forked from WagnerLabPapers/Waskom_PNAS_2017
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfigure_2.py
226 lines (156 loc) · 6.25 KB
/
figure_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
import seaborn as sns
from mayavi import mlab
from surfer import Brain
import moss
from lyman.tools.plotting import crop
from surfutils import roi_to_surf
from plotutils import (set_style, savefig,
get_colormap, get_ifs_view, get_subject_order)
def setup_figure():
f = plt.figure(figsize=(6, 2.15))
brain_gs = plt.GridSpec(2, 2, .03, .18, .52, .99, .05, .05)
brain_axes = [f.add_subplot(gs) for gs in brain_gs]
brain_axes = np.reshape(brain_axes, (2, 2))
hist_gs = plt.GridSpec(2, 1, .53, .20, .65, .975)
hist_axes = [f.add_subplot(gs) for gs in hist_gs]
cmap_gs = plt.GridSpec(1, 2, .05, .07, .50, .14, .05, .05)
cmap_axes = [f.add_subplot(gs) for gs in cmap_gs]
clust_gs = plt.GridSpec(1, 1, .75, .20, .98, .98)
clust_ax = f.add_subplot(clust_gs[0])
f.text(.003, .92, "A", size=12)
f.text(.68, .92, "B", size=12)
return f, brain_axes, hist_axes, cmap_axes, clust_ax
def plot_brains(subjects, axes):
for subj, subj_axes in zip(subjects, axes):
exp = dict(pc="dots", ti="sticks")[subj[:2]]
data_fname = "roi_cache/{}_{}_ifs.npz".format(subj, exp)
with np.load(data_fname) as dobj:
vox_ijk = dobj["vox_ijk"]
res_fname = "decoding_analysis/{}_{}_ifs.pkz".format(subj, exp)
res = moss.load_pkl(res_fname)
prefs = res.prefs
surf_vals = roi_to_surf(exp, subj, prefs, vox_ijk)
lut = get_colormap(exp, False)
for hemi, ax in zip(["lh", "rh"], subj_axes):
b = Brain(subj, hemi, "inflated", background="white",
cortex=("binary", -4, 8, False),
size=(1000, 600))
b.add_data(surf_vals.ix[hemi].fillna(-11).values,
colormap=lut, colorbar=False,
thresh=-10, min=-1.75, max=1.75)
mlab.view(*get_ifs_view(subj, hemi))
img = crop(b.screenshot())
ax.imshow(img, rasterized=True)
ax.set(xticks=[], yticks=[])
b.close()
def plot_hists(subjects, axes, label_last=1, ymax=350):
bins = np.linspace(-2, 2, 20)
for subj, ax in zip(subjects, axes):
exp = dict(pc="dots", ti="sticks")[subj[:2]]
res_fname = "decoding_analysis/{}_{}_ifs.pkz".format(subj, exp)
res = moss.load_pkl(res_fname)
prefs = res.prefs
pctiles = res.pref_pctiles
cmap = get_colormap(exp)
plot_prefs = [prefs[pctiles < 10],
prefs[pctiles > 90],
prefs[(pctiles >= 10) & (pctiles <= 90)]]
ax.hist(plot_prefs, histtype="barstacked", rwidth=1,
color=[cmap(.01), cmap(.99), ".9"], bins=bins)
ax.set(xlim=(-2, 2),
xticks=[-2, -1, 0, 1, 2],
xticklabels=[],
yticks=[],
ylim=(0, ymax))
for ax in axes[-label_last:]:
ax.set_xlabel("Context\npreference", labelpad=2, fontsize=7)
ax.set(xticklabels=[-2, -1, 0, 1, 2])
for ax in axes:
sns.despine(ax=ax, left=True)
def plot_colorbars(f, axes):
dots, sticks = get_colormap("dots"), get_colormap("sticks")
xx = np.arange(200).reshape(1, 200)
axes[0].imshow(xx, rasterized=True, aspect="auto", cmap=dots)
axes[1].imshow(xx, rasterized=True, aspect="auto", cmap=sticks)
kws = dict(size=7, ha="center")
f.text(.08, .015, "Motion", **kws)
f.text(.24, .015, "Color", **kws)
f.text(.32, .015, "Orientation", **kws)
f.text(.48, .015, "Color", **kws)
plt.setp(axes, xticks=[], yticks=[])
def add_compass(ax, hemi, color="w"):
if hemi == "lh":
x = .88
xlabels = "A", "P"
elif hemi == "rh":
x = .12
xlabels = "P", "A"
else:
raise ValueError(hemi)
y = .20
xw = .05
yw = .08
arrowprops = dict(arrowstyle="<->, head_width=.12, head_length=.12",
shrinkA=0, shrinkB=0, linewidth=.4,
edgecolor=color)
ax.annotate("", xy=(x - xw, y), xytext=(x + xw, y),
xycoords="axes fraction", textcoords="axes fraction",
color=color, arrowprops=arrowprops)
ax.annotate("", xy=(x, y - yw), xytext=(x, y + yw),
xycoords="axes fraction", textcoords="axes fraction",
color=color, arrowprops=arrowprops)
xw *= 1.65
yw *= 1.65
if x < 0:
x = 1 + x
xpos = (x - xw, y), (x + xw, y)
for (x_, y_), s_ in zip(xpos, xlabels):
ax.text(x_, y_, s_, size=5, color=color,
transform=ax.transAxes,
ha="center", va="center")
ypos = (x, y - yw), (x, y + yw)
ylabels = "V", "D"
for (x_, y_), s_ in zip(ypos, ylabels):
ax.text(x_, y_, s_, size=5, color=color,
transform=ax.transAxes,
ha="center", va="center")
def plot_cluster_error(ax):
res_ftemp = "spatial_analysis/{}_{}_ifs.pkz"
for exp in ["dots", "sticks"]:
subjects = get_subject_order(exp)
color = get_colormap(exp, as_cmap=False)[20]
errs = []
for subj in subjects:
res = moss.load_pkl(res_ftemp.format(subj, exp))
x = res.steps
norm = res.null.mean()
errs.append(res.real / norm)
errs = np.vstack(errs)
mean = errs.mean(axis=0)
ax.plot(x, mean, color=color, lw=2)
sem = stats.sem(errs, axis=0)
ax.fill_between(x, mean - sem, mean + sem, alpha=.2, color=color)
ax.axhline(y=1, lw=1, dashes=[5, 2],
color=".5", zorder=0,
xmin=.02, xmax=.98)
ax.set(xlim=(0, 42),
ylim=(.55, 1.45),
yticks=[.6, .8, 1, 1.2, 1.4],
xticks=[0, 10, 20, 30, 40],
xlabel="Neighborhood radius (mm)",
ylabel="Normalized error")
sns.despine(ax=ax, trim=True)
if __name__ == "__main__":
set_style()
f, brain_axes, hist_axes, cbar_axes, clust_ax = setup_figure()
subjects = ["pc11", "ti05"]
plot_brains(subjects, brain_axes)
plot_hists(subjects, hist_axes)
plot_colorbars(f, cbar_axes)
plot_cluster_error(clust_ax)
add_compass(brain_axes[-1, 0], "lh")
add_compass(brain_axes[-1, 1], "rh")
savefig(f, __file__)