-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathneural-net.py
executable file
·132 lines (125 loc) · 4.91 KB
/
neural-net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#!/usr/bin/env python
import numpy as np
from matplotlib import pyplot as plt
def load_mnist_image(filename):
with open(filename,'rb') as f:
data = np.frombuffer(f.read(),np.uint8,offset=16)
return data.reshape(-1,784)/255.0
def load_mnist_label(filename):
with open(filename,'rb') as f:
data = np.frombuffer(f.read(),np.uint8,offset=8)
label = np.zeros((len(data),10))
for i in range(len(data)):
t = data[i]
label[i,t] = 1
return label
train_data = load_mnist_image("train-images-idx3-ubyte")
test_data = load_mnist_image("t10k-images-idx3-ubyte")
train_t = load_mnist_label("train-labels-idx1-ubyte")
test_t= load_mnist_label("t10k-labels-idx1-ubyte")
class Sigmoid:
def __init__(self):
self.out = None
def forward(self,x):
self.out = 1.0/(1.0 + np.exp(-x))
return self.out
def backward(self,dout):
delta = dout * (1.0 - self.out) * self.out
return delta
class Softmax:
def __init__(self):
self.out = None
def forward(self,x):
if x.ndim == 2:
x_ = x.transpose()
x_ = x_ - np.max(x_,axis=0)
out = np.exp(x_)/np.sum(np.exp(x_),axis=0)
self.out = out.transpose()
else:
x_ = x - np.max(x)
out = np.exp(x_)/np.sum(np.exp(x_))
self.out = out
return self.out
def backward(self,dout):
delta = self.out - dout
return delta
class NeuralNet:
def __init__(self,size):
hidden_num = len(size)-2
self.layer = np.array([None]*(hidden_num+1))
self.w = np.array([None]*(hidden_num+1))
self.dw = np.array([None]*(hidden_num+1))
self.b = np.array([None]*(hidden_num+1))
self.db = np.array([None]*(hidden_num+1))
for i in range(hidden_num):
self.layer[i] = Sigmoid()
self.w[i] = 0.01*np.random.randn(size[i],size[i+1])
self.dw[i] = np.zeros((size[i],size[i+1]))
self.b[i] = np.zeros(size[i+1])
self.db[i] = np.zeros(size[i+1])
self.layer[hidden_num] = Softmax()
self.w[hidden_num] = 0.01*np.random.randn(size[hidden_num],size[hidden_num+1])
self.dw[hidden_num] = np.zeros((size[hidden_num],size[hidden_num+1]))
self.b[hidden_num] = np.zeros(size[hidden_num+1])
self.db[hidden_num] = np.zeros(size[hidden_num+1])
self.hidden_num = hidden_num
self.x = [None]*(hidden_num+1)
def forward(self,x):
x_ = x
for i in range(self.hidden_num+1):
self.x[i] = x_
u = np.dot(x_,self.w[i]) + self.b[i]
x_ = self.layer[i].forward(u)
return x_
def backward(self,t,batch_size):
d = t
for i in range(self.hidden_num+1):
delta = self.layer[self.hidden_num-i].backward(d)
x_ = self.x[self.hidden_num-i].reshape(batch_size,-1)
x_ = x_.transpose()
delta_ = delta.reshape(batch_size,-1)
self.dw[self.hidden_num-i] += np.dot(x_,delta_)
self.db[self.hidden_num-i] += np.dot(np.ones((1,batch_size)),delta_).reshape(-1)
d = np.dot(delta_,self.w[self.hidden_num-i].transpose())
def train(self,data,label,batch_size,limit=100,learning_rate=0.1):
for i in range(limit):
idx = np.random.permutation(len(data))
for j in range(len(label)/batch_size):
y = self.forward(data[idx[j*batch_size:(j+1)*batch_size]])
self.backward(label[idx[j*batch_size:(j+1)*batch_size]],batch_size)
self.w -= self.dw * learning_rate / float(batch_size)
self.b -= self.db * learning_rate / float(batch_size)
self.dw = np.zeros_like(self.dw)
self.db = np.zeros_like(self.db)
def check(self,test,ans):
correct = 0
num = len(ans)
for i in range(num):
y = self.forward(test[i])
if(np.argmax(y) == np.argmax(ans[i])):
correct += 1
accuracy = correct / float(num)
return accuracy
def graph(self,x,y,filename,xlabel,ylabel):
plt.figure()
plt.plot(x,y)
plt.title(filename)
plt.xlabel(xlabel)
plt.ylabel(ylabel)
plt.xlim(0,len(x)+1)
plt.savefig(filename+".png")
def learn(self,train_data,train_label,test_data,test_label,batch_size,filename,xlabel,ylabel,limit=30):
x = range(1,limit+1)
y = np.array([])
for i in x:
self.train(train_data,train_label,batch_size,1,1.0/np.cbrt(i))
y_ = self.check(test_data,test_label)
y = np.append(y,y_)
print(i)
print(y_)
print(np.argmax(y)+1)
print(y[np.argmax(y)])
self.graph(x,y,filename,xlabel,ylabel)
return x,y
n = NeuralNet([784,500,300,100,10])
n.learn(train_data,train_t,test_data,test_t,100,"Accuracy_of_4layers_NeuralNet","epoch","accuracy")