-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpre_process_sysu.py
78 lines (65 loc) · 2.3 KB
/
pre_process_sysu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import numpy as np
from PIL import Image
import pdb
import os
from tqdm import tqdm
data_path = '/data1/dyh/data/SYSU-MM01/SYSU-MM01/'
rgb_cameras = ['cam1','cam2','cam4','cam5']
ir_cameras = ['cam3','cam6']
# load id info
file_path_train = os.path.join(data_path,'exp/train_id.txt')
file_path_val = os.path.join(data_path,'exp/val_id.txt')
with open(file_path_train, 'r') as file:
ids = file.read().splitlines()
ids = [int(y) for y in ids[0].split(',')]
id_train = ["%04d" % x for x in ids]
with open(file_path_val, 'r') as file:
ids = file.read().splitlines()
ids = [int(y) for y in ids[0].split(',')]
id_val = ["%04d" % x for x in ids]
# combine train and val split
id_train.extend(id_val)
files_rgb = []
files_ir = []
for id in sorted(id_train):
for cam in rgb_cameras:
img_dir = os.path.join(data_path,cam,id)
if os.path.isdir(img_dir):
new_files = sorted([img_dir+'/'+i for i in os.listdir(img_dir)])
files_rgb.extend(new_files)
for cam in ir_cameras:
img_dir = os.path.join(data_path,cam,id)
if os.path.isdir(img_dir):
new_files = sorted([img_dir+'/'+i for i in os.listdir(img_dir)])
files_ir.extend(new_files)
# relabel
pid_container = set()
for img_path in files_ir:
pid = int(img_path[-13:-9])
pid_container.add(pid)
pid2label = {pid:label for label, pid in enumerate(pid_container)}
fix_image_width = 144
fix_image_height = 384
def read_imgs(train_image):
train_img = []
train_label = []
for img_path in tqdm(train_image):
# img
img = Image.open(img_path)
img = img.resize((fix_image_width, fix_image_height), Image.ANTIALIAS)
pix_array = np.array(img)
train_img.append(pix_array)
# label
pid = int(img_path[-13:-9])
pid = pid2label[pid]
train_label.append(pid)
return np.array(train_img), np.array(train_label)
print(pid2label)
# rgb imges
train_img, train_label = read_imgs(files_rgb)
np.save(data_path + 'train_rgb_resized_img.npy', train_img)
np.save(data_path + 'train_rgb_resized_label.npy', train_label)
# ir imges
train_img, train_label = read_imgs(files_ir)
np.save(data_path + 'train_ir_resized_img.npy', train_img)
np.save(data_path + 'train_ir_resized_label.npy', train_label)