forked from WagnerLabPapers/Waskom_PNAS_2017
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdecoding_analysis.py
410 lines (311 loc) · 13.2 KB
/
decoding_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
from __future__ import division, print_function
import sys
import os
import os.path as op
from copy import copy
import numpy as np
import pandas as pd
from scipy import stats
from sklearn.linear_model import LogisticRegression
from statsmodels.regression.linear_model import OLS
import lyman
import moss
from moss import glm
import moss.design as md
PROJECT = lyman.gather_project_info()
class Dataset(object):
def __init__(self, exp, subj, data):
"""Initialize the object and build the data matrix."""
assert exp in {"dots", "sticks"}
self.exp = exp
self.subj = subj
self.data = data
self.hpf_kernel = self._get_hpf_kernel()
self.deconvolve()
def _get_hpf_kernel(self):
"""Cache the highpass filter matrix, which is expensive to build."""
if self.exp == "dots":
return glm.fsl_highpass_matrix(230, 128, 2)
elif self.exp == "sticks":
return glm.fsl_highpass_matrix(515, 128, .72)
def design_info(self):
"""Return a design DataFrame for the relevant experiment."""
if self.exp == "dots":
return dots_design(self.subj)
elif self.exp == "sticks":
return sticks_design(self.subj)
def signal_confound_design(self, run):
"""Build a matrix of signal confound variables."""
analysis_dir = PROJECT["analysis_dir"]
if self.exp == "dots":
tr = 2
elif self.exp == "sticks":
tr = .72
fstem = op.join(analysis_dir, self.exp, self.subj,
"preproc", "run_{}".format(run))
motion = (pd.read_csv(op.join(fstem, "realignment_params.csv"))
.filter(regex="rot|trans")
.apply(stats.zscore))
nuisance = (pd.read_csv(op.join(fstem, "nuisance_variables.csv"))
.filter(regex="wm_")
.apply(stats.zscore))
artifacts = (pd.read_csv(op.join(fstem, "artifacts.csv"))
.any(axis=1))
confounds = pd.concat([motion, nuisance], axis=1)
dmat = glm.DesignMatrix(confounds=confounds,
artifacts=artifacts,
hpf_kernel=self.hpf_kernel,
tr=tr)
return dmat.design_matrix
def deconvolve(self):
"""Fit a model for each run to get condition amplitude estimates."""
beta_list = []
# Set experiment-specific variables
if self.exp == "dots":
tr = 2
ntp = 230
condition_names = ["context", "trial_type", "cue"]
context_map = dict(motion=0, color=1)
elif self.exp == "sticks":
tr = .72
ntp = 515
condition_names = ["context", "cue", "ori_diff", "hue_diff"]
context_map=dict(ori=0, hue=1)
# Initialize the data and design
design, info = self.design_info()
all_conditions = design.condition.sort(inplace=False).unique()
run_data = np.split(self.data, 12, axis=0)
hrf_model = glm.GammaDifferenceHRF(temporal_deriv=True, tr=tr)
# Keep track of voxels with nonzero variance
assert np.unique([d.shape[0] for d in run_data]).size == 1
n_voxels = run_data[0].shape[1]
good_voxels = np.ones(n_voxels, np.bool)
for run, run_design in design.groupby("run"):
# Build the design matrix
dmat = glm.DesignMatrix(run_design, hrf_model, ntp,
hpf_kernel=self.hpf_kernel,
condition_names=all_conditions,
tr=tr)
# Set up the regression variables
X = dmat.design_matrix
Y = pd.DataFrame(run_data[run - 1], index=X.index)
# Regress signal confounds out of the design matrix
# (They have already been removed from the data)
signal_confounds = self.signal_confound_design(run)
X = OLS(X, signal_confounds).fit().resid
# Fit the experiment model and extract the condition betas
betas = OLS(Y, X).fit().params.ix[info.ix[run].index]
beta_list.append(betas)
# Identify bad voxels
good_voxels &= (Y.var(axis=0) > 0).values
# Reformat the condition information by each variable
conditions = pd.DataFrame((info.index
.get_level_values("condition")
.str
.split("-")
.tolist()), columns=condition_names)
# Build the relevant objects for classification
samples = conditions.index
runs = pd.Series(info.index.get_level_values("run"), index=samples)
betas = pd.concat(beta_list, ignore_index=True)
rt = pd.Series(info["rt"].values, index=samples)
y = conditions.context.map(context_map)
# Remove null or single observation samples
use = pd.Series(info["count"].values > 1, index=samples)
runs, betas, rt, y = runs[use], betas[use], rt[use], y[use]
# Assign instance attributes
self.design = design
self.betas = betas
self.runs = runs
self.rt = rt
self.y = y
self.good_voxels = good_voxels
@property
def X(self):
# Scale the data across features
X = stats.zscore(np.asarray(self.betas))
# Remove zero-variance features
X = X[:, self.good_voxels]
assert not np.isnan(X).any()
# Regress out behavioral confounds
rt = np.asarray(self.rt)
m, s = np.nanmean(rt), np.nanstd(rt)
rt = np.nan_to_num((rt - m) / s)
X = OLS(X, rt).fit().resid
return X
@property
def X_df(self):
return pd.DataFrame(self.X)
def train_test_split(self, test_run):
# Split and scale the decoding matrix
X = np.asarray(self.betas)
train_X, test_X = self.split_and_zscore(X, test_run)
# Split the class labels
train_y = np.asarray(self.y.loc[self.runs != test_run])
test_y = np.asarray(self.y.loc[self.runs == test_run])
# Split and scale the confound data
train_rt, test_rt = self.split_and_zscore(self.rt, test_run)
train_rt, test_rt = np.nan_to_num(train_rt), np.nan_to_num(test_rt)
# Regress the behavioral confounds out of the data
rt_beta = OLS(train_X, train_rt).fit().params
train_X = train_X - np.outer(train_rt, rt_beta)
test_X = test_X - np.outer(test_rt, rt_beta)
assert len(train_X) == len(train_y)
assert len(test_X) == len(test_y)
return (train_X, train_y), (test_X, test_y)
def split_and_zscore(self, data, test_run):
# Enforse type and size of the data
data = np.asarray(data)
if data.ndim == 1:
data = np.expand_dims(data, 1)
# Identify training and test samples
train = np.asarray(self.runs != test_run)
test = np.asarray(self.runs == test_run)
train_data = data[train]
test_data = data[test]
# Compute the mean and standard deviation of the training set
m, s = np.nanmean(train_data), np.nanstd(train_data)
# Scale the training and test set
train_data = (train_data - m) / s
test_data = (test_data - m) / s
return train_data, test_data
def dots_design(subj):
"""Deconvolution information for the dots experiment."""
data_dir = PROJECT["data_dir"]
data_fname = op.join(data_dir, "dots_data.csv")
df = pd.read_csv(data_fname).query("subj == @subj")
# Add in the main conditions that will represent decoding samples
df.loc[:, "condition"] = (df.context + "-" +
df.trial_type + "-" +
df.cue.astype(str))
cond = md.build_condition_ev(df, "cue_onset", "condition", "model_dur")
parts = [cond]
# Add in regressors to control for RT confounds
for part, part_df in df.groupby("context"):
name_stem = part
rt = md.build_parametric_ev(part_df.query("stim and answered"),
"cue_onset",
name_stem + "_rt",
"rt",
"model_dur")
parts.append(rt)
design = pd.concat(parts)
# Compute the cell-wise trial_counts and mean rt
info = condition_info(df)
return design, info
def sticks_design(subj):
"""Deconvolution information for the sticks experiment."""
data_dir = PROJECT["data_dir"]
data_fname = op.join(data_dir, "sticks_data.csv")
df = pd.read_csv(data_fname).query("subj == @subj")
# Add in the main conditions that will represent decoding samples
df.loc[:, "condition"] = (df.context + "-" +
df.cue_idx.astype(str) + "-" +
df.ori_diff + "-" +
df.hue_diff)
trial_dur = df.rt.mean()
cond = md.build_condition_ev(df, "stim_onset", "condition", trial_dur)
parts = [cond]
# Add in regressors to control for RT confounds
for part, part_df in df.groupby(["context", "context_diff"]):
name_stem = "_".join(part)
rt = md.build_parametric_ev(part_df.query("answered"),
"stim_onset",
name_stem + "_rt",
"rt",
trial_dur)
parts.append(rt)
design = pd.concat(parts)
# Compute the cell-wise trial_counts and mean rt
info = condition_info(df)
return design, info
def condition_info(df):
runs = df.run.sort(inplace=False).unique()
conditions = df.condition.sort(inplace=False).unique()
idx = pd.MultiIndex.from_product([runs, conditions],
names=["run", "condition"])
counts = df.groupby("run").condition.value_counts().reindex(idx)
rt = df.groupby(["run", "condition"]).rt.mean().reindex(idx)
return pd.concat([counts, rt], keys=["count", "rt"], axis=1)
def decode(model, ds):
scores = []
weights = []
for run in ds.runs.unique():
splits = ds.train_test_split(run)
(train_X, train_y), (test_X, test_y) = splits
model.fit(train_X, train_y)
pred_y = model.predict(test_X)
scores.append(np.mean(test_y == pred_y))
weights.append(len(test_y))
return np.average(scores, weights=weights)
def permute_labels(ds, rs=None):
"""Return a copy of the dataset with target labels permuted within run."""
if rs is None:
rs = np.random.RandomState()
ds = copy(ds)
ds.y = ds.y.groupby(ds.runs).transform(rs.permutation)
return ds
def compute_prefs(model, ds, cov=None):
"""Invert the decoding model to get voxel preferences."""
if cov is None:
cov = np.cov(ds.X.T)
weights = model.fit(ds.X, ds.y).coef_.squeeze()
return cov.dot(weights)
def percentile_score(null, real):
"""Vectorized function for computing percentile of score."""
if np.isscalar(real):
return stats.percentileofscore(null, real)
percentiles = []
assert len(null) == len(real)
for null_i, real_i in zip(null, real):
percentiles.append(stats.percentileofscore(null_i, real_i, "mean"))
assert len(percentiles) == len(real)
return np.array(percentiles)
if __name__ == "__main__":
try:
_, subj, exp, roi = sys.argv
except ValueError:
sys.exit("Usages: decoding_analysis.py <subj> <exp> <roi>")
# Ensure that the output exists
if not op.exists("decoding_analysis"):
os.mkdir("decoding_analysis")
# Load the data
data_fname = "roi_cache/{}_{}_{}.npz".format(subj, exp, roi)
data = np.load(data_fname)["ts_data"]
# Build the dataset
ds = Dataset(exp, subj, data)
# Compute the feature covariance
cov = np.cov(ds.X.T)
# Obtain the real decoding accuracy and preferences
model = LogisticRegression()
acc = decode(model, ds)
prefs = compute_prefs(model, ds, cov)
# Obtain null distributions for accuracy and prefs
null_accs = []
null_prefs = []
seed = sum(map(ord, subj + exp + "decoding"))
rs = np.random.RandomState(seed)
for _ in xrange(100):
ds_perm = permute_labels(ds, rs)
null_accs.append(decode(model, ds_perm))
null_prefs.append(compute_prefs(model, ds_perm, cov))
# Evaluate the results relative to null distributions
null_accs = np.array(null_accs)
null_prefs = np.array(null_prefs).T
acc_pctile = percentile_score(null_accs, acc)
pref_pctiles = percentile_score(null_prefs, prefs)
# Identify tails of the preference distribution
tails = np.zeros_like(prefs, np.int)
tails[pref_pctiles < 10] = -1
tails[pref_pctiles > 90] = 1
# Save the results
res = moss.Results(acc=acc,
null=null_accs,
acc_pctile=acc_pctile,
chance=null_accs.mean(),
prefs=prefs,
tails=tails,
pref_pctiles=pref_pctiles,
good_voxels=ds.good_voxels)
fname = "decoding_analysis/{}_{}_{}.pkz".format(subj, exp, roi)
moss.save_pkl(fname, res)