-
Notifications
You must be signed in to change notification settings - Fork 3
/
cp_dataset.py
200 lines (167 loc) · 7.48 KB
/
cp_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
#coding=utf-8
import torch
import torch.utils.data as data
import torchvision.transforms as transforms
from PIL import Image
from PIL import ImageDraw
import os.path as osp
import numpy as np
import json
class CPDataset(data.Dataset):
"""Dataset for CP-VTON.
"""
def __init__(self, opt):
super(CPDataset, self).__init__()
# base setting
self.opt = opt
self.root = opt.dataroot
self.datamode = opt.datamode # train or test or self-defined
self.stage = opt.stage # GMM or TOM
self.data_list = opt.data_list
self.fine_height = opt.fine_height
self.fine_width = opt.fine_width
self.radius = opt.radius
self.data_path = osp.join(opt.dataroot, opt.datamode)
self.transform = transforms.Compose([ \
transforms.ToTensor(), \
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
# load data list
im_names = []
c_names = []
with open(osp.join(opt.dataroot, opt.data_list), 'r') as f:
for line in f.readlines():
im_name, c_name = line.strip().split()
im_names.append(im_name)
c_names.append(c_name)
self.im_names = im_names
self.c_names = c_names
def name(self):
return "CPDataset"
def __getitem__(self, index):
c_name = self.c_names[index]
im_name = self.im_names[index]
# cloth image & cloth mask
if self.stage == 'GMM':
c = Image.open(osp.join(self.data_path, 'cloth', c_name))
cm = Image.open(osp.join(self.data_path, 'cloth-mask', c_name))
else:
c = Image.open(osp.join(self.data_path, 'warp-cloth', c_name))
cm = Image.open(osp.join(self.data_path, 'warp-mask', c_name))
c = self.transform(c) # [-1,1]
cm_array = np.array(cm)
cm_array = (cm_array >= 128).astype(np.float32)
cm = torch.from_numpy(cm_array) # [0,1]
cm.unsqueeze_(0)
# person image
im = Image.open(osp.join(self.data_path, 'image', im_name))
im = self.transform(im) # [-1,1]
# load parsing image
parse_name = im_name.replace('.jpg', '.png')
im_parse = Image.open(osp.join(self.data_path, 'image-parse', parse_name))
parse_array = np.array(im_parse)
parse_shape = (parse_array > 0).astype(np.float32)
parse_head = (parse_array == 1).astype(np.float32) + \
(parse_array == 2).astype(np.float32) + \
(parse_array == 4).astype(np.float32) + \
(parse_array == 13).astype(np.float32)
parse_cloth = (parse_array == 5).astype(np.float32) + \
(parse_array == 6).astype(np.float32) + \
(parse_array == 7).astype(np.float32)
# shape downsample
parse_shape = Image.fromarray((parse_shape*255).astype(np.uint8))
parse_shape = parse_shape.resize((self.fine_width//16, self.fine_height//16), Image.BILINEAR)
parse_shape = parse_shape.resize((self.fine_width, self.fine_height), Image.BILINEAR)
shape = self.transform(parse_shape) # [-1,1]
phead = torch.from_numpy(parse_head) # [0,1]
pcm = torch.from_numpy(parse_cloth) # [0,1]
# upper cloth
im_c = im * pcm + (1 - pcm) # [-1,1], fill 1 for other parts
im_h = im * phead - (1 - phead) # [-1,1], fill 0 for other parts
# load pose points
pose_name = im_name.replace('.jpg', '_keypoints.json')
with open(osp.join(self.data_path, 'pose', pose_name), 'r') as f:
pose_label = json.load(f)
pose_data = pose_label['people'][0]['pose_keypoints']
pose_data = np.array(pose_data)
pose_data = pose_data.reshape((-1,3))
point_num = pose_data.shape[0]
pose_map = torch.zeros(point_num, self.fine_height, self.fine_width)
r = self.radius
im_pose = Image.new('L', (self.fine_width, self.fine_height))
pose_draw = ImageDraw.Draw(im_pose)
for i in range(point_num):
one_map = Image.new('L', (self.fine_width, self.fine_height))
draw = ImageDraw.Draw(one_map)
pointx = pose_data[i,0]
pointy = pose_data[i,1]
if pointx > 1 and pointy > 1:
draw.rectangle((pointx-r, pointy-r, pointx+r, pointy+r), 'white', 'white')
pose_draw.rectangle((pointx-r, pointy-r, pointx+r, pointy+r), 'white', 'white')
one_map = self.transform(one_map)
pose_map[i] = one_map[0]
# just for visualization
im_pose = self.transform(im_pose)
# cloth-agnostic representation
agnostic = torch.cat([shape, im_h, pose_map], 0)
if self.stage == 'GMM':
im_g = Image.open('grid.png')
im_g = self.transform(im_g)
else:
im_g = ''
result = {
'c_name': c_name, # for visualization
'im_name': im_name, # for visualization or ground truth
'cloth': c, # for input
'cloth_mask': cm, # for input
'image': im, # for visualization
'agnostic': agnostic, # for input
'parse_cloth': im_c, # for ground truth
'shape': shape, # for visualization
'head': im_h, # for visualization
'pose_image': im_pose, # for visualization
'grid_image': im_g, # for visualization
}
return result
def __len__(self):
return len(self.im_names)
class CPDataLoader(object):
def __init__(self, opt, dataset):
super(CPDataLoader, self).__init__()
if opt.shuffle :
train_sampler = torch.utils.data.sampler.RandomSampler(dataset)
else:
train_sampler = None
self.data_loader = torch.utils.data.DataLoader(
dataset, batch_size=opt.batch_size, shuffle=(train_sampler is None),
num_workers=opt.workers, pin_memory=True, sampler=train_sampler)
self.dataset = dataset
self.data_iter = self.data_loader.__iter__()
def next_batch(self):
try:
batch = self.data_iter.__next__()
except StopIteration:
self.data_iter = self.data_loader.__iter__()
batch = self.data_iter.__next__()
return batch
if __name__ == "__main__":
print("Check the dataset for geometric matching module!")
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--dataroot", default = "data")
parser.add_argument("--datamode", default = "train")
parser.add_argument("--stage", default = "GMM")
parser.add_argument("--data_list", default = "train_pairs.txt")
parser.add_argument("--fine_width", type=int, default = 192)
parser.add_argument("--fine_height", type=int, default = 256)
parser.add_argument("--radius", type=int, default = 3)
parser.add_argument("--shuffle", action='store_true', help='shuffle input data')
parser.add_argument('-b', '--batch-size', type=int, default=4)
parser.add_argument('-j', '--workers', type=int, default=1)
opt = parser.parse_args()
dataset = CPDataset(opt)
data_loader = CPDataLoader(opt, dataset)
print('Size of the dataset: %05d, dataloader: %04d' \
% (len(dataset), len(data_loader.data_loader)))
first_item = dataset.__getitem__(0)
first_batch = data_loader.next_batch()
from IPython import embed; embed()