Skip to content

Latest commit

 

History

History
364 lines (328 loc) · 53.9 KB

graphcoloring.org

File metadata and controls

364 lines (328 loc) · 53.9 KB

Graph Coloring Benchmark Instances

Utils

  • Converter: convert from benchmarks from ascii to binary format and vice versa.
  • Benchmark: Since the experiments are performed on different machines, download this file, untar, compile the program dfmax, run the program on r500.b, and report the resulting computation time.

Graph Coloring instances

Directory

FileVerticesEdgesSolCategoryNote
1(*)DSJC125.1.col125736?DSJ
2(*)DSJC125.5.col1253891?DSJ
3(*)DSJC125.9.col1256961?DSJ
4(*)DSJC250.1.col2503218?DSJ
5(*)DSJC250.5.col25015668?DSJ
6(*)DSJC250.9.col25027897?DSJ
7(*)DSJC500.1.col50012458?DSJ
8(*)DSJC500.5.col50062624?DSJ
9(*)DSJC500.9.col500224874?DSJ# edges should be[fn:1] 112437
10(*)DSJR500.1.col5003555?DSJ
11(*)DSJR500.1c.col500121275?DSJ
12(*)DSJR500.5.col50058862?DSJ
13(*)DSJC1000.1.col100049629?DSJ
14(*)DSJC1000.5.col1000249826?DSJ
15(*)DSJC1000.9.col1000449449?DSJ
16fpsol2.i.1.col4961165465REG
17fpsol2.i.2.col451869130REG
18fpsol2.i.3.col425868830REG
19inithx.i.1.col8641870754REG
20inithx.i.2.col6451397931REG
21inithx.i.3.col6211396931REG
22(*)latin_square_10.col900307350?LAT
23(*)le450_15a.col450816815LEI
24(*)le450_15b.col450816915LEI
25(*)le450_15c.col4501668015LEI
26(*)le450_15d.col4501675015LEI
27(*)le450_25a.col450826025LEI
28(*)le450_25b.col450826325LEI
29(*)le450_25c.col4501734325LEI
30(*)le450_25d.col4501742525LEI
31(*)le450_5a.col45057145LEI
32(*)le450_5b.col45057345LEI
33(*)le450_5c.col45098035LEI
34(*)le450_5d.col45097575LEI
35mulsol.i.1.col197392549REG
36mulsol.i.2.col188388531REG
37mulsol.i.3.col184391631REG
38mulsol.i.4.col185394631REG
39mulsol.i.5.col186397331REG
40school1.col38519095?SCH
41(*)school1_nsh.col35214612?SCH
42zeroin.i.1.col211410049REG
43zeroin.i.2.col211354130REG
44zeroin.i.3.col206354030REG
45anna.col13849311SGB
46david.col8740611SGB
47homer.col561162913SGB# edges should be[fn:1] 1628 + 1 self-loop edge[fn:2]
48huck.col7430111SGB
49jean.col8025410SGB
50games120.col1206389SGB
51miles1000.col128321642SGB
52miles1500.col128519873SGB
53miles250.col1283878SGB
54miles500.col128117020SGB
55miles750.col128211331SGB
56queen5_5.col251605SGB
57queen6_6.col362907SGB
58queen7_7.col494767SGB
59(*)queen8_12.col96136812SGB
60(*)queen8_8.col647289SGB
61(*)queen9_9.col81211210SGB# edges should be[fn:1] 1056
62(*)queen10_10.col1002940?SGB# edges should be[fn:1] 1470
63(*)queen11_11.col121396011SGB# edges should be[fn:1] 1980
64(*)queen12_12.col1445192?SGB# edges should be[fn:1] 2596
65(*)queen13_13.col169665613SGB# edges should be[fn:1] 3328
66(*)queen14_14.col1968372?SGB# edges should be[fn:1] 4186
67(*)queen15_15.col22510360?SGB# edges should be[fn:1] 5180
68(*)queen16_16.col25612640?SGB# edges should be[fn:1] 6320
69myciel3.col11204MYC
70myciel4.col23715MYC
71(*)myciel5.col472366MYC
72(*)myciel6.col957557MYC
73(*)myciel7.col19123608MYC
74mugg88_1.col881464MIZ
75mugg88_25.col881464MIZ
76mugg100_1.col1001664MIZ
77(*)mugg100_25.col1001664MIZ
78abb313GPIA.col155753356?HOScorrected 12/29/03
79ash331GPIA.col6624185?HOS
80ash608GPIA.col12167844?HOS
81ash958GPIA.col191612506?HOS
82will199GPIA.col7016772?HOScorrected 12/29/03
83(*)1-Insertions_4.col672324CAR
84(*)1-Insertions_5.col2021227?CAR
85(*)1-Insertions_6.col6076337?CAR
86(*)2-Insertions_3.col37724CAR
87(*)2-Insertions_4.col1495414CAR
88(*)2-Insertions_5.col5973936?CAR
89(*)3-Insertions_3.col561104CAR
90(*)3-Insertions_4.col2811046?CAR
91(*)3-Insertions_5.col14069695?CAR
92(*)4-Insertions_3.col791563CAR
93(*)4-Insertions_4.col4751795?CAR
94(*)1-FullIns_3.col30100?CAR
95(*)1-FullIns_4.col93593?CAR
96(*)1-FullIns_5.col2823247?CAR
97(*)2-FullIns_3.col52201?CAR
98(*)2-FullIns_4.col2121621?CAR
99(*)2-FullIns_5.col85212201?CAR
100(*)3-FullIns_3.col80346?CAR
101(*)3-FullIns_4.col4053524?CAR
102(*)3-FullIns_5.col203033751?CAR
103(*)4-FullIns_3.col114541?CAR
104(*)4-FullIns_4.col6906650?CAR
105(*)4-FullIns_5.col414677305?CAR
106(*)5-FullIns_3.col154792?CAR
107(*)5-FullIns_4.col108511395?CAR
108wap01a.col2368110871?KOS
109wap02a.col2464111742?KOS
110wap03a.col4730286722?KOS
111wap04a.col5231294902?KOS# vertices > 5000
112wap05a.col90543081?KOS
113wap06a.col94743571?KOS
114wap07a.col1809103368?KOS
115wap08a.col1870104176?KOS
116qg.order30.col9002610030GOM
117qg.order40.col16006240040GOM
118qg.order60.col360021240060GOM
119qg.order100.col10000990000100GOM# vertices > 5000

Coloring with Fixed Set instances

Directory

In the following, some or all nodes must choose from the sets given by the f lines.

FileCategoryNote
1qqwhdec.order18.holes120.1.colGOM1
2qqwhdec.order30.holes316.1.colGOM1
3qqwhdec.order30.holes320.1.colGOM1
4qqwhdec.order33.holes381al.1.colGOM1
5qqwhdec.order35.holes405.1.colGOM1
6qqwhdec.order40.holes528.1.colGOM1
7qqwhdec.order5.holes10.1.colGOM1
8qqwhdec.order50.holes750al.1.colGOM1
9qqwhdec.order50.holes825al.1.colGOM1
10qqwhdec.order60.holes1080al.1.colGOM1
11qqwhdec.order60.holes1152al.1.colGOM1
12qqwhdec.order60.holes1440.1.colGOM1
13qqwhdec.order60.holes1620.1.colGOM1
14qqwhdec.order70.holes2450.1.colGOM1
15qqwhdec.order70.holes2940.1.colGOM1
16qqwhopt.order18.holes120.1.colGOM1
17qqwhopt.order30.holes316.1.colGOM1
18qqwhopt.order30.holes320.1.colGOM1
19qqwhopt.order33.holes381al.1.colGOM1
20qqwhopt.order35.holes405.1.colGOM1
21qqwhopt.order40.holes528.1.colGOM1
22qqwhopt.order5.holes10.1.colGOM1
23qqwhopt.order50.holes750.bal.1.colGOM1
24qqwhopt.order50.holes825.bal.1.colGOM1
25qqwhopt.order60.holes1080.bal.1.colGOM1
26qqwhopt.order60.holes1152.bal.1.colGOM1
27qqwhopt.order60.holes1440.1.colGOM1
28qqwhopt.order60.holes1620.1.colGOM1
29qqwhopt.order70.holes2450.1.colGOM1
30qwhopt.order70.holes2940.1.colGOM1

Bandwidth and Multicoloring instances

Directory

The following can be used in bandwidth (edge weights) multicoloring (node weights) or both simply by ignoring unwanted information (edge weights for multicoloring and node weights for bandwidth). They can even be used for graph coloring by ignoring both!

FileVerticesEdgesSolCategoryNote
1GEOM20.col2040GEO
2GEOM20a.col2057GEO
3GEOM30.col3080GEO
4GEOM30a.col30111GEO
5GEOM40.col40118GEO
6GEOM40a.col40186GEO
7GEOM50.col50177GEO
8GEOM50a.col50288GEO
9GEOM60.col60245GEO
10GEOM60a.col60339GEO
11GEOM70.col70337GEO
12GEOM70a.col70529GEO
13GEOM80.col80429GEO
14GEOM80a.col80692GEO
15GEOM90.col90531GEO
16GEOM90a.col90879GEO
17GEOM100.col100647GEO
18GEOM100a.col1001092GEO
19GEOM110.col110748GEO
20GEOM110a.col1101317GEO
21GEOM120.col120893GEO
22GEOM120a.col1201554GEO
23GEOM20b.col2052GEO
24GEOM30b.col30111GEO
25GEOM40b.col40197GEO
26GEOM50b.col50299GEO
27GEOM60b.col60426GEO
28GEOM70b.col70558GEO
29GEOM80b.col80743GEO
30GEOM90b.col90950GEO
31GEOM100b.col1001150GEO
32GEOM110b.col1101366GEO
33GEOM120b.col1201611GEO
34DSJC125.1g.col125736?DSJ
35DSJC125.5g.col1253891?DSJ
36DSJC125.9g.col1256961?DSJ
37myciel5g.col47236?MYC
38myciel6g.col95755?MYC
39myciel7g.col1912360?MYC
40queen8_8g.col64728?SGB
41queen9_9g.col812112?SGB
42queen10_10g.col1002940?SGB
43queen11_11g.col1213960?SGB
44queen12_12g.col1445192?SGB
45DSJC125.1gb.col125736?DSJ
46DSJC125.5gb.col1253891?DSJ
47DSJC125.9gb.col1256961?DSJ
48myciel5gb.col47236?MYC
49myciel6gb.col95755?MYC
50myciel7gb.col1912360?MYC
51queen8_8gb.col64728?SGB
52queen9_9gb.col812112?SGB
53queen10_10gb.col1002940?SGB
54queen11_11gb.col1213960?SGB
55queen12_12gb.col1445192?SGB
56R50_1g.colMUC
57R50_5g.colMUC
58R50_9g.colMUC
59R75_1g.colMUC
60R75_5g.colMUC
61R75_9g.colMUC
62R100_1g.colMUC
63R100_5g.colMUC
64R100_9g.colMUC
65R50_1gb.colMUC
66R50_5gb.colMUC
67R50_9gb.colMUC
68R75_1gb.colMUC
69R75_5gb.colMUC
70R75_9gb.colMUC
71R100_1gb.colMUC
72R100_5gb.colMUC
73R100_9gb.colMUC

Categories

DSJ
(From David Johnson, [email protected]) Random graphs used in his paper with Aragon, McGeoch, and Schevon, “Optimization by Simulated Annealing: An Experimental Evaluation; Part II, Graph Coloring and Number Partitioning”, Operations Research, 31, 378–406 (1991).

DSJC are standard (n , p) random graphs. DSJR are geometric graphs with DSJR..c being complements of geometric graphs. In some papers the edge count is twice that given here since both (i , j) and (j , i) are counted.

CUL
(From Joe Culberson ([email protected])) Quasi-random coloring problem.
REG
(From Gary Lewandowski ([email protected])) Problem based on register allocation for variables in real codes.
LEI
(From Craig Morgenstern ([email protected])) Leighton graphs with guaranteed coloring size. A reference is F.T. Leighton, Journal of Research of the National Bureau of Standards, 84: 489–505 (1979).
SCH
(From Gary Lewandowski ([email protected])): Class scheduling graphs with and without study halls.
LAT
(From Gary Lewandowski ([email protected])): Latin square problem.
SGB
(From Michael Trick ([email protected]) Graphs from Donald Knuth’s Stanford GraphBase. These can be divided into:
Book Graphs
Given a work of literature, a graph is created where each node represents a character. Two nodes are connected by an edge if the corresponding characters encounter each other in the book. Knuth creates the graphs for five classic works: Tolstoy’s Anna Karenina (anna), Dicken’s David Copperfield (david), Homer’s Iliad (homer), Twain’s Huckleberry Finn (huck), and Hugo’s Les Miserables (jean).
Game Graphs
A graph representing the games played in a college football season can be represented by a graph where the nodes represent each college team. Two teams are connected by an edge if they played each other during the season. Knuth gives the graph for the 1990 college football season.
Miles Graphs
These graphs are similar to geometric graphs in that nodes are placed in space with two nodes connected if they are close enough. These graphs , however , are not random. The nodes represent a set of United States cities and the distance between them is given by by road mileage from 1947. These graphs are also due to Kuth.
Queen Graphs
Given an n by n chessboard , a queen graph is a graph on n^2 nodes , each corresponding to a square of the board. Two nodes are connected by an edge if the corresponding squares are in the same row , column , or diagonal. Unlike some of the other graphs , the coloring problem on this graph has a natural interpretation: Given such a chessboard , is it possible to place n sets of n queens on the board so that no two queens of the same set are in the same row , column , or diagonal? The answer is yes if and only if the graph has coloring number n. Vasek Chvatal has a page on such colorings.
MYC
(From Michael Trick ([email protected])) Graphs based on the Mycielski transformation. These graphs are difficult to solve because they are triangle free (clique number 2) but the coloring number increases in problem size.
MYC
(From Kuzunori Mizuno ([email protected]) Graphs that are almost 3-colorable, but have a hard-to-find four clique embedded.
HOS
(From Shahadat Hossain) Graphs obtained from a matrix partitioning problem in the segmented columns approach to determine sparse Jacobian matrices.
CAR
(From M. Caramia ([email protected]) and P. Dell’Olmo ([email protected])) k-Insertion graphs and Full Insertion graphs are a generalization of myciel graphs with inserted nodes to increase graph size but not density.
KOS
(From Arie Koster [email protected]) From real-life optical network design problems. Each vertex corresponds to a lightpath in the network; edges correspond to intersecting paths. (Corrected June 28 , 2002 and replaced by wap?a.col instances: nodes now numbered from 1 to n)
GOM
(From Carla Gomes [email protected]) Latin squares (standard encoding).
GOM1
Encodings of latin square problem.
GEO
Geometric graphs generated by Michael Trick. Points are generated in a 10,000 by 10,000 grid and are connected by an edge if they are close enough together. Edge weights are inversely proportional to the distance between nodes; Node weights are uniformly generated. (Note, I do not know how hard this problem is, so if the 120 is too easy, let me know so I can generate larger instances). The GEOMn instances are sparse; GEOMa and GEOMb instances are denser; GEOMb requires fewer colors per node.
MUC
Other instances are for multicoloring: the “g.col” are the corresponding coloring instances with node weights uniformly generated between 1 and 5; the “gb.col” have node weights uniformly generated between 1 and 20.

Back to benchmark instances page

[fn:1] duplicated: edges counted twice (e.g., e v1 v2 , e v2 v1) [fn:2] self-loop: e v1 v1