forked from WagnerLabPapers/Waskom_PNAS_2017
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompile_data.py
56 lines (40 loc) · 1.83 KB
/
compile_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import numpy as np
import pandas as pd
import moss
import lyman
if __name__ == "__main__":
subjects = dict(dots=lyman.determine_subjects(["dots_subjects"]),
sticks=lyman.determine_subjects(["sticks_subjects"]))
# ----- Combine decoding results
rois = ["ifs", "mfc"]
decoding_data = {}
for exp, subj_list in subjects.iteritems():
# Set up the dataframe for this experiment
idx = pd.MultiIndex.from_product([subj_list, rois],
names=["subj", "roi"])
exp_df = pd.DataFrame(index=idx,
columns=["acc", "chance", "pctile"],
dtype=np.float)
# Load the data for each subject/roi
for subj, roi in idx:
fname = "decoding_analysis/{}_{}_{}.pkz".format(subj, exp, roi)
res = moss.load_pkl(fname)
exp_df.ix[subj, roi] = [res.acc, res.chance, res.acc_pctile]
decoding_data[exp] = exp_df
# Combine across experiments and save
decoding_df = pd.concat(decoding_data, names=["experiment"]).reset_index()
decoding_df.to_csv("data/decoding_results.csv", index=False)
# ----- Combine correlation results
subjects["rest"] = subjects["sticks"]
corr_dfs = {}
for exp in ["dots", "sticks", "rest"]:
subj_list = subjects[exp]
exp_data = []
for subj in subj_list:
fname = "correlation_analysis/{}_{}_ifs.pkz".format(subj, exp)
exp_data.append(moss.load_pkl(fname).tail_corrs)
corr_dfs[exp] = pd.DataFrame(exp_data,
index=subj_list,
columns=["within", "between"])
corr_df = pd.concat(corr_dfs, names=["exp", "subj"]).reset_index()
corr_df.to_csv("data/correlation_results.csv", index=False)