-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlabel_candidate_clusters.cu
408 lines (370 loc) · 15 KB
/
label_candidate_clusters.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
/***************************************************************************
*
* Copyright (C) 2012 by Ben Barsdell and Andrew Jameson
* Licensed under the Academic Free License version 2.1
*
***************************************************************************/
#include "hd/label_candidate_clusters.h"
#include "hd/are_coincident.cuh"
#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <thrust/sequence.h>
#include <thrust/transform.h>
#include <thrust/iterator/transform_iterator.h>
#include <thrust/iterator/zip_iterator.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/binary_search.h>
#include <thrust/count.h>
#define SNR_BASED_CLUSTERING
/*
// Lexicographically projects 3D integer coordinates onto a 1D coordinate
// Also applies an offset and performs boundary clamping
template<typename T>
struct project_coords_functor : public thrust::unary_function<void,T> {
int width;
int height;
int depth;
int stride_x;
int stride_y;
int stride_z;
int dx;
int dy;
int dz;
project_coords_functor() {}
project_coords_functor(int w, int h, int d, int rad,
int dx_=0, int dy_=0, int dz_=0)
: width(w), height(h), depth(d),
stride_x(1),
stride_y(w),//+2*rad),
stride_z(h*(w)),//+2*rad)),
dx(dx_), dy(dy_), dz(dz_) {}
template<typename CoordTuple>
inline __host__ __device__
T operator()(CoordTuple xyz) const {
//int x = thrust::get<0>(xyz) + dx;
// HACK TESTING
int filter_width = 1 << thrust::get<1>(xyz);
int x = thrust::get<0>(xyz) + dx * filter_width;
x = min(max(x,0),width-1);
int y = (int)thrust::get<1>(xyz) + dy;
int z = (int)thrust::get<2>(xyz) + dz;
// We must be careful around the borders
if( z < 0 ) {
x = 0;
}
else if( z > depth-1 ) {
x = width-1;
}
else if( y < 0 ) {
x = 0;
}
else if( y > height-1 ) {
x = width-1;
}
y = min(max(y,0),height-1);
z = min(max(z,0),depth-1);
return x * stride_x + y * stride_y + z * stride_z;
}
};
// Returns the minimum over a specified range of elements
template<typename ValueType, typename SizeType>
struct range_min_functor : public thrust::binary_function<void,void,ValueType> {
const ValueType* data;
range_min_functor(const ValueType* data_) : data(data_) {}
template<typename BeginEndTuple>
inline __host__ __device__
ValueType operator()(ValueType init, BeginEndTuple begin_end) const {
SizeType begin = thrust::get<0>(begin_end);
SizeType end = thrust::get<1>(begin_end);
ValueType result = init;
for( SizeType i=begin; i<end; ++i ) {
// TODO: What's with the stupid min( ) overloads?
//result = min((long long)result, (long long)data[i]);
result = (result <= data[i]) ? result : data[i];
}
return result;
}
};
*/
__device__ unsigned int d_counter;
// Finds the root of a chain of equivalent labels
// E.g., 3->1, 4->3, 8->4, 5->8 => [1,3,4,5,8]->1
// TODO: It would be quite interesting to study the behaviour of this
// algorithm/implementation in more detail.
template<typename T>
struct trace_equivalency_chain {
T* new_labels;
trace_equivalency_chain(T* new_labels_) : new_labels(new_labels_) {}
inline /*__host__*/ __device__
void operator()(unsigned int old_label) const {
T cur_label = old_label;
while( new_labels[cur_label] != cur_label ) {
cur_label = new_labels[cur_label];
//new_labels[old_label] = cur_label;
// TESTING TODO: See if/how this varies if we write
// new_labels[old_label] each iteration vs.
// only at the end (see commented line below).
// It appears to make only 10-20% difference
atomicAdd(&d_counter, 1);
}
new_labels[old_label] = cur_label;
/*
T j = i;
while( new_labels[i] != j ) {
new_labels[i] = new_labels[j];
}
T j = i;
T new_label = new_labels[i] = new_labels[j];
while( new_label != j ) {
j = new_label;
//new_label = new_labels[j];
new_label = new_labels[i] = new_labels[j];
}
// Note: This written value may subsequently be read by another thread,
// which should improve the speed of the algorithm by exploiting
// already-computed results.
new_labels[i] = new_label;
*/
}
};
struct cluster_functor {
hd_size count;
const hd_size* d_samp_inds;
const hd_size* d_begins;
const hd_size* d_ends;
const hd_size* d_filters;
const hd_size* d_dms;
#ifdef SNR_BASED_CLUSTERING
const hd_float* d_peaks;
#endif
hd_size* d_labels;
hd_size time_tol;
hd_size filter_tol;
hd_size dm_tol;
cluster_functor(hd_size count_,
const hd_size* d_samp_inds_,
const hd_size* d_begins_, const hd_size* d_ends_,
const hd_size* d_filters_, const hd_size* d_dms_,
#ifdef SNR_BASED_CLUSTERING
const hd_float* d_peaks_,
#endif
hd_size* d_labels_,
hd_size time_tol_, hd_size filter_tol_, hd_size dm_tol_)
: count(count_),
d_samp_inds(d_samp_inds_),
d_begins(d_begins_), d_ends(d_ends_),
d_filters(d_filters_), d_dms(d_dms_),
#ifdef SNR_BASED_CLUSTERING
d_peaks(d_peaks_),
#endif
d_labels(d_labels_),
time_tol(time_tol_), filter_tol(filter_tol_), dm_tol(dm_tol_) {}
inline __host__ __device__
void operator()(unsigned int i) {
hd_size samp_i = d_samp_inds[i];
hd_size begin_i = d_begins[i];
hd_size end_i = d_ends[i];
hd_size filter_i = d_filters[i];
hd_size dm_i = d_dms[i];
// TODO: This would be much faster using shared mem like in nbody
for( unsigned int j=0; j<count; ++j ) {
if( j == i ) {
continue;
}
hd_size samp_j = d_samp_inds[j];
hd_size begin_j = d_begins[j];
hd_size end_j = d_ends[j];
hd_size filter_j = d_filters[j];
hd_size dm_j = d_dms[j];
if( are_coincident(samp_i, samp_j,
begin_i, begin_j,
end_i, end_j,
filter_i, filter_j,
dm_i, dm_j,
time_tol, filter_tol, dm_tol) ) {
#ifdef SNR_BASED_CLUSTERING
if (d_peaks[i] < d_peaks[j])
d_labels[i] = d_labels[j];
#else
// Re-label as the minimum of the two
d_labels[i] = min((int)d_labels[i], (int)d_labels[j]);
#endif
}
}
}
};
// Finds components of the given list that are connected in time, filter and DM
// Note: merge_dist is the distance in time up to which components are connected
// Note: Merge distances in filter and DM space are currently fixed at 1
// TODO: Consider re-naming the *_count args to *_max
hd_error label_candidate_clusters(hd_size count,
ConstRawCandidates d_cands,
hd_size time_tol,
hd_size filter_tol,
hd_size dm_tol,
hd_size* d_labels,
hd_size* label_count)
{
/*
def within_range(bi, ei, bj, ej, tol):
return bi <= ej+tol and bj <= ei+tol;
//return ej - bi >= 0 and ei - bj >= 0;
//return ej - bi >= -tol and ei - bj >= -tol;
for ci in candidates:
for cj in candidates:
if ci == cj:
continue
if( abs(ci.dm_ind - cj.dm_ind) <= dm_ind_tol &&
abs(ci.filter_ind - cj.filter_ind) <= filter_ind_tol &&
within_range(ci.begin,ci.end,cj.begin,cj.end,time_tol) ):
ci.new_label = min(ci.new_label, cj.new_label);
*/
using thrust::make_counting_iterator;
thrust::device_ptr<hd_size> d_labels_begin(d_labels);
thrust::sequence(d_labels_begin, d_labels_begin+count);
// This just does a brute-force O(N^2) search for neighbours and
// re-labels as the minimum label over neighbours.
thrust::for_each(make_counting_iterator<unsigned int>(0),
make_counting_iterator<unsigned int>(count),
cluster_functor(count,
d_cands.inds,
d_cands.begins,
d_cands.ends,
d_cands.filter_inds,
d_cands.dm_inds,
#ifdef SNR_BASED_CLUSTERING
d_cands.peaks,
#endif
d_labels,
time_tol,
filter_tol,
dm_tol));
/*
using thrust::make_transform_iterator;
using thrust::make_zip_iterator;
using thrust::make_counting_iterator;
typedef thrust::device_ptr<const hd_size> const_coord_iterator;
typedef thrust::device_ptr<hd_size> coord_iterator;
const_coord_iterator d_begins_begin(d_begins);
const_coord_iterator d_ends_begin(d_ends);
//const_coord_iterator d_beams_begin(d_beams);
const_coord_iterator d_filters_begin(d_filter_inds);
const_coord_iterator d_dms_begin(d_dm_inds);
coord_iterator d_labels_begin(d_labels);
typedef thrust::device_vector<hd_size> coord_vector;
coord_vector d_new_labels(count);
coord_vector d_neib_begins(count);
coord_vector d_neib_ends(count);
thrust::sequence(d_labels_begin, d_labels_begin+count);
typedef thrust::zip_iterator<thrust::tuple<
const_coord_iterator,
const_coord_iterator,
const_coord_iterator> > coords_iterator;
coords_iterator begin_coords(thrust::make_tuple(d_begins_begin,
d_filters_begin,
d_dms_begin));
coords_iterator end_coords(thrust::make_tuple(d_ends_begin,
d_filters_begin,
d_dms_begin));
project_coords_functor<hd_size> project_coords(time_count,
filter_count,
dm_count,
merge_dist);
project_coords_functor<hd_size> project_offset_coords;
hd_size search_count = 14;
// Note: This list could be expanded to connect components over greater
// dists in filter and DM space (currently 1).
//int search_offsets[][2] = {{-1,0}, {0,-1}, {-1,-1}};
int search_offsets[][2] = {{-1,0}, {1,0},
{-1,-1}, {0,-1}, {1,-1},
{-1,-2}, {0,-2}, {1,-2},
{-1,-3}, {0,-3}, {1,-3},
{-1,-4}, {0,-4}, {1,-4}};
for( hd_size i=0; i<search_count; ++i ) {
//std::cout << "Searching around offset "
// << search_offsets[i][0] << ", "
// << search_offsets[i][1] << std::endl;
// Find the beginning of each element's neighbours
project_offset_coords =
project_coords_functor<hd_size>(time_count,
filter_count,
dm_count,
merge_dist,
-(int)merge_dist+1,
search_offsets[i][0],
search_offsets[i][1]);
thrust::lower_bound(make_transform_iterator(end_coords,
project_coords),
make_transform_iterator(end_coords,
project_coords)+count,
make_transform_iterator(begin_coords,
project_offset_coords),
make_transform_iterator(begin_coords,
project_offset_coords)+count,
d_neib_begins.begin());
//std::cout << "neib_begins:" << std::endl;
//thrust::copy(d_neib_begins.begin(), d_neib_begins.end(),
// std::ostream_iterator<hd_size>(std::cout, "\t"));
//std::cout << std::endl;
// Find the end of each element's neighbours
project_offset_coords =
project_coords_functor<hd_size>(time_count+merge_dist*2,
filter_count,
dm_count,
merge_dist,
+merge_dist,
search_offsets[i][0],
search_offsets[i][1]);
thrust::upper_bound(make_transform_iterator(begin_coords,
project_coords),
make_transform_iterator(begin_coords,
project_coords)+count,
make_transform_iterator(end_coords,
project_offset_coords),
make_transform_iterator(end_coords,
project_offset_coords)+count,
d_neib_ends.begin());
//std::cout << "neib_ends:" << std::endl;
//thrust::copy(d_neib_ends.begin(), d_neib_ends.end(),
// std::ostream_iterator<hd_size>(std::cout, "\t"));
//std::cout << std::endl;
// Now find the minimum label over each element's neighbours
thrust::transform(d_labels_begin, d_labels_begin+count,
make_zip_iterator(thrust::make_tuple(d_neib_begins.begin(),
d_neib_ends.begin())),
d_new_labels.begin(),
range_min_functor<hd_size,hd_size>(d_labels));
//std::cout << "new_labels:" << std::endl;
//thrust::copy(d_new_labels.begin(), d_new_labels.end(),
// std::ostream_iterator<hd_size>(std::cout, "\t"));
//std::cout << std::endl;
// Copy the latest labels to the
thrust::copy(d_new_labels.begin(), d_new_labels.end(),
d_labels_begin);
}
*/
// Finally, trace equivalency chains to find the final labels
// Note: This is a parallel version of this algorithm that may not be
// as efficient as the sequential version but should win out
// in overall speed.
unsigned int* d_counter_address;
cudaGetSymbolAddress((void**)&d_counter_address, "d_counter");
thrust::device_ptr<unsigned int> d_counter_ptr(d_counter_address);
*d_counter_ptr = 0;
thrust::for_each(make_counting_iterator<unsigned int>(0),
make_counting_iterator<unsigned int>(count),
trace_equivalency_chain<hd_size>(d_labels));
//std::cout << "Total chain iterations: " << *d_counter_ptr << std::endl;
// Finally we do a quick count of the number of unique labels
// This is efficiently achieved by checking where new labels are
// unchanged from their original values (i.e., where d_labels[i] == i)
thrust::device_vector<int> d_label_roots(count);
thrust::transform(d_labels_begin, d_labels_begin+count,
make_counting_iterator<hd_size>(0),
d_label_roots.begin(),
thrust::equal_to<hd_size>());
*label_count = thrust::count_if(d_label_roots.begin(),
d_label_roots.end(),
thrust::identity<hd_size>());
return HD_NO_ERROR;
}