forked from wangyi-fudan/wyGPT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gpu.cu
236 lines (236 loc) · 9.16 KB
/
gpu.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
#include <cuda_runtime.h>
#include <unordered_map>
#include <cublas_v2.h>
#include <sys/time.h>
#include <algorithm>
#include <iostream>
#include <unistd.h>
#include <sstream>
#include <cstdint>
#include <cfloat>
#include <cstdio>
#include <vector>
using namespace std;
cublasHandle_t handle;
uint64_t prng=time(NULL);
static inline uint64_t wyrand(uint64_t *seed){ *seed+=0xa0761d6478bd642full; uint64_t see1=*seed^0xe7037ed1a0b428dbull; see1*=(see1>>32)|(see1<<32); return (*seed*((*seed>>32)|(*seed<<32)))^((see1>>32)|(see1<<32)); }
static inline double wy2u01(uint64_t r){ const double _wynorm=1.0/(1ull<<52); return (r>>12)*_wynorm; }
void _wymum(uint64_t *A, uint64_t *B){ uint64_t hh=(*A>>32)*(*B>>32), hl=(*A>>32)*(uint32_t)*B, lh=(uint32_t)*A*(*B>>32), ll=(uint64_t)(uint32_t)*A*(uint32_t)*B; *A=((hl>>32)|(hl<<32))^hh; *B=((lh>>32)|(lh<<32))^ll; }
uint64_t _wyhash64(uint64_t A, uint64_t B){ A^=0xa0761d6478bd642full; B^=0xa0761d6478bd642full; _wymum(&A,&B); A^=0xa0761d6478bd642full; B^=0xa0761d6478bd642full; _wymum(&A,&B); return A^B; }
template<unsigned N>
struct Data16{
__nv_bfloat16 *data;
Data16(){ cudaMallocManaged(&data, N*sizeof(__nv_bfloat16)); }
~Data16(){ cudaFree(data); }
void zero(void){ cudaMemset(data, 0, N*sizeof(__nv_bfloat16)); }
void load(FILE *F){ if(fread(data,N*2,1,F)!=1) return; }
};
__global__ void _s16(unsigned N, float *w, __nv_bfloat16 *g){ unsigned id=blockIdx.x*blockDim.x+threadIdx.x; if(id<N) g[id]=__float2bfloat16(w[id]); }
__global__ void _l16(unsigned N, float *w, __nv_bfloat16 *g){ unsigned id=blockIdx.x*blockDim.x+threadIdx.x; if(id<N) w[id]=__bfloat162float(g[id]); }
template<unsigned N>
struct Data{
static Data16<N> tmp;
float *data;
Data(){ cudaMallocManaged(&data, N*sizeof(float)); }
~Data(){ cudaFree(data); }
void zero(void){ cudaMemset(data, 0, N*sizeof(float)); }
void load(FILE *F){ if(fread(tmp.data,N*2,1,F)!=1){ return; } _l16<<<(N+15)/16,16>>>(N,data,tmp.data); cudaDeviceSynchronize(); }
};
template<unsigned N>
Data16<N> Data<N>::tmp;
template<unsigned R0, unsigned R1>
struct linear{
Data16<R0*R1> wei;
Data<R1> out;
void load(FILE *F){ wei.load(F); }
void fw(Data<R0> &inp){
float alf=1/sqrtf(R0), bet=0;
_s16<<<R0/16,16>>>(R0,inp.data,inp.tmp.data);
cublasTSSgemvStridedBatched(handle,CUBLAS_OP_T,R0,R1,&alf,wei.data,R0,0,inp.tmp.data,1,0,&bet,out.data,1,0,1);
}
};
__global__ void _layernorm(unsigned R, float *inp, unsigned H){
unsigned id=blockIdx.x*blockDim.x+threadIdx.x, r=R/H;
float sum=0, nor=0, *in=inp+id*r;
for(unsigned i=0; i<r; i+=4){ float4* t=(float4*)(in+i); sum+=t->x+t->y+t->z+t->w; nor+=t->x*t->x+t->y*t->y+t->z*t->z+t->w*t->w; }
sum/=r; nor=sqrtf(r/fmaxf(nor-sum*sum*r,1e-18f));
for(unsigned i=0; i<r; i+=4){ float4 *t=(float4*)(in+i); *t=make_float4((t->x-sum)*nor,(t->y-sum)*nor,(t->z-sum)*nor,(t->w-sum)*nor); }
}
void softmax(unsigned R, float *inp){
float sum=0, ma=-FLT_MAX;
for(unsigned i=0; i<R; i++) ma=fmaxf(inp[i],ma);
for(unsigned i=0; i<R; i++) sum+=(inp[i]=expf(inp[i]-ma));
for(unsigned i=0; i<R; i++) inp[i]/=sum;
}
__global__ void _sexyfp(unsigned C, unsigned para, unsigned col, float *att, float *pe){
unsigned id=blockIdx.x*blockDim.x+threadIdx.x, j=id%C, h=id/C, i=(j+1+col)%C;
if(j<para) att[h*C+i]=0;
else att[h*C+i]=expf(pe[h*C+C-1-j]+att[h*C+i]);
}
__global__ void _sexyfsuv(float *u, float *v){
unsigned id=(blockIdx.x*blockDim.x+threadIdx.x)<<2;
float4 *u4=(float4*)(u+id), *v4=(float4*)(v+id);
*v4=make_float4(u4->x*v4->x,u4->y*v4->y,u4->z*v4->z,u4->w*v4->w);
}
__global__ void _sexyadd(float *u, float *v){
unsigned id=(blockIdx.x*blockDim.x+threadIdx.x)<<2;
float4 *u4=(float4*)(u+id), *v4=(float4*)(v+id);
*u4=make_float4(u4->x+v4->x,u4->y+v4->y,u4->z+v4->z,u4->w+v4->w);
}
template<unsigned R, unsigned C, unsigned H>
struct sexy{
static Data<R> va;
static Data<H*C> a;
Data16<R*C> k0,k1;
Data<H*C> pe;
linear<R,4*R> x;
linear<R,R> o;
Data<R> &out=o.out;
sexy(){ k0.zero(); k1.zero(); }
void load(FILE* F){ pe.load(F); x.load(F); o.load(F); }
void fw(Data<R> &inp, unsigned col, unsigned para){
x.fw(inp); _layernorm<<<4*H,1>>>(4*R,x.out.data,4*H);
_s16<<<R/16,16>>>(R,x.out.data,k0.data+col*R);
_s16<<<R/16,16>>>(R,x.out.data+R,x.out.tmp.data+R);
_s16<<<R/16,16>>>(R,x.out.data+2*R,k1.data+col*R);
float alf=1/sqrtf(R/H), alf1=1,bet=0;
cublasTSSgemvStridedBatched(handle,CUBLAS_OP_T,R/H,C,&alf,k0.data,R,R/H,x.out.tmp.data+R,1,R/H,&bet,a.data,1,C,H);
_sexyfp<<<C*H/16,16>>>(C,para,col,a.data,pe.data);
_s16<<<H*C/16,16>>>(H*C,a.data,a.tmp.data);
cublasTSSgemvStridedBatched(handle,CUBLAS_OP_N,R/H,C,&alf1,k1.data,R,R/H,a.tmp.data,1,C,&bet,va.data,1,R/H,H);
_sexyfsuv<<<R/4/4,4>>>(x.out.data+3*R,va.data);
_layernorm<<<H,1>>>(R,va.data,H); o.fw(va);
_sexyadd<<<R/4/4,4>>>(o.out.data,inp.data);
}
};
template<unsigned R, unsigned C, unsigned H>
Data<R> sexy<R,C,H>::va;
template<unsigned R, unsigned C, unsigned H>
Data<H*C> sexy<R,C,H>::a;
__global__ void _selffsuv(unsigned S, float *u, float *o){
unsigned id=(blockIdx.x*blockDim.x+threadIdx.x)<<2;
float4 *u4=(float4*)(u+id), *v4=(float4*)(u+S+id), *o4=(float4*)(o+id);
*o4=make_float4(u4->x*v4->x,u4->y*v4->y,u4->z*v4->z,u4->w*v4->w);
}
template<unsigned R, unsigned C, unsigned H>
struct self{
static Data<R> tmp;
linear<R,2*R> u;
linear<R,R> o;
Data<R> &out=o.out;
void load(FILE* F){ u.load(F); o.load(F); }
void fw(Data<R> &inp){
u.fw(inp); _layernorm<<<2*H,1>>>(2*R,u.out.data,2*H);
_selffsuv<<<R/4/4,4>>>(R,u.out.data,tmp.data);
_layernorm<<<H,1>>>(R,tmp.data,H); o.fw(tmp);
_sexyadd<<<R/4/4,4>>>(o.out.data,inp.data);
}
};
template<unsigned R, unsigned C, unsigned H>
Data<R> self<R,C,H>::tmp;
template<unsigned R, unsigned C, unsigned H>
struct wyGPT{
self<R,C,H> a;
sexy<R,C,H> b;
self<R,C,H> c;
Data<R> &out=c.out;
void load(FILE* F){ a.load(F); b.load(F); c.load(F); }
void fw(Data<R> &inp, unsigned col, unsigned para){
a.fw(inp);
b.fw(a.out,col,para);
c.fw(b.out);
}
};
template<unsigned C, unsigned E, unsigned D, unsigned H, unsigned O>
struct Neanderthal{
unsigned curr=0;
Data<E> emb;
wyGPT<E,C,H> tra[D];
linear<E,O> out;
float vs[O];
bool load(const char *F){
FILE* f=fopen(F, "rb");
if(f==NULL) return false;
unsigned x;
if(fread(&x,4,1,f)!=1||x!=C) fprintf(stderr,"C=%u\n",x);
if(fread(&x,4,1,f)!=1||x!=E) fprintf(stderr,"E=%u\n",x);
if(fread(&x,4,1,f)!=1||x!=D) fprintf(stderr,"D=%u\n",x);
if(fread(&x,4,1,f)!=1||x!=H) fprintf(stderr,"H=%u\n",x);
if(fread(&x,4,1,f)!=1||x!=O) fprintf(stderr,"O=%u\n",x);
for(unsigned i=0; i<D; i++) tra[i].load(f);
out.load(f); fclose(f);
return true;
}
uint8_t sample(uint8_t *x, uint8_t *p){
unsigned para=p+C-1>=x?p+C-1-x:0;
for(unsigned r=0; r<E; r++) emb.data[r]=(_wyhash64(*x,r)&1)*2-1.0f;
for(unsigned d=0; d<D; d++) tra[d].fw(d?tra[d-1].out:emb,curr,para);
_layernorm<<<1,1>>>(E,tra[D-1].out.data,1); out.fw(tra[D-1].out);
cudaDeviceSynchronize();
for(unsigned i=0; i<O; i++) out.out.data[i]=M_SQRT2*(out.out.data[i]-vs[i]);
softmax(O,out.out.data);
double sum=0; for(unsigned i=0; i<O; i++) sum+=(out.out.data[i]=fmaxf(out.out.data[i]-1.0f/O,0));
double ran=wy2u01(wyrand(&prng))*sum, sum1=0; uint16_t ret=0;
for(size_t i=0; i<O; i++){ sum1+=out.out.data[i]; if(sum1>=ran){ ret=i; break; } }
curr=(curr+1)%C; return ret;
}
string generate(string inp, unsigned n){
if(!inp.size()) return "";
vector<uint8_t> s; uint8_t c;
for(unsigned i=0; i<inp.size()&&i<n; i++){
s.push_back(inp[i]);
memset(vs,0,sizeof(float)*O);
for(size_t k=0; k<s.size(); k++){
unsigned l=1;
while(l<=k&&s[k-l]==s[s.size()-l]) l++;
vs[s[k]]+=(expf(l/M_E)-1)/(s.size()-k);
}
c=sample(s.data()+s.size()-1,s.data());
}
while(s.size()<n){
s.push_back(c);
memset(vs,0,sizeof(float)*O);
for(size_t k=0; k<s.size(); k++){
unsigned l=1;
while(l<=k&&s[k-l]==s[s.size()-l]) l++;
vs[s[k]]+=(expf(l/M_E)-1)/(s.size()-k);
}
c=sample(s.data()+s.size()-1,s.data());
}
string ret(s.begin(),s.end());
return ret;
}
float probability(const uint8_t *x, const uint8_t *p){
unsigned para=p+C-1>=x?p+C-1-x:0;
for(unsigned r=0; r<E; r++) emb.data[r]=(_wyhash64(*x,r)&1)*2-1.0f;
for(unsigned d=0; d<D; d++) tra[d].fw(d?tra[d-1].out:emb,curr,para);
_layernorm<<<1,1>>>(E,tra[D-1].out.data,1); out.fw(tra[D-1].out);
cudaDeviceSynchronize();
softmax(O,out.out.data); curr=(curr+1)%C; return out.out.data[x[1]];
}
float evaluate(string inp){
double loss=0;
for(unsigned i=0; i+1<inp.size(); i++)
loss-=logf(fmaxf(probability((uint8_t*)inp.data()+i,(uint8_t*)inp.data()),FLT_MIN));
return inp.size()<2?0:loss/(inp.size()-1);
}
};
#include "config"
int main(int ac, char **av){
cublasCreate(&handle);
Neanderthal<context,embed,depth,heads,voca> model;
string model_file="model";
int opt;
while((opt=getopt(ac, av, "m:"))>=0){
switch(opt){
case 'm': model_file=optarg; break;
}
}
if(!model.load(model_file.c_str())){ fprintf(stderr,"fail to load %s\n",model_file.c_str()); return 0; }
timeval beg,end; gettimeofday(&beg,NULL);
cout<<model.generate(av[optind],context)<<'\n'; // the second parameter can be arbitary long
gettimeofday(&end,NULL);
cerr<<end.tv_sec-beg.tv_sec+1e-6*(end.tv_usec-beg.tv_usec)<<'\n';
cublasDestroy(handle);
return 0;
}