forked from WagnerLabPapers/Waskom_PNAS_2017
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsurfutils.py
115 lines (88 loc) · 3.48 KB
/
surfutils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import os.path as op
import numpy as np
import pandas as pd
import nibabel as nib
from nibabel.affines import apply_affine
import lyman
PROJECT = lyman.gather_project_info()
def roi_to_surf(exp, subj, vals, vox_ijk):
"""Transform a vector of ROI data onto the surface."""
# Get paths to files defining the volumetric space
analysis_dir = PROJECT["analysis_dir"]
base_dir = op.join(analysis_dir, exp, subj, "reg/epi/unsmoothed/run_1")
epi_fname = op.join(base_dir, "mean_func_xfm.nii.gz")
reg_fname = op.join(base_dir, "func2anat_tkreg.dat")
# Obtain a transform from the anatomy to the EPI space
xfm = np.linalg.inv(epi_to_surf_xfm(epi_fname, reg_fname))
# Put the ROI data into the volume
epi_img = nib.load(epi_fname)
vol = np.empty(epi_img.shape)
vol[:] = np.nan
i, j, k = vox_ijk.T
vol[i, j, k] = vals
# Sample the data onto the surface a hemisphere at a time
surf_data = {}
for hemi in ["lh", "rh"]:
# Obtain voxel indices of surface coordinates
i, j, k = surf_to_voxel_coords(subj, hemi, xfm)
# Limit to the FOV of the acquisition
ii, jj, kk = vol.shape
fov = (np.in1d(i, np.arange(ii)) &
np.in1d(j, np.arange(jj)) &
np.in1d(k, np.arange(kk)))
# Transform from volume to surface
hemi_data = np.empty(len(i))
hemi_data[:] = np.nan
hemi_data[fov] = vol[i[fov], j[fov], k[fov]]
surf_data[hemi] = pd.Series(hemi_data)
# Combine across hemispheres and return
surf_data = pd.concat(surf_data, names=["hemi", "vertex"])
return surf_data
def epi_to_surf_xfm(epi_fname, reg_fname):
"""Obtain a transformation from epi voxels -> Freesurfer surf coords.
Parameters
----------
epi_fname : string
Filename pointing at image defining the epi space.
reg_fname : string
Filename pointing at registration file (from bbregister) that maps
``epi_img_fname`` to the Freesurfer anatomy.
Returns
-------
xfm : 4 x 4 numpy array
Transformation matrix that can be applied to surf coords.
"""
# Load the Freesurfer "tkreg" style transform file
# Confusingly, this file actually encodes the anat-to-func transform
anat2func_xfm = np.genfromtxt(reg_fname, skip_header=4, skip_footer=1)
func2anat_xfm = np.linalg.inv(anat2func_xfm)
# Get a tkreg-compatibile mapping from IJK to RAS
epi_img = nib.load(epi_fname)
mgh_img = nib.MGHImage(np.zeros(epi_img.shape[:3]),
epi_img.get_affine(),
epi_img.get_header())
vox2ras_tkr = mgh_img.get_header().get_vox2ras_tkr()
# Combine the two transformations
xfm = np.dot(func2anat_xfm, vox2ras_tkr)
return xfm
def surf_to_voxel_coords(subj, hemi, xfm, surf="graymid"):
"""Obtain voxel coordinates of surface vertices in the EPI volume.
Parameters
----------
subj : string
Freesurfer subject ID.
hemi : lh | rh
Hemisphere of surface to map.
xfm : 4 x 4 array
Linear transformation matrix between spaces.
surf : string
Freesurfer surface name defining coords.
Returns
i, j, k : 1d int arrays
Arrays of voxel indices.
"""
# Load the surface geometry
data_dir = PROJECT["data_dir"]
surf_fname = op.join(data_dir, subj, "surf", "{}.{}".format(hemi, surf))
coords, _ = nib.freesurfer.read_geometry(surf_fname)
return apply_affine(xfm, coords).round().astype(np.int).T