-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
245 lines (217 loc) · 6.58 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import os
from os.path import join
import sys
import argparse
# import wandb
sys.path.append("/workspace/zsl-res")
import torch
import numpy as np
import random
from MODEL.data import build_dataloader
from MODEL.modeling import build_zsl_pipeline
from MODEL.solver import make_optimizer, make_lr_scheduler
from MODEL.engine.trainer import do_train
from MODEL.config import cfg
from MODEL.utils.comm import *
from MODEL.utils import ReDirectSTD
try:
from apex import amp
except ImportError:
raise ImportError('Use APEX for multi-precision via apex.amp')
def train_model(cfg, local_rank, distributed, seed=214):
# seed = 523
# seed = 123
# seed = 656
# seed = 777
# seed = 214
# print('#'*100)
# print(local_rank)
# local_seed = seed
local_seed = local_rank*100 + seed
torch.manual_seed(local_seed)
torch.cuda.manual_seed_all(local_seed)
np.random.seed(local_seed)
random.seed(local_seed)
#TODO
# """
g = torch.Generator()
g.manual_seed(local_seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic=True
# """
model = build_zsl_pipeline(cfg)
device = torch.device(cfg.MODEL.DEVICE)
model = model.to(device)
optimizer = make_optimizer(cfg, model)
scheduler = make_lr_scheduler(cfg, optimizer)
use_mixed_precision = cfg.DTYPE == "float16"
amp_opt_level = 'O1' if use_mixed_precision else 'O0'
model, optimizer = amp.initialize(model, optimizer, opt_level=amp_opt_level)
if distributed:
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[local_rank], output_device=local_rank,
# this should be removed if we update BatchNorm stats
broadcast_buffers=False,find_unused_parameters=True,
)
tr_dataloader, tu_loader, ts_loader, res = build_dataloader(cfg, is_distributed=distributed)
output_dir = cfg.OUTPUT_DIR
model_file_name = cfg.MODEL_FILE_NAME
model_file_path = join(output_dir, model_file_name)
test_gamma = cfg.TEST.GAMMA
max_epoch = cfg.SOLVER.MAX_EPOCH
resume_from = cfg.MODEL.RESUME_FROM
lamd = {
1: cfg.MODEL.LOSS.LAMBDA1,
2: cfg.MODEL.LOSS.LAMBDA2,
3: cfg.MODEL.LOSS.LAMBDA3,
4: cfg.MODEL.LOSS.LAMBDA4,
5: cfg.MODEL.LOSS.LAMBDA5,
6: cfg.MODEL.LOSS.LAMBDA6,
7: cfg.MODEL.LOSS.LAMBDA7
}
do_train(
model,
tr_dataloader,
tu_loader,
ts_loader,
res,
optimizer,
scheduler,
lamd,
test_gamma,
device,
max_epoch,
model_file_path,
resume_from
)
return model
def main():
parser = argparse.ArgumentParser(description="PyTorch Zero-Shot Learning Training")
parser.add_argument(
"--config-file",
default="",
metavar="FILE",
help="path to config file",
type=str,
)
parser.add_argument(
"--temp",
default=0.1,
type=float,
)
parser.add_argument(
"--margin",
default=0.8,
type=float,
)
parser.add_argument(
"--lambda_proto",
default=1.,
type=float,
)
parser.add_argument(
"--lambda_att",
default=1.,
type=float,
)
parser.add_argument(
"--lambda_cont",
default=1.,
type=float,
)
parser.add_argument(
"--atten_thr",
default=9.,
type=float,
)
parser.add_argument(
"--prefix",
default="",
type=str,
)
parser.add_argument(
"--seed",
default=214,
type=int,
)
parser.add_argument(
"--scale",
default=25.,
type=float,
)
parser.add_argument(
"--scale_semantic",
default=25.,
type=float,
)
parser.add_argument(
"--gamma",
default=0.7,
type=float,
)
parser.add_argument(
"--output_dir",
default=None,
type=str,
)
parser.add_argument(
"--alpha",
default=0.5,
type=float,
)
parser.add_argument(
"--beta",
default=0.,
type=float,
)
parser.add_argument(
"--orth",
default=False,
type=bool,
)
parser.add_argument(
"--way",
default=4,
type=int,
)
parser.add_argument(
"--shot",
default=2,
type=int,
)
parser.add_argument("--local_rank", type=int, default=0)
args = parser.parse_args()
# if is_main_process():
# wandb.init(project='ZSL')
# wandb.config.zsl_best = 0.
# wandb.config.gzsl_h_best = 0.
# wandb.config.gzsl_s_best = 0.
# wandb.config.gzsl_u_best = 0.
num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
args.distributed = num_gpus > 1
if args.distributed:
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(
backend="nccl", init_method="env://"
)
synchronize()
cfg.merge_from_file(args.config_file)
opts = ['MODEL.LOSS.TEMP',args.temp,'MODEL.LOSS.MARGIN',args.margin,'PREFIX',args.prefix,'MODEL.LOSS.LAMBDA6',args.lambda_cont,'MODEL.LOSS.LAMBDA4',args.lambda_att,'MODEL.LOSS.LAMBDA5',args.lambda_proto,'MODEL.LOSS.ALPHA', args.alpha ,'MODEL.LOSS.BETA', args.beta ,'MODEL.ATTEN_THR',args.atten_thr,'MODEL.SCALE',args.scale,'TEST.GAMMA',args.gamma,'MODEL.ORTH', args.orth,'DATASETS.WAYS',args.way,'DATASETS.SHOTS',args.shot,'MODEL.SCALE_SEMANTIC',args.scale_semantic]
cfg.merge_from_list(opts)
cfg.freeze()
output_dir = cfg.OUTPUT_DIR if args.output_dir is None else args.output_dir
log_file_name = cfg.LOG_FILE_NAME
current_time = time.strftime("%Y-%m-%d %H:%M:%S",time.localtime()).replace(' ','-')
log_file_path = join(output_dir, f'{cfg.PREFIX}_{current_time}_seed_{args.seed}_temp_{args.temp}_margin_{args.margin}_lc_{args.lambda_cont}_la_{args.lambda_att}_lp_{args.lambda_proto}_alpha_{args.alpha}_beta_{args.beta}_thr_{args.atten_thr}_scale_{args.scale}_gamma_{args.gamma}_way_{args.way}_shot_{args.shot}-{log_file_name}')
print(log_file_path)
if is_main_process():
ReDirectSTD(log_file_path, 'stdout', True)
print("Loaded configuration file {}".format(args.config_file))
with open(args.config_file, "r") as cf:
config_str = "\n" + cf.read()
print(config_str)
print("Running with config:\n{}".format(cfg))
# torch.backends.cudnn.benchmark = True
model = train_model(cfg, args.local_rank, args.distributed,args.seed)
if __name__ == '__main__':
main()