/0`e(N_clustervars)' {
local line`i' as txt "Number of clusters (" as res e(clustvar`i') as txt ")" _col(29) " = " as res %10.0f e(N_clust`i')
}
di `line1' _col(51) as txt "Within R-sq." _col(67) "= " as res %10.4f e(r2_within)
di `line2' _col(51) as txt "Root MSE" _col(67) "= " as res %10.4f e(rmse)
forvalues i=3/0`e(N_clustervars)' {
di `line`i''
}
di
}
if "`e(vce)'"=="bootstrap" & "`e(cluster)'"!="" {
local N_clust = strtrim(string(e(N_clust),"%10.0gc"))
di _col(`=42-strlen("`N_clust'`e(cluster)'")') as txt "(Replications based on " as res "`N_clust'" as txt " clusters in " as res e(cluster) as txt ")"
}
if "`table'"=="" ereturn display, level(`level') `options'
if e(model)=="iv" {
local res `:di %10.3f e(widstat)'
di "Weak identification test (Kleibergen-Paap rk Wald F statistic):" _col(`=79-strlen("`res'")') as res `res'
di as txt "{hline 80}"
}
end
* Version history
* 0.3.0 Add support for absorbing string vars and clustering on interactions
* 0.3.1 Add compact option
* 0.3.2 Much better handling of interactions. Switched to BLISBLAS.jl.
* 0.3.3 Fixed bugs in handling of interactions and constant term
* 0.4.0 Added mask and unmask
* 0.4.1 Handle varlists with -/?/*/~
* 0.4.2 Set version minima for some packages
* 0.4.3 Add julia.ado version check. Fix bug in posting sample size. Prevent crash on insufficient observations
* 0.5.0 Add gpu & other options to partialhdfejl. Document the command. Create reghdfejl_load.ado
* 0.5.1 Fix dropping of some non-absorbed interaction terms. Handle noconstant when no a()
* 0.6.0 Added vce(bs)
* 0.6.1 Bug fixes. Added interruptible option.
* 0.6.2 Bug fixes. Add Kleibergen-Paap return value. Catch small option.
* 0.6.3 Bug fixes, including [pw] not triggering robust. Bump to julia.ado 0.10.0. Speed up handling of non-absorbed factor variables--don't fvrevar and then copy.
* 1.0.0 Support wildcards in absorb(). Added ivreg2 option.
* 1.0.1 Add vce(bs, saving()) suboption. Made rng seeds more deterministic. Refined the bootstrap code. Fix crash in varlistJ2S.
* 1.0.2 Bug fix for 1.0.1 bug fix.
* 1.0.3 Fix crashes with 100s of non-absorbed regressors
* 1.0.4 Fix crash in Stata<18 from using {n} in regexm()
* 1.0.5 Redo translation of fv vars from Stata to Julia
* 1.0.6 Fix crash on vce(bs) with non-absorbed factor vars
* 1.0.7 Fix crashes on i.x when x is constant in sample
* 1.0.8 Make compatible with Julia 1.11
* 1.0.9 Make sure to unab all variables before PutVarsToDF in order to catch all duplicates